
HT82A623R/HT82A6208/HT82A6216

A/D Type Full Speed USB 8-Bit MCU with SPI

Rev. 1.10 1 October 30, 2009

Features

� Operating voltage:
� VDD (MCU)

fSYS = 6MHz: 2.2V~5.5V

fSYS = 12MHz: 3.0V~5.5V
� UBUS (USB BUS Voltage): 4.5V~5.5V
� VCC (HT82A6208 & HT82A6216 for Flash):

2.8V~3.6V

� 4K�15 bits Program Memory

� 160�8 bits Data Memory RAM

� HT82A6208: 8M�1 bits Flash memory structure

� HT82A6216: 16M�1 bits or 8Mx2 bits Flash memory

structure

� 32 bidirectional I/O lines

� USB 2.0 Full Speed Compatible

� One external interrupt input shared with I/O line

� Two 16-bit programmable Timer/Event Counters

with overflow interrupt

� Two SPI interfaces (master and slave mode) shared

with PA0~PA3, PB0~PB3

� Total of 6 Interrupts - EXT, Timer0, Timer1, SPIA,

SPIB, USB

� Flash Serial Peripheral Interface compatible - Mode0

and Mode3

� 8288608�1bit Flash memory structure - HT82A6208

� 16777216�1bit or 8388608x2bit Flash memory

structure - HT82A6216

� 256 Equal Sector with 4K byte each for Flash

memory structure- HT82A6208

� 512 Equal Sector with 4K byte each for Flash

memory structure- HT82A6216

� Flash Memory Input Data Format: 1-byte Command

code

� Flash Memory Block Lock protection

� Single Power Supply Operation

� Watchdog Timer function

� 32768Hz Real time clock

� Power down and wake-up functions to reduce power

consumption

� 16 channel 12-bit resolution A/D converter

� 2-channel 8-bit PWM output shared with two I/O

lines

� Up to 0.33�s instruction cycle with 12MHz system

clock at VDD=5V

� Max. 4 endpoints supported - endpoint 0 included

� All endpoints support Interrupt, & bulk transfer

� Endpoint 0 supports control, interrupt and bulk

transfer

� All endpoints except endpoint 0 can be configured

as 8, 16, 32, 64 FIFO size

� Endpoint 0 has 8 byte FIFO

� Total FIFO size: 64+8 bytes (RAM0: 48 bytes;

RAM1:16 bytes, 8 bytes for endpoint0)

� 2.2V � 5% LVD

� 6-level subroutine nesting

� Bit manipulation instruction

� Table read instructions

� 63 powerful instructions

� All instructions executed in one or two instruction

cycles

� Low voltage reset function

� Wide range of available package types

Technical Document

� Application Note
� HA0075E MCU Reset and Oscillator Circuits Application Note

http://www.holtek.com.tw/english/tech/appnote/appnote.htm#mcu
http://www.holtek.com.tw/english/tech/appnote/uc/pdf/ha0075ev110.pdf

Selection Table

The following table summarises the main features of each device.

Part No. VDD VCC
Program

Memory

Data

Memory

Flash

Memory
I/O

Timer
A/D PWM SPI Stack Package

16-bit RTC

HT82A623R
2.2V~

5.5V
� 4K�15 160�8 � 32 2 � 12-bit�16 8-bit�2 2 6

28SOP,

28SSOP,

48QFN

HT82A6208 2.2V~

5.5V

2.8V~

3.6V
4K�15 160�8

8M
32 2 � 12-bit�16 8-bit�2 2 6 44/52QFP

HT82A6216 16M

HT82A623R/HT82A6208/HT82A6216

Rev. 1.10 2 October 30, 2009

General Description

The HT82A623R, HT82A6208 and HT82A6216 are

8-bit high performance RISC-like microcontrollers de-

signed for USB keyboard, mouse and joystick product

applications. The devices are also suitable for use in

home appliances, particularly for use in high-level

household appliances such as microwave ovens, wash-

ing instructions and air conditioner products.

The HT82A6208 and HT82A6216 devices also possess

an internal 8M or 16M Flash Memory further enhancing

and expanding their application possibilities.

The advantages of low power consumption, I/O flexibil-

ity, programmable frequency divider, timer functions,

oscillator options, multi-channel A/D Converter, Pulse

Width Modulation function, USB Interface, Watchdog

timer, SPI interfaces, Power Down and wake-up func-

tions, enhance the versatility of these devices to suit a

wide range of application possibilities.

The HT82A6208 contains a 8,388,608 bit serial Flash

memory, which is configured as 1,048,576�8 internally.

The HT82A6216 contains a 16,777,216 bit serial Flash

memory, which is configured as 2,097,152�8 internally.

The HT82A6208/HT82A6216 feature a serial peripheral

interface and software protocol allowing operation on a

simple 3-wire bus. The three bus signals are a clock in-

put (SCLK), a serial data input (SI), and a serial data

output (SO). SPI access to the device is enabled by the

FHCS# input.

The device provides a sequential read operation on the

whole chip.

After a program/erase command is issued, auto pro-

gram/ erase algorithms are executed which pro-

gram/erase and veri fy the specif ied page or

byte/sector/block locations. A program command is ex-

ecuted on a page (256 bytes) basis, and an erase com-

mand is executed on a chip or sector (4K-bytes) or block

(64K-bytes) basis.

To provide the user with ease of interface, a status reg-

ister is included to indicate the status of the device. The

status read command can be issued to detect comple-

tion status of a program or erase operation via the WIP

bit.

When the HT82A6208/HT82A6216 is not operating and

FHCS# is high, it can be put into the standby mode

where it will draw less than 10�A/20�A DC current.

The HT82A6208/HT82A6216 contains proprietary

memory cells, which reliably store memory contents

even after 100,000 program and erase cycles.

Block Diagram

HT82A623R/HT82A6208/HT82A6216

Rev. 1.10 3 October 30, 2009

� � � � �

� � � �
� 	
 � �

� � �
� � � � �

� � � � �
� �
 	 �

� � � � � �

 � � � 	
� � 	 � � 	 � �

� 	 � 	 � � � � �

� � � � ! � �
� �
 	 �

� � � " � � � � � �

� 	
 � �

� � � � �
� � $
� $ %
$ � � 	

� � � � ! � �
� �
 	 � " � � � � � � � � � �

# 	 � 	 �
$ � � � � � �

� � � 	 � � � & �
$ � � � � � � � 	 �

$ �
 � � � �
� � � � � � � � � � " '

(�)
* � � � � � 	
# 	 � 	 �

+ � �
$ � � , 	 � � 	 �

� � �
� 	 � 	 � � � � �

� � � " +
� � � 	 � - � � 	

� � � " .
� � � 	 � - � � 	

% � . " / 0 1
� � � � " � & 	 	 !
2 � � � � 	

% � . " / 0 1
3 $ * #

4 0 4 *
# 	 � � � � � � �

' 5 � � � �
� �
 	 �

$ �
 � � � �
� � � � � � � � � � " /

� � � �
� 	
 � �

Pin Assignment

HT82A623R/HT82A6208/HT82A6216

Rev. 1.10 4 October 30, 2009

� � � � � � � � 	

 � � �
 � � �

' 4 " ' 6 " ' 7 " ' 5 " ' 8 " ' � " ' 9 " / 1 " / ' " / / " / 4 " / 6

6 � " 6 8 " 6 5 " 6 7 " 6 6 " 6 4 " 6 / " 6 ' " 6 1 " 4 9 " 4 � " 4 8
'

/

4

6

7

5

8

�

9

' 1

' '

' /

4 5

4 7

4 6

4 4

4 /

4 '

4 1

/ 9

/ �

/ 8

/ 5

/ 7

� + 1 � � $ � +

� + ' � � $ (: +

� + / � � � � +

� + 4 � � � � +

� + 6 � � � � 1

� + 7 � � � � '

� + 5 � � ; �

� + 8 � � � # 1

� $ 1 � + ; �

� $ ' � + ; 9

� $ / � + ; ' 1

� $ 4 � + ; ' '

�
.
8
�+
;
8

�
.
5
�+
;
5

�
.
7
�+
;
7

�
.
6
�+
;
6

�
.
4
�+
;
4
��
�
�
.

�
.
/
�+
;
/
��
�
�.

�
.
'
�+
;
'
��
$
(
:
.

�
.
1
�+
;
1
��
$
�
.

�
$
8
�+
;
'
7

�
$
5
�+
;
'
6

�
$
7
�+
;
'
4

�
$
6
�+
;
'
/

#
2
�

�
�
$
6

�
�
$
4

�
�
1
��
�
#
'

�
�
'

�
�
/

�
�
4

�
�
6

�
�
7

�
�
5

�
�
8

;
$

; $

; $

* � �

* � �

� � $ '

� � $ /

; $

* 4 4 �

� < � $ (:

� � � � + � +

% . % �

* � �

� � � � � � � � �

 � �
 � � �

* 4 4 �

� = = � (� " > " * $ $

; $

� = $ � ?

� = � �

� � $ /

� � $ '

* � �

� ; � " > " � ; � " > " � = � �

� = � $ (:

� = � �

�
�
8

�
�
5

�
�
7

�
�
6

�
�
4

�
�
/

�
�
'

�
�
1
��
�
#
'

�
�
$
4

�
�
$
6

#
2
�

�
.
'
�+
;
'
��
$
(
:
.

�
.
/
�+
;
/
��
�
�.

�
.
4
�+
;
4
��
�
�
.

�
.
6
�+
;
6

�
.
7
�+
;
7

�
.
5
�+
;
5

�
.
8
�+
;
8

*
�
�

%
.
%
�

�
���

+
�
+

�
<
�$
(
:

� . 1 � + ; 1 � � $ � .

� $ ' � + ; 9

� $ 1 � + ; �

� + 8 � � � # 1

� + 5 � � ; �

� + 7 � � � � '

� + 6 � � � � 1

� + 4 � � � � +

� + / � � � � +

� + ' � � $ (: +

� + 1 � � $ � +

'

/

4

6

7

5

8

�

9

' 1

' '
' / ' 4 ' 6 ' 7 ' 5 ' 8 ' � ' 9 / 1 / ' / /

/ 4

/ 6

/ 7

/ 5

/ 8

/ �

/ 9

4 1

4 '

4 /

4 4
4 64 74 54 84 �4 96 16 '6 /6 46 6

/ �

/ 8

/ 5

/ 7

/ 6

/ 4

/ /

/ '

/ 1

' 9

' �

' 8

' 5

' 7

'

/

4

6

7

5

8

�

9

' 1

' '

' /

' 4

' 6

� . 6 � + ; 6

� $ 8 � + ; ' 7

� $ 5 � + ; ' 6

� $ 7 � + ; ' 4

� + 8 � � � # 1

� + 5 � � ; �

� + 7 � � � � '

� + 6 � � � � 1

� + 4 � � � � +

� + / � � � � +

� + ' � � $ (: +

� + 1 � � $ � +

� � 7

� � 6

� . 7 � + ; 7

� . 5 � + ; 5

� . 8 � + ; 8

* � �

% . % �

� � � � + � +

� < � $ (:

* 4 4 �

� � $ /

� � $ '

* � �

2 �

� � $ 6

� � $ 4

� � � � � � � � 	
� � � � � � � � � � � � � � �

� � � � � � � � �

 � �
 � � �

* 4 4 �

� = = � (� " > " * $ $

; $

� = $ � ?

� = � �

� � $ /

� � $ '

* � �

� ; � " > " � ; � " > " � = � �

� = � $ (:

� = � �

�
�
8

�
�
5

�
�
7

�
�
6

�
�
4

�
�
/

�
�
'

�
�
1
��
�
#
'

�
�
$
4

�
�
$
6

#
2
�

�
.
'
�+
;
'
��
$
(
:
.

�
.
/
�+
;
/
��
�
�.

�
.
4
�+
;
4
��
�
�
.

�
.
6
�+
;
6

�
.
7
�+
;
7

�
.
5
�+
;
5

�
.
8
�+
;
8

*
�
�

%
.
%
�

�
���

+
�
+

�
<
�$
(
:

� . 1 � + ; 1 � � $ � .

� $ ' � + ; 9

� $ 1 � + ; �

� + 8 � � � # 1

� + 5 � � ; �

� + 7 � � � � '

� + 6 � � � � 1

� + 4 � � � � +

� + / � � � � +

� + ' � � $ (: +

� + 1 � � $ � +

'

/

4

6

7

5

8

�

9

' 1

' '
' / ' 4 ' 6 ' 7 ' 5 ' 8 ' � ' 9 / 1 / ' / /

/ 4

/ 6

/ 7

/ 5

/ 8

/ �

/ 9

4 1

4 '

4 /

4 4
4 64 74 54 84 �4 96 16 '6 /6 46 6

� $ 6 � + ; ' /

� $ 4 � + ; ' '

� $ / � + ; ' 1

� $ ' � + ; 9

� $ 1 � + ; �

� + 8 � � � # 1

� + 5 � � ; �

� + 7 � � � � '

� + 6 � � � � 1

� + 4 � � � � +

� + / � � � � +

� + ' � � $ (: +

� + 1 � � $ � +

'
/

4
6
7

5
8

�

9
' 1

' '
' /
' 4
' 6 ' 7 ' 5 ' 8 ' � ' 9 / 1 / ' / /

4 6
4 7

4 5
4 8

4 �

4 9
6 �6 97 17 '7 /

/ 4 / 6 / 7 / 5
/ 8
/ �

/ 9
4 1

4 '

4 /
4 4

� � � � � � � � �
� � � � � � � � �
� � � � �
 � � �

6 16 '6 /6 46 66 76 56 8

�
$
7
�+
;
'
4

�
$
5
�+
;
'
6

�
$
8
�+
;
'
7

�
.
1
�+
;
1
��
$
�
.

�
.
'
�+
;
'
��
$
(
:
.

�
.
/
�+
;
/
��
�
�.

�
.
4
�+
;
4
��
�
�
.

�
.
6
�+
;
6

�
.
7
�+
;
7

�
.
5
�+
;
5

�
.
8
�+
;
8

*
�
�

%
.
%
�

�
�
8

�
�
5

�
�
7

�
�
6

�
�
4

�
�
/

�
�
'

�
�
1
��
�
#
'

�
�
$
4

�
�
$
6

#
2
�

;
$

;
$

� � � � + � +

� < � $ (:

* 4 4 �

; $

� = $ � ?

� = � �

* $ $ " > " � = = � (�

� � $ /

� � $ '

* � � " > " * � � " > " * � �

� ; � " > " � ; � " > " � = � �

� = � $ (:

� = � �

Pin Description

Pin Name I/O Options Description

PA0/SCSA

PA1/SCLKA

PA2/SDIA

PA3/SDOA

PA4/PWM0

PA5/PWM1

PA6/INT

PA7/TMR0

I/O

Pull-high

Wake-up

NMOS or

CMOS

Bidirectional 8-bit input/output port. Each pin can be configured as a

wake-up input by a configuration option. Software instructions determine if

the pin is a CMOS output or Schmitt Trigger input. Configuration options

determine if the pins have pull-high resistors. The INTB and TMR0 pins are

pin-shared with PA6 and PA7 respectively. PA0~PA3 are shared with the

SPIA function. PA4~PA5 are shared with PWM0 and PWM1.

PB0/AN0/SCSB

PB1/AN1/SCLKB

PB2/AN2/SDIB

PB3/AN3/SDOB

PB4/AN4

PB5/AN5

PB6/AN6

PB7/AN7/VDDIO

I/O

Pull-high

Wake-up

PB7/VDDIO

PB0~PB6

with VDDIO

Bidirectional 8-bit input/output port. Each nibble, PB0~PB3 and PB4~PB7

pin can be configured as a wake-up input by a configuration option. Soft-

ware instructions determine if the pin is a CMOS output or Schmitt Trigger

input. Configuration options determine if the pins have pull-high resistors.

PB is pin shared with the A/D inputs. Once a PB line is selected as an A/D

input using software control, the I/O function and pull-high resistor are dis-

abled automatically. PB7 can be configured as a normal I/O or a VDDIO pin

by configuration option. The power supply for pins PB0~PB6 can be set to

either VDD or VDDIO by configuration options. PB0~PB3 are shared with

SPIB.

PC0/AN8~

PC7/AN15
I/O

Pull-high

Wake-up

Bidirectional 8-bit input/output port. Each nibble, PC0~PC3 and PC4~PC7

pin can be configured as a wake-up input by a configuration option. Soft-

ware instructions determine if the pin is a CMOS output or Schmitt Trigger

input. Configuration options determine if the pins have pull-high resistors.

PC is pin shared with the A/D inputs. Once a PC line is selected as an A/D

input using software control, the I/O function and pull-high resistor are dis-

abled automatically.

PD0/TMR1

PD1~PD7
I/O

Pull-high

Wake-up

Bi-directional 8-bit input/output port. Each nibble, PD0~PD3 and PD4~PD7

pin can be configured as a wake-up input by a configuration option. Soft-

ware instructions determine if the pin is a CMOS output or Schmitt Trigger

input. Configuration options determine if the pins have pull-high resistors.

The TMR1 pin is shared with PD0.

D-/DATA I/O � USBD- line

D+/CLK I/O � USBD+ line

V33O O � 3.3V regulator output

UBUS � � USB SIE VDD

OSC1

OSC2

I

O
�

OSC1, OSC2 are connected to an external 6MHz or 12MHz Crystal/reso-

nator, determined by software instructions, for the internal system clock

OSC3

OSC4

I

O
�

Real time clock oscillator. OSC3, OSC4 are connected to a 32768Hz crys-

tal oscillator for timing purposes or to a system clock source (depending on

the options). No built-in capacitor.

RES I � Schmitt trigger reset input. Active low

VDD � � Positive power supply of MCU except for USBSIE

FHCS# I � Flash Memory chip select

FHSI I � Flash Memory Serial data input

FHSO O � Flash Memory Serial data output

FHSCLK I � Flash Memory Clock input

FHHOLD I � Flash Memory HOLD, to pause the device without deselecting the device

FHWP I � Flash Memory Write protection

VCC � � HT82A6208 and HT82A6216 Flash Memory Positive Power Supply

Note: The Pin Description reflects the situation of the largest package, smaller package types may not contain all

pins described in the table.

HT82A623R/HT82A6208/HT82A6216

Rev. 1.10 5 October 30, 2009

Absolute Maximum Ratings

Supply VoltageVSS�0.3V to VSS+6.0V Storage Temperature�50	C to 125	C

Input Voltage..............................VSS�0.3V to VDD+0.3V Operating Temperature...............................0	C to 70	C
IOL Total ..150mA IOH Total..�100mA

Total Power Dissipation500mW

Note: These are stress ratings only. Stresses exceeding the range specified under
Absolute Maximum Ratings
 may

cause substantial damage to the device. Functional operation of this device at other conditions beyond those listed

in the specification is not implied and prolonged exposure to extreme conditions may affect device reliability.

D.C. Characteristics Ta=25	C

Symbol Parameter
Test Conditions

Min. Typ. Max. Unit
VDD Conditions

VDD MCU Operating Voltage �
fSYS=6MHz 2.2 � 5.5 V

fSYS=12MHz 3.0 � 5.5 V

VCC
HT82A6208 and HT82A6216

Flash Memory Operating Voltage
� � 2.8 3.3 3.6 V

UBUS USB SIE Operating Voltage � � 4.5 � 5.5 V

IDD1 Operating Current 5V
No load, fSYS=12MHz,

ADC Off, DAC Off
� 8 � mA

IDD2 Operating Current 5V
No load, fSYS=12MHz,

ADC On, DAC On
� 12 � mA

ISUS Suspend Current 5V

No load, system HALT,

USB transceiver and 3.3V

regulator on

� 330 500 �A

ISTB
Standby Current

(WDT Disabled)
5V

No load ,system HALT,

PS MODE, Set SUSP2

[UCC.4]

� � 10 �A

VIL1 Input Low Voltage for I/O Ports 5V � 0 � 0.3VDD V

VIH1 Input High Voltage for I/O Ports 5V � 0.7VDD � VDD V

VIL2 Input Low Voltage (RES) 5V � 0 � 0.4VDD V

VIH2 Input High Voltage (RES) 5V � 0.8VDD � VDD V

VLVR0 Low Voltage Reset 5V � 1.9 2.0 2.1 V

VV33O 3.3V Regulator Output 5V IV33O=�5mA 3.0 3.3 3.6 V

VAD 12-bit A/D Input Voltage � � 0 � VDD V

VOS Offset Error � � �2 � 2 mV

VLVD Low Voltage Detect � � 2.1 2.2 2.3 MHz

IOL I/O Port Sink Current 5V VOL=0.1VDD 10 20 � mA

IOH I/O Port Source Current 5V VOH=0.9VDD �5 �10 � mA

RPH Pull-high Resistance 5V � 10 30 50 k�

RPH1 Pull-high Resistance for DATA 5V � � 4.5 � k�

RPH2 Pull-high Resistance for CLK 5V � � 4.5 � k�

IADC
Additional Power Consumption

if A/D Converter is Used
5V No load � 1.5 3.0 mA

DNL A/D Differential Non-Linearity � � � � �2 LSB

INL A/D Integral Non-Linearity � � �2.5 �4.0 LSB

RESOLU Resolution � � 12 Bits

HT82A623R/HT82A6208/HT82A6216

Rev. 1.10 6 October 30, 2009

A.C. Characteristics Ta=25	C

Symbol Parameter
Test Conditions

Min. Typ. Max. Unit
VDD Conditions

fSYS System Clock
� 2.2V~5.5V � 6000 � kHz

� 3.0V~5.5V � 12000 � kHz

fTIMER
Timer I/P Frequency

(TMR0/TMR1)
�

fSYS=6MHz 0 � 6000 kHz

fSYS=12MHz 0 � 12000 kHz

tWDTOSC Watchdog Oscillator Period 5V � � 65 � �s

tRES External Reset Low Pulse Width � � 1 � � ms

tSST System Start-up Timer Period � Wake-up from HALT � 1024 � tSYS

tOPD Option Load Timer Period 5V � 33 70 140 ms

tINT Interrupt Pulse Width � � 1 � � �s

tAD A/D Clock Period � � 1 � � �s

tADC A/D Conversion Time � � � 16 � tAD

tADCS A/D Sample Time � � � 8 � tAD

tCS_SK
SPI SCSA or SCSB to SCLKA or

SCLKB Time
� � 50 � � ns

tSPICK SPI Clock Time � � 166 � � ns

Note: tSYS=1/fSYS

HT82A623R/HT82A6208/HT82A6216

Rev. 1.10 7 October 30, 2009

HT82A623R/HT82A6208/HT82A6216

Rev. 1.10 8 October 30, 2009

System Architecture

A key factor in the high-performance features of the

Holtek range of microcontrollers is attributed to the inter-

nal system architecture. The range of devices take ad-

vantage of the usual features found within RISC

microcontrollers providing increased speed of operation

and enhanced performance. The pipelining scheme is

implemented in such a way that instruction fetching and

instruction execution are overlapped, hence instructions

are effectively executed in one cycle, with the exception

of branch or call instructions. An 8-bit wide ALU is used

in practically all operations of the instruction set. It car-

ries out arithmetic operations, logic operations, rotation,

increment, decrement, branch decisions, etc. The inter-

nal data path is simplified by moving data through the

Accumulator and the ALU. Certain internal registers are

implemented in the Data Memory and can be directly or

indirectly addressed. The simple addressing methods of

these registers along with additional architectural fea-

tures ensure that a minimum of external components is

required to provide a functional I/O and A/D control sys-

tem with maximum reliability and flexibility.

Clocking and Pipelining

The main system clock, derived from a Crystal/Resona-

tor is subdivided into four internally generated non-over-

lapping clocks, T1~T4. The Program Counter is

incremented at the beginning of the T1 clock during

which time a new instruction is fetched. The remaining

T2~T4 clocks carry out the decoding and execution

functions. In this way, one T1~T4 clock cycle forms one

instruction cycle. Although the fetching and execution of

instructions takes place in consecutive instruction cy-

cles, the pipelining structure of the microcontroller en-

sures that instructions are effectively executed in one

instruction cycle. The exception to this are instructions

where the contents of the Program Counter are

changed, such as subroutine calls or jumps, in which

case the instruction will take one more instruction cycle

to execute.

For instructions involving branches, such as jump or call

instructions, two instruction cycles are required to com-

plete instruction execution. An extra cycle is required as

the program takes one cycle to first obtain the actual

jump or call address and then another cycle to actually

execute the branch. The requirement for this extra cycle

should be taken into account by programmers in timing

sensitive applications.

� 	 � � " � � � � 0 " @ � $ A

2 B 	 � � � 	 " � � � � 0 " @ � $ � ' A � 	 � � " � � � � 0 " @ � $ < ' A

2 B 	 � � � 	 " � � � � 0 " @ � $ A � 	 � � " � � � � 0 " @ � $ < / A

2 B 	 � � � 	 " � � � � 0 " @ � $ < ' A

� $ � $ < ' � $ < /

� � � � � � � � � � " $ � � � �
@ �
 � � 	
 " $ � � � � A

� � � 	 " $ � � � � " � '

� � � � � �
 " $ � � � � 	 �

� � � 	 " $ � � � � " � /

� � � 	 " $ � � � � " � 4

� � � 	 " $ � � � � " � 6

� � & 	 � � � � � �

System Clocking and Pipelining

� 	 � � " � � � � 0 " ' 2 B 	 � � � 	 " � � � � 0 " '

� 	 � � " � � � � 0 " /

� � � � " � � & 	 � � � 	

'

/

4

6

7

5 � 2 (+ C D

� � * " + E F ' / = G

$ + ((" � 2 (+ C

$ � (" F ' / = G

D

D

; � �

2 B 	 � � � 	 " � � � � 0 " /

� 	 � � " � � � � 0 " 4

� 	 � � " � � � � 0 " 5 2 B 	 � � � 	 " � � � � 0 " 5

� 	 � � " � � � � 0 " 8

Instruction Fetching

HT82A623R/HT82A6208/HT82A6216

Rev. 1.10 9 October 30, 2009

Program Counter

During program execution, the Program Counter is used

to keep track of the address of the next instruction to be

executed. It is automatically incremented by one each

time an instruction is executed except for instructions,

such as
JMP
 or
CALL
 that demand a jump to a

non-consecutive Program Memory address. It must be

noted that only the lower 8 bits, known as the Program

Counter Low Register, are directly addressable by user.

When executing instructions requiring jumps to

non-consecutive addresses such as a jump instruction,

a subroutine call, interrupt or reset, etc., the

microcontroller manages program control by loading the

required address into the Program Counter. For condi-

tional skip instructions, once the condition has been

met, the next instruction, which has already been

fetched during the present instruction execution, is dis-

carded and a dummy cycle takes its place while the cor-

rect instruction is obtained.

The lower byte of the Program Counter, known as the

Program Counter Low register or PCL, is available for

program control and is a readable and writeable register.

By transferring data directly into this register, a short pro-

gram jump can be executed directly, however, as only

this low byte is available for manipulation, the jumps are

limited to the present page of memory, that is 256 loca-

tions. When such program jumps are executed it should

also be noted that a dummy cycle will be inserted.

The lower byte of the Program Counter is fully accessi-

ble under program control. Manipulating the PCL might

cause program branching, so an extra cycle is needed

to pre-fetch. Further information on the PCL register can

be found in the Special Function Register section.

Stack

This is a special part of the memory which is used to

save the contents of the Program Counter only. The

stack has 6 levels and is neither part of the data nor part

of the program space, and is neither readable nor

writeable. The activated level is indexed by the Stack

Pointer, SP, and is neither readable nor writeable. At a

subroutine call or interrupt acknowledge signal, the con-

tents of the Program Counter are pushed onto the stack.

At the end of a subroutine or an interrupt routine, sig-

naled by a return instruction, RET or RETI, the Program

Counter is restored to its previous value from the stack.

After a device reset, the Stack Pointer will point to the

top of the stack.

Mode
Program Counter Bits

b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

Initial Reset 0 0 0 0 0 0 0 0 0 0 0 0

USB Interrupt 0 0 0 0 0 0 0 0 0 1 0 0

External Interrupt 0 0 0 0 0 0 0 0 1 0 0 0

Timer/Event Counter 0

Overflow
0 0 0 0 0 0 0 0 1 1 0 0

SPIA Interrupt 0 0 0 0 0 0 0 1 0 0 0 0

SPIB Interrupt 0 0 0 0 0 0 0 1 0 1 0 0

Timer/Event Counter 1

Overflow
0 0 0 0 0 0 0 1 1 0 0 0

Skip Program Counter + 2

Loading PCL PC11 PC10 PC9 PC8 @7 @6 @5 @4 @3 @2 @1 @0

Jump, Call Branch #11 #10 #9 #8 #7 #6 #5 #4 #3 #2 #1 #0

Return from Subroutine S11 S10 S9 S8 S7 S6 S5 S4 S3 S2 S1 S0

Program Counter

Note: PC11~PC8: Current Program Counter bits @7~@0: PCL bits

#11~#0: Instruction code address bits S11~S0: Stack register bits

� � � � � �
 " $ � � � � 	 �

� � � � � " (, 	 � " '

� � � � � " (, 	 � " /

� � � � � " (, 	 � " 4

� � � � � " (, 	 � " 5

� � � � � �

� 	
 � �

� � & " � - " � � � � �

� � � � �
� � � � � 	 �

. � � � �
 " � - " � � � � �

HT82A623R/HT82A6208/HT82A6216

Rev. 1.10 10 October 30, 2009

If the stack is full and an enabled interrupt takes place,

the interrupt request flag will be recorded but the ac-

knowledge signal will be inhibited. When the Stack

Pointer is decremented, by RET or RETI, the interrupt

will be serviced. This feature prevents stack overflow al-

lowing the programmer to use the structure more easily.

However, when the stack is full, a CALL subroutine in-

struction can still be executed which will result in a stack

overflow. Precautions should be taken to avoid such

cases which might cause unpredictable program

branching.

Arithmetic and Logic Unit � ALU

The arithmetic-logic unit or ALU is a critical area of the

microcontroller that carries out arithmetic and logic op-

erations of the instruction set. Connected to the main

microcontroller data bus, the ALU receives related in-

struction codes and performs the required arithmetic or

logical operations after which the result will be placed in

the specified register. As these ALU calculation or oper-

ations may result in carry, borrow or other status

changes, the status register will be correspondingly up-

dated to reflect these changes. The ALU supports the

following functions:

� Arithmetic operations: ADD, ADDM, ADC, ADCM,

SUB, SUBM, SBC, SBCM, DAA

� Logic operations: AND, OR, XOR, ANDM, ORM,

XORM, CPL, CPLA

� Rotation RRA, RR, RRCA, RRC, RLA, RL, RLCA,

RLC

� Increment and Decrement INCA, INC, DECA, DEC

� Branch decision, JMP, SZ, SZA, SNZ, SIZ, SDZ,

SIZA, SDZA, CALL, RET, RETI

Program Memory

The Program Memory is the location where the user code

or program is stored. The HT82A623R is a One-Time

Programmable, OTP, memory type device where users

can program their application code into the device. By us-

ing the appropriate programming tools, OTP devices of-

fer users the flexibility to freely develop their applications

which may be useful during debug or for products requir-

ing frequent upgrades or program changes. OTP devices

are also applicable for use in applications that require low

or medium volume production runs.

Structure

The Program Memory has a capacity of 4K by 15 bits.

The Program Memory is addressed by the Program

Counter and also contains data, table information and

interrupt entries. Table data, which can be setup in any

location within the Program Memory, is addressed by

separate table pointer registers.

Special Vectors

Within the Program Memory, certain locations are re-

served for special usage such as reset and interrupts.

� Location 000H

This vector is reserved for use by the device reset for

program initialisation. After a device reset is initiated, the

program will jump to this location and begin execution.

� Location 004H

This area is reserved for the USB interrupt service

program. If the USB interrupt is activated, the interrupt

is enabled and the stack is not full, the program will

jump to this location and begin execution.

� Location 008H

This vector is used by the external interrupt. If the INT

external input pin on the device receives a high to low

transition, the program will jump to this location and

begin execution, if the interrupt is enabled and the

stack is not full.

� Location 00CH

This vector is used by the timer0 counter. If a counter

overflow occurs, the program will jump to this location

and begin execution if the timer interrupt is enabled

and the stack is not full.

� Location 010H

This vector is used by serial interface A . When 8-bits

of data have been received or transmitted success-

fully from serial interface A, the program will jump to

this location and begin execution if the interrupt is en-

abled and the stack is not full.

� Location 014H

This vector is used by serial interface B . When 8-bits

of data have been received or transmitted success-

fully from serial interface A, the program will jump to

this location and begin execution if the interrupt is en-

abled and the stack is not full

� � � =

' 7 � � � �

1 ' 6 =

� � � � � � � � � � � � � �
* 	 � � � �

2 B � 	 � � � �
� � � 	 � � � & � " * 	 � � � �

� �
 	 � � 2 , 	 � � " $ � � � � 	 � " 1
� � � 	 � � � & � " * 	 � � � �

1 1 1 =

1 1 6 =

1 1 � =

1 1 $ =

1 ' 1 =
� � � +

� � � 	 � � � & � " * 	 � � � �

� � � .
� � � 	 � � � & � " * 	 � � � �

1 ' � =
� �
 	 � � 2 , 	 � � " $ � � � � 	 � " '

� � � 	 � � � & � " * 	 � � � �

% � .
� � � 	 � � � & � " * 	 � � � �

Program Memory Structure

HT82A623R/HT82A6208/HT82A6216

Rev. 1.10 11 October 30, 2009

� Location 018H

This vector is used by the timer1 counter. If a counter

overflow occurs, the program will jump to this location

and begin execution if the timer interrupt is enabled

and the stack is not full.

Look-up Table

Any location within the Program Memory can be defined

as a look-up table where programmers can store fixed

data. To use the look-up table, one method is to first

setup a low byte table pointer by placing the lower order

address of the look up data to be retrieved in the low

byte table pointer register, TBLP. This register defines

the lower 8-bit address of the look-up table.

After setting up the table pointer, the table data can be

retrieved from the current Program Memory page or last

Program Memory page using the
TABRDC[m]
 or

TABRDL [m]
 instructions, respectively. When these in-

structions are executed, the lower order table byte from

the Program Memory will be transferred to the user de-

fined Data Memory register [m] as specified in the in-

struction. The higher order table data byte from the

Program Memory will be transferred to the TBLH special

register. Any unused bits in this transferred higher order

byte will be read as
0
.

The following diagram illustrates the addressing/data

flow of the look-up table:

Table Program Example

Another method is to setup the full table address using

both the TBLP and TBHP low and high byte table pointer

registers to directly address any area in he Program

Memory. In this way any page of data can be accessed

directly using the TABRDL instruction. If the TBHP high

byte table pointer register is to be used, then it must first

be enabled with a configuration option.

The following example shows how the table pointer and

table data is defined and retr ieved from the

microcontroller. This example uses raw table data lo-

cated in the last page which is stored there using the

ORG statement. The value at this ORG statement is

F00H
 which refers to the start address of the last page

within the 4K Program Memory of device. The table

pointer is setup here to have an initial value of
06H
.

This will ensure that the first data read from the data ta-

ble will be at the Program Memory address
F06H
 or 6

locations after the start of the last page. Note that the

value for the table pointer is referenced to the first ad-

dress of the present page if the
TABRDC [m]
 instruc-

tion is being used. The high byte of the table data which

in this case is equal to zero will be transferred to the

TBLH register automatically when the
TABRDL [m]
 in-

struction is executed.

Instruction
Table Location Bits

b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

TABRDC [m] PC11 PC10 PC9 PC8 @7 @6 @5 @4 @3 @2 @1 @0

TABRDL [m] 1 1 1 1 @7 @6 @5 @4 @3 @2 @1 @0

Table Location

Note: PC11~PC8: Current Program Counter bits TBHP register bit3~bit0 when TBHP is enabled

@7~@0: Table Pointer TBLP bits

� � � � � �
 "
� 	
 � �

" � � � � � �
 " $ � � � � 	 �
" " " " " " " = � � " .
 � 	

� . (�

� . (= � & 	 � � - � 	 ! " �
 " F
 G

� � � � 	 " $ � � � 	 � � � " = � � " .
 � 	 � � � � 	 " $ � � � 	 � � � " (�) " .
 � 	

Table Read � TBLP only

� � � � � �
 "
� 	
 � �

� . (= � & 	 � � - � 	 ! " �
 " F
 G

= � � " .
 � 	 " � - " � � � � 	 " $ � � � 	 � � � (�) " .
 � 	 " � - " � � � � 	 " $ � � � 	 � � �

� . (�

� . = �

Table Read � TBLP/TBHP

HT82A623R/HT82A6208/HT82A6216

Rev. 1.10 12 October 30, 2009

� Table Program Example

tempreg1 db ? ; temporary register #1
tempreg2 db ? ; temporary register #2

:
:

mov a,06h ; initialise table pointer - note that this address
; is referenced

mov tblp,a ; to the last page or present page
:
:

tabrdl tempreg1 ; transfers value in table referenced by table pointer
; to tempregl
; data at prog. memory address
F06H
 transferred to
; tempreg1 and TBLH

dec tblp ; reduce value of table pointer by one

tabrdl tempreg2 ; transfers value in table referenced by table pointer
; to tempreg2
; data at prog.memory address
F05H
 transferred to
; tempreg2 and TBLH
; in this example the data
1AH
 is transferred to
; tempreg1 and data
0FH
 to register tempreg2
; the value
00H
 will be transferred to the high byte
; register TBLH

:
:

org F00h ; sets initial address of last page

dc 00Ah, 00Bh, 00Ch, 00Dh, 00Eh, 00Fh, 01Ah, 01Bh
:
:

HT82A623R/HT82A6208/HT82A6216

Rev. 1.10 13 October 30, 2009

Because the TBLH register is a read-only register and

cannot be restored, care should be taken to ensure its

protection if both the main routine and Interrupt Service

Routine use the table read instructions. If using the table

read instructions, the Interrupt Service Routines may

change the value of TBLH and subsequently cause er-

rors if used again by the main routine. As a rule it is rec-

ommended that simultaneous use of the table read

instructions should be avoided. However, in situations

where simultaneous use cannot be avoided, the inter-

rupts should be disabled prior to the execution of any

main routine table-read instructions. Note that all table

related instructions require two instruction cycles to

complete their operation.

Data Memory

The Data Memory is a volatile area of 8-bit wide RAM

internal memory and is the location where temporary in-

formation is stored. Divided into two sections, the first of

these is an area of RAM where special function registers

are located. These registers have fixed locations and

are necessary for correct operation of the device. Many

of these registers can be read from and written to di-

rectly under program control, however, some remain

protected from user manipulation. The second area of

Data Memory is reserved for general purpose use. All

locations within this area are read and write accessible

under program control.

Structure

The two sections of Data Memory, the Special Purpose

and General Purpose Data Memory are located at con-

secutive locations. All are implemented in RAM and are

8 bits wide but the length of each memory section is dic-

tated by the type of microcontroller chosen. The start

address of the Data Memory for all devices is the ad-

dress
00H
. Registers which are common to all

microcontrollers, such as ACC, PCL, etc., have the

same Data Memory address.

General Purpose Data Memory

All microcontroller programs require an area of

read/write memory where temporary data can be stored

and retrieved for use later. It is this area of RAM memory

that is known as General Purpose Data Memory. This

area of Data Memory is fully accessible by the user pro-

gram for both read and write operations. By using the

SET [m].i
 and
CLR [m].i
 instructions individual bits

can be set or reset under program control giving the

user a large range of flexibility for bit manipulation in the

Data Memory.

1 1 =

5 1 =

� � =

7 � =

� & 	 � � � � "

� � � & � � 	

� � � � "

� 	
 � �

� 	 � 	 � � �

� � � & � � 	

� � � �

� 	
 � �

Data Memory Structure

Note: Most of the Data Memory bits can be directly

manipulated using the
SET [m].i
 and
CLR

[m].i
 with the exception of a few dedicated bits.

The Data Memory can also be accessed

through the memory pointer register MP.

1 1 =

1 ' =

1 / =

1 4 =

1 6 =

1 7 =

1 5 =

1 8 =

1 � =

1 9 =

1 + =

1 . =

1 $ =

1 � =

1 2 =

1 � =

' 1 =

' ' =

' / =

' 4 =

' 6 =

' 7 =

' 5 =

' 8 =

' � =

' 9 =

' + =

' . =

' $ =

' � =

' 2 =

' � =

/ 1 =

/ ' =

/ / =

/ 4 =

/ 6 =

/ 7 =

/ 5 =

/ 8 =

/ � =

/ 9 =

/ + =

/ . =

/ $ =

/ � =

D " % � � � 	 ! " # 	 � ! " � � " H 1 1 H "

� + # 1

� � 1

� + # '

� � '

+ $ $

� $ (

� . (�

� . (=

� � � �

� � + � % �

� ; � $ 1

� � # ' =

� � # ' (

� � # ' $

� � # 1 =

� � # 1 (

� � # 1 $

� +

� + $

� .

� . $

� $

� $ $

� �

� � $

% � . I � � + �

% � ; �

� ; � $ '

� . = �

% � $

% � #

% $ $

+ � #

� � + ((

� � 2 �

� � � $

% � � 2 ;

� � � � 1

� � � � '

� � � � /

� � � � 4

/ 2 =

/ � =

4 1 =

4 ' =

4 / =

4 4 =

4 6 =

4 7 =

4 5 =

4 8 =

4 � =

4 9 +

4 + =

4 . =

4 $ =

4 � =

4 2 =

4 � =

6 1 =

6 ' =

6 / =

6 4 =

6 6 =

6 7 =

6 5 =

6 8 =

6 � =

6 9 =

6 + =

6 . =

6 $ =

6 � =

6 2 =

6 � =

7 1 =

7 ' =

7 / =

7 4 =

7 6 =

7 7 =

7 5 =

7 8 =

7 � =

7 9 =

7 + =

% � � 2 ;

% � $ 1

� . $ # +

� . � # +

+ � # (

+ � # =

+ � $ #

+ $ � #

� . $ # .

� . � # .

� � � 2

� � � I # 2 �

� � � . # 1

� � � 1 � #

� � � . # '

� � � ' � #

� � ; $ � (

HT82A623R/HT82A6208/HT82A6216

Rev. 1.10 14 October 30, 2009

Special Purpose Data Memory

This area of Data Memory is where registers, necessary

for the correct operation of the microcontroller, are

stored. Most of the registers are both readable and

writable but some are protected and are readable only,

the details of which are located under the relevant Spe-

cial Function Register section. Note that for locations

that are unused, any read instruction to these addresses

will return the value
00H
.

Special Function Registers

To ensure successful operation of the microcontroller,

certain internal registers are implemented in the Data

Memory area. These registers ensure correct operation

of internal functions such as timers, interrupts, etc., as

well as external functions such as I/O data control. The

location of these registers within the Data Memory be-

gins at the address 00H. Any unused Data Memory lo-

cations between these special function registers and the

point where the General Purpose Memory begins is re-

served and attempting to read data from these locations

will return a value of 00H.

Indirect Addressing Register � IAR0, IAR1

The IAR0 and IAR1 register, although having their loca-

tions in normal RAM register space, do not actually

physically exist as normal registers. The method of indi-

rect addressing for RAM data manipulation uses these

Indirect Addressing Registers and Memory Pointers, in

contrast to direct memory addressing, where the actual

memory address is specified. Actions on the IAR0 and

IAR1 registers will result in no actual read or write opera-

tion to these registers but rather to the memory location

specified by their corresponding Memory Pointer, MP0

or MP1. Acting as a pair, IAR0 and MP0 can together

only access data from Bank 0, while the IAR1 and MP1

register pair can access data from both Bank 0 and

Bank 1. As the Indirect Addressing Registers are not

physically implemented, reading the Indirect Ad-

dressing Registers indirectly will return a result of
00H

and writing to the registers indirectly will result in no op-

eration.

Memory Pointer � MP0, MP1

For all devices, two Memory Pointers, known as MP0

and MP1 are provided. These Memory Pointers are

physically implemented in the Data Memory and can be

manipulated in the same way as normal registers pro-

viding a convenient way with which to address and track

data. When any operation to the relevant Indirect Ad-

dressing Registers is carried out, the actual address that

the microcontroller is directed to, is the address speci-

fied by the related Memory Pointer.

data .section �data�
adres1 db ?
adres2 db ?
adres3 db ?
adres4 db ?
block db ?
code .section at 0 �code�
org 00h

start:
mov a,04h ; setup size of block
mov block,a
mov a,offset adres1; Accumulator loaded with first RAM address
mov mp0,a ; setup memory pointer with first RAM address

loop:
clr IAR0 ; clear the data at address defined by MP0
inc mp0 ; increment memory pointer
sdz block ; check if last memory location has been cleared
jmp loop

continue:

The important point to note here is that in the example shown above, no reference is made to specific Data Memory ad-

dresses.

HT82A623R/HT82A6208/HT82A6216

Rev. 1.10 15 October 30, 2009

Accumulator � ACC

The Accumulator is central to the operation of any

microcontroller and is closely related with operations

carried out by the ALU. The Accumulator is the place

where all intermediate results from the ALU are stored.

Without the Accumulator it would be necessary to write

the result of each calculation or logical operation such

as addition, subtraction, shift, etc., to the Data Memory

resulting in higher programming and timing overheads.

Data transfer operations usually involve the temporary

storage function of the Accumulator; for example, when

transferring data between one user defined register and

another, it is necessary to do this by passing the data

through the Accumulator as no direct transfer between

two registers is permitted.

Program Counter Low Register � PCL

To provide additional program control functions, the low

byte of the Program Counter is made accessible to pro-

grammers by locating it within the Special Purpose area

of the Data Memory. By manipulating this register, direct

jumps to other program locations are easily imple-

mented. Loading a value directly into this PCL register

will cause a jump to the specified Program Memory lo-

cation, however, as the register is only 8-bit wide, only

jumps within the current Program Memory page are per-

mitted. When such operations are used, note that a

dummy cycle will be inserted.

Look-up Table Registers � TBLP, TBHP, TBLH

These three special function registers are used to con-

trol operation of the look-up table which is stored in the

Program Memory. TBLP and TBHP are the table pointer

low and high byte registers and indicate the location

where the table data is located. There value must be

setup before any table read commands are executed.

Their value can be changed, for example using the

INC
 or
DEC
 instructions, allowing for easy table data

pointing and reading. TBLH is the location where the

high order byte of the table data is stored after a table

read data instruction has been executed. Note that the

lower order table data byte is transferred to a user de-

fined location.

Status Register � STATUS

This 8-bit register contains the zero flag (Z), carry flag

(C), auxiliary carry flag (AC), overflow flag (OV), power

down flag (PDF), and watchdog time-out flag (TO).

These arithmetic/logical operation and system manage-

ment flags are used to record the status and operation of

the microcontroller.

With the exception of the TO and PDF flags, bits in the

status register can be altered by instructions like most

other registers. Any data written into the status register

will not change the TO or PDF flag. In addition, opera-

tions related to the status register may give different re-

sults due to the different instruction operations. The TO

flag can be affected only by a system power-up, a WDT

time-out or by executing the
CLR WDT
 or
HALT
 in-

struction. The PDF flag is affected only by executing the

HALT
 or
CLR WDT
 instruction or during a system

power-up.

The Z, OV, AC and C flags generally reflect the status of

the latest operations.

� C is set if an operation results in a carry during an ad-

dition operation or if a borrow does not take place dur-

ing a subtraction operation; otherwise C is cleared. C

is also affected by a rotate through carry instruction.

� AC is set if an operation results in a carry out of the

low nibbles in addition, or no borrow from the high nib-

ble into the low nibble in subtraction; otherwise AC is

cleared.

� Z is set if the result of an arithmetic or logical operation

is zero; otherwise Z is cleared.

� OV is set if an operation results in a carry into the high-

est-order bit but not a carry out of the highest-order bit,

or vice versa; otherwise OV is cleared.

� PDF is cleared by a system power-up or executing the

CLR WDT
 instruction. PDF is set by executing the

HALT
 instruction.

� TO is cleared by a system power-up or executing the

CLR WDT
 or
HALT
 instruction. TO is set by a

WDT time-out.

� � � � � � * J + $ $ � � � � � � � 	 � � � � � � �

� � � � � � � � � � ! " � � � � # � � $ � � " % �
 & $ � �
$ � � �
 " - � � �
+ � B � � � � �
 " � � � �
 " - � � �
J 	 � � " - � � �
� , 	 � - � �) " - � � �

� ' � � � � � ($ % $ � � � � % � �
 & $ � �
� �) 	 � " ! �) � " - � � �
� � � � ! � � " � �
 	 � � � � " - � � �
; � � " �
 & � 	
 	 � � 	 ! E " � 	 � ! " � � " H 1 H

� 8 � 1

Status Register

HT82A623R/HT82A6208/HT82A6216

Rev. 1.10 16 October 30, 2009

In addition, on entering an interrupt sequence or execut-

ing a subroutine call, the status register will not be

pushed onto the stack automatically. If the contents of

the status registers are important and if the interrupt rou-

tine can change the status register, precautions must be

taken to correctly save it.

Interrupt Control Registers � INTC0, INTC1

The microcontrollers provide one external interrupt, two

internal timer/event counter overflow interrupts, two SPI

interrupts and one USB interrupt. By setting various bits

within these registers using standard bit manipulation

instructions, the enable/disable function of each inter-

rupt can be independently controlled. A master interrupt

bit within this register, the EMI bit, acts like a global en-

able/disable and is used to set all of the interrupt enable

bits on or off. This bit is cleared when an interrupt routine

is entered to disable further interrupt and is set by exe-

cuting the
RETI
 instruction.

Timer/Event Counter Registers �

TMR0H/TMR1H, TMR0L/TMR1L,TMR0C/TMR1C

All devices possess two internal 16-bit count-up timer. An

associated register pair known as TMR0L/TMR0H and

TMR1L/TMR1H are the locations where the timer 16-bit

values are located. These registers can also be

preloaded with fixed data to allow different time intervals

to be setup. Associated control registers, known as

TMR0C and TMR1C, contains the setup information for

the timers, which determines in what mode the timer is to

be used as well as containing the timer on/off control

function.

Input/Output Ports and Control Registers

Within the area of Special Function Registers, the I/O

registers and their associated control registers play a

prominent role. All I/O ports have a designated register

correspondingly labeled as PA, PB, PC and PD. These

labeled I/O registers are mapped to specific addresses

within the Data Memory as shown in the Data Memory

table, which are used to transfer the appropriate output

or input data on that port. With each I/O port there is an

associated control register labeled PAC, PBC, PCC and

PDC, also mapped to specific addresses with the Data

Memory. The control register specifies which pins of that

port are set as inputs and which are set as outputs. To

setup a pin as an input, the corresponding bit of the con-

trol register must be set high, for an output it must be set

low. During program initialisation, it is important to first

setup the control registers to specify which pins are out-

puts and which are inputs before reading data from or

writing data to the I/O ports. One flexible feature of these

registers is the ability to directly program single bits us-

ing the
SET [m].i
 and
CLR [m].i
 instructions. The

ability to change I/O pins from output to input and vice

versa by manipulating specific bits of the I/O control reg-

isters during normal program operation is a useful fea-

ture of these devices.

Flash Memory

The HT82A6208 contains a 8,388,608 bit serial Flash

memory, which has an internal configuration of

1,048,576�8. The HT82A6208 internal Flash Memory

contains a 16,777,216 bit serial Flash memory, with a

2,097,152�8 internal configuration. The HT82A623R

does not contain Flash Memory.

Device Size Configuration

HT82A623R � �

HT82A6208 8M 1,048,576�8

HT82A6216 16M 2,097,152�8

Flash Memory Description

The HT82A6208/HT82A6216 internal Flash Memory

feature a serial peripheral interface and software proto-

col which permits operation using a simple 3-wire bus.

The three bus signals are a clock input, FHSCLK, serial

data input, FHSI, and serial data output, FHSO. The SPI

access to the device is enabled using the FHCS# input.

There is a sequential read operation for the whole de-

vice.

After a program/erase command is issued, the auto pro-

gram/erase algorithms which program/erase and verify

the specified page or byte/sector/block locations will be

executed. Program command is executed on a page,

256 byte, basis, and an erase command is executed on

chip or sector, 4K-bytes, or block, 64K-bytes. To provide

the user with a simplistic interface, a status register is in-

cluded to indicate the status of the device. The status

read command can be issued to detect a completion

status of a program or erase operation using the WIP bit.

When the HT82A6208/HT82A6216 internal Flash Mem-

ory is not in operation and FHCS# is high, the device will

be place into a standby mode where it will draw less than

10�A/20�A DC current. The HT82A6208/HT82A6216 in-

ternal Flash Memory reliably stores its memory contents

even after 100,000 program and erase cycles.

Data Protection

The device is designed to offer protection against acci-

dental erasure or programming caused by spurious sys-

tem level signals that may exist during power transition.

During power up the device automatically resets the

state instruction in the Read mode. In addition, with its

control register architecture, alteration of the memory

contents only occurs after successful completion of spe-

cific command sequences. The device also incorpo-

HT82A623R/HT82A6208/HT82A6216

Rev. 1.10 17 October 30, 2009

rates several features to prevent inadvertent write

cycles during power-on and power-down transitions or

due to system noise. These features are:

� Power-on reset and tPUW: to avoid problems due to sys-

tem power supply transitions, the power-on reset and

tPUW (internal timer) may protect the Flash Memory.

� Valid command length checking: The command

length will be checked whether it is at byte base and

completed on byte boundary.

� Write Enable (WREN) command: The WREN com-

mand is required to set the Write Enable Latch bit

(WEL) before other commands to change data. The

WEL bit will return to its reset condition under the fol-

lowing situations:

 Power-on

 Write Disable (WRDI) command completion

 Write Status Register (WRSR) command

completion

 Page Program (PP) command completion

 Continuous Program mode (CP) instruction

completion - only for HT82A6216 internal Flash

Memory

 Sector Erase (SE) command completion

 Block Erase (BE) command completion

 Chip Erase (CE) command completion

 Write Read-lock Bit (WRLB) instruction completion

- only for HT82A6216 internal Flash Memory

� Deep Power Down Mode: By entering the deep power

down mode, the flash memory is also under protection

from all write commands except for the Release from

deep power down mode command (RDP) and Read

Electronic Signature command (RES).

� Software Protection Mode (SPM): by using the BP

register bits BP0~BP3, sections of the Flash Memory

can be protected.

� Hardware Protection Mode (HPM): keeping WP low

will protect the BP0~BP3 bits and the SRWD bit from

a state change.

Status Bit Protect

Level
8Mb

BP2 BP1 BP0

0 0 0 0 (none) None

0 0 1 1 (1 block) Block 15

0 1 0 2 (2 blocks) Block 14~15

0 1 1 3 (4 blocks) Block 12~15

Status Bit Protect

Level
8Mb

BP2 BP1 BP0

1 0 0 4 (8 blocks) Block 8~15

1 0 1 5 (all) All

1 1 0 6 (all) All

1 1 1 7 (all) All

Protected Flash Area - HT82A6208

Status Bit
16Mb

BP3 BP2 BP1 BP0

0 0 0 0 0 (none)

0 0 0 1 1 (1block, block 31th)

0 0 1 0 2 (2blocks, block 30~31th)

0 0 1 1 3 (4blocks, block 28~31th)

0 1 0 0 4 (8blocks, block 24~31th)

0 1 0 1 5 (16blocks, block 16~31th)

0 1 1 0 6 (32blocks, all)

0 1 1 1 7 (32blocks, all)

1 0 0 0 8 (32blocks, all)

1 0 0 1 9 (32blocks, all)

1 0 1 0 10 (16blocks, block 0~15th)

1 0 1 1 11 (24blocks, block 0~23th)

1 1 0 0 12 (28blocks, block 0~27th)

1 1 0 1 13 (30blocks, block 0~29th)

1 1 1 0 14 (31blocks, block 0~30th)

1 1 1 1 15 (32blocks, all)

Protected Flash Area - HT82A6216

Hold Features

The FHHOLD pin signal goes low to hold any serial

communications with the device. The HOLD features

will not stop the function of the write status register or

any programming erase operation in progress.

The HOLD operation requires that the Chip Select,

(FHCS#) is kept low and starts on the falling edge of the

FHHOLD pin signal while the Serial Clock (FHSCLK)

signal is low (if Serial Clock signal is not being low. The

HOLD operation will not start until the Serial Clock is

low). The HOLD condition ends on the rising edge of the

FHHOLD pin signal white the Serial Clock (FHSCLK)

Figure 1. Hold Condition Operation

FHSCLK

FHCS#

FHHOLD

HT82A623R/HT82A6208/HT82A6216

Rev. 1.10 18 October 30, 2009

signal is low. If the Serial Clock signal is low, the HOLD

operation will not end until the Serial Clock being is low

for the following figure 1.

The Serial Data Output (FHSO) is high impedance, both

Serial Data Input (FHSI) and Serial Clock (FHSCLK) are

don�t care during the HOLD operation. If the Chip Select

(FHCS#) is set high during the HOLD operation then it

will reset the internal logic of the device. To re-start com-

munication with the device, the FHHOLD pin must be

high and FHCS# must be low.

For the HT82A6208/HT82A6216, the internal Flash

Memory FHHOLD pin must is bound to the VCC pin.

Memory Organisation

The internal memory blocks of the Flash Memory includ-

ing the sector and address range is shown in the follow-

ing tables.

Table 1. Flash Memory Organisation � HT82A6208

HT82A623R/HT82A6208/HT82A6216

Rev. 1.10 19 October 30, 2009

Table 2. 16Mb Flah Memory Organisation -

HT82A6216

Table 2. 16Mb Flash Memory Organisation -

HT82A6216

HT82A623R/HT82A6208/HT82A6216

Rev. 1.10 20 October 30, 2009

Command Definitions

The internal Flash Memory operates using a range of

commands issued serially by the microcontroller to the

Flash Memory. These commands are summarised in

the accompanying table.

Flash Memory Command Definition - HT82A6208

FHCS# goes

high

HT82A623R/HT82A6208/HT82A6216

Rev. 1.10 21 October 30, 2009

Flash Memory Command Definition - HT82A6216

FHCS#

FHCS#

FHCS#

HT82A623R/HT82A6208/HT82A6216

Rev. 1.10 22 October 30, 2009

Flash Memory Operation

The following statements show the basic protocol be-

hind each Flash Memory command execution.

� Before a command is issued, the status register

should be checked to ensure that the device is ready

for the intended operation.

� When a correct command is input to the device, it will

enter the standby mode and remain in the standby

mode until the next FHCS# falling edge. In the standby

mode, the device FHSO pin should be High-Z.

� When a correct command is input to the device, it will

enter the active mode and remain in the active mode

until the next FHCS# rising edge.

� The input data is latched on the rising edge of the Se-

rial Clock, FHSCLK, and the data is shifted out on the

falling edge of FHSCLK. The difference between SPI

mode 0 and mode 3 is shown in Figure 2.

� For the following instructions: RDID, RDSR, READ,

FAST_READ, RES and REMS the shifted-in instruc-

tion sequence is followed by a data-out sequence. Af-

ter any data bit is shifted out, FSCS# can be high. For

the following instructions: WREN, WRDI, WRSR, SE,

BE, CE, PP, RDP and DP, CS must go high exactly at

the byte boundary; otherwise the instruction will be re-

jected and not executed.

� During the progress of Write Status Register, Pro-

gram, Erase operations, the memory array access is

neglected and therefore does not affect the current

operation of the Write Status Register, Program,

Erase.

Command Description

The following provides a detailed description of each

Flash Memory Command.

� Write Enable - WREN

The Write Enable, WREN, instruction is used to set

the Write Enable Latch, WEL, bit. For instructions like

PP, SE, BE, CE, and WRSR, which are intended to

change the device contents, it should be set every

time after the WREN instruction sets the WEL bit.

The sequence to execute the WREN instruction is:

FHCS# goes low � send WREN instruction code �
FHCS# goes high.

� Write Disable - WRDI

The Write Disable, WRDI, instruction is for resetting

the Write Enable Latch, WEL, bit. The sequence of is-

suing the WRDI instruction is: FHCS# goes low �
send WRDI instruction code � FHCS# goes high.

The WEL bit is reset by following conditions:

 Power-up

 Write Disable, WRDI, instruction completion

 Write Status Register (WRSR) instruction

completion

 Page Program (PP) instruction completion

 Sector Erase (SE) instruction completion

 Block Erase (BE) instruction completion

 Chip Erase (CE) instruction completion

Note: CPOL indicates clock polarity of the SPI master, CPOL=1 for SCLK high while idle, CPOL=0 for SCLK low

while not transmitting. CPHA indicates clock phase. The combination of the CPOL bit and CPHA bit decides

which SPI mode is supported.

Figure 2. Supported SPI Modes

Write Enable (WREN) Sequence (Command 06)

Write Disable (WRDI) Sequence (Command 04)

FHCS#

FHSCLK

FHSI

FHSO

FHSO

FHSI

FHSCLK

FHCS#

FHSI

FHSO

FHSCLK

FHSCLK

HT82A623R/HT82A6208/HT82A6216

Rev. 1.10 23 October 30, 2009

� Read Identification - RDID

The RDID instruction is for reading the manufacturer

1-byte ID followed by the 2-byte Device ID. The device

Manufacturer ID is C2(hex), the memory type ID is

20(hex) as the first-byte device ID, and the individual

device ID of second-byte ID is as follows: 14(hex) for

the HT82A6208/HT82A6216 internal Flash Memory.

The sequence for issuing the RDID instruction is:

FHCS# goes low � sending RDID instruction code �
24-bits ID data out on SO � to end RDID operation

can use FHCS# high at any time during data out.

While the Program/Erase operation is in progress, it

will not decode the RDID instruction, so there is no ef-

fect on the cycle of program/erase operation which is

currently in progress. When FHCS# goes high, the de-

vice is in the standby stage.

� Read Status Register - RDSR

The instruction is for reading the Status Register Bits.

The Read Status Register can be read at any time

(even in the program/erase/write status register con-

dition) and continuously. It is recommended to check

the Write in Progress (WIP) bit before sending a new

instruction when a program, erase, or write status reg-

ister operation is in progress. The sequence to issue

the RDSR instruction is: FHCS# goes low � sending

RDSR instruction code � Status Register data out on

SO.

The definition of the status register bits is shown be-

low:

 WIP bit

The Write in Progress (WIP) bit, a volatile bit, indi-

cates whether the device is busy in pro-

gram/erase/write status register progress. When

the WIP bit is set to
1
, this means the device is

busy in program/erase/write status register prog-

ress. When the WIP bit is set to
0
, this means the

device is not in progress of program/erase/write sta-

tus register cycle.

 WEL bit

The Write Enable Latch (WEL) bit, a volatile bit, indi-

cates whether the device is set to internal write en-

able latch. When the WEL bit is set to
1
, which

means the internal write enable latch is set, the de-

vice can accept program/erase/write status register

instructions. When the WEL bit is cleared to
0
,

which means no internal write enable latch; the de-

vice will not accept program/erase/write status reg-

ister instructions.

 BP0~BP3 Bits

The Block Protect bits BP0~BP3, are non-volatile

bits, which indicate the protected area (as defined in

the table) of the device against the program/erase

instruction without the hardware protection mode

being set. To write the Block Protect bits requires

the Write Status Register (WRSR) instruction to be

executed. Those bits define the protected area of

Read Identification (RDID) Sequence (Command 9F)

Read Status Register (RDSR) Sequence (Command 05)

FHCS#

FHSCLK

FHSI

FHSO

FHSO

FHSI

FHSCLK

FHCS#

HT82A623R/HT82A6208/HT82A6216

Rev. 1.10 24 October 30, 2009

the memory against Page Program (PP), Sector

Erase (SE), Block Erase (BE) and Chip Erase(CE)

instructions (only if all Block Protect bits are set to

0
, can the CE instruction be executed).

 SRWD bit

The Status Register Write Disable (SRWD) bit,

non-volatile bit, is operated together with the Write

Protection (FHWP) pin to provide the hardware pro-

tection mode. The hardware protection mode re-

quires that SRWD is set to
1
 and the WP# pin

signal is low . In the hardware protection mode, the

Write Status Register (WRSR) instruction is no lon-

ger accepted for execution and the SRWD bit and

Block Protect bits (BP0~BP3) are read only.

For the HT82A6208/HT82A6216 internal Flash

memory, the Write Protection (FHWP) pin is always

bonded with the GND pin

� Write Status Register - WRSR

The WRSR instruction is used to change the values of

the Status Register Bits. Before sending an WRSR in-

struction, the Write Enable (WREN) instruction must

be decoded and executed to set the Write Enable

Latch (WEL) bit in advance. The WRSR instruction

can change the value of the Block Protect (BP0~BP3)

bits to define the protected area of memory (as shown

in the table). The WRSR also can set or reset the Sta-

tus Register Write Disable (SRWD) bit in accordance

with the Write Protection (WP#) pin signal. The WRSR

instruction cannot be executed once the Hardware

Protected Mode is entered.

The sequence to issue WRSR instruction is: FHCS#

goes low � sending WRSR instruction code � Status

Register data on SI � FHCS# goes high. (see Figure

3). The WRSR instruction has no effect on b6, b5, b1,

b0 of the status register.

Figure 3. Write Status Register (WRSR) Sequence (Command 01)

Note: 1. See the table
Protected Flash Area
.

2. The endurance cycles for the protect bits are 100,000 cycles; however, the tW time out spec for the protect

bits is relaxed to tW = N � 15ms (N is a multiple of 10,000 cycles, ex. N = 2 for 20,000 cycles) after 10,000 cycles

on those bits.

Status Register - HT82A6208 Internal Flash Memory

Note: See the table
Protected Flash Area

Status Register - HT82A6216 Internal Flash Memory

FHCS#

FHSCLK

FHSI

FHSO

HT82A623R/HT82A6208/HT82A6216

Rev. 1.10 25 October 30, 2009

Note: As defined by the values in the Block Protect (BP2, BP1, BP0) bits of the Status Register, as shown in Table 1.

The above table shows the summary of the Software Protected Mode, SPM, and Hardware Protected Mode,

HPM.

Software Protected Mode - SPM:

� When the SRWD bit=0, no matter if FHWP is low or high, the WREN instruction may set the WEL bit and can

change the values of SRWD, BP2, BP1, BP0. The protected area, which is defined by bits BP2, BP1, BP0, is

in the software protected mode.

� When the SRWD bit=1 and FHWP is high, the WREN instruction may set the WEL bit and can change the

values of SRWD, BP2, BP1, BP0. The protected area, which is defined by BP2, BP1, BP0, is in the software

protected mode.

Note: If SRWD bit=1 but FHWP is low, it is impossible to write to the Status Register even if the WEL bit has

previously been set.

Hardware Protected Mode - HPM:

� When the SRWD bit=1, and then FHWP is low (or FHWP is low before SRWD bit=1), the device enters the

hardware protected mode. The protected area data, defined by bits BP2, BP1, BP0 and hardware protected

mode using FHWP is protected against data modification.

Note: to exit the hardware protected mode requires that FHWP is set high once the hardware protected mode

is entered. If the FHWP pin is permanently connected high, the hardware protected mode can never be en-

tered; only software can be used to enter the protected mode via bits BP2, BP1, BP0.

Protection Modes - HT82A6208 Internal Flash Memory

FHWP

FHWP

FHWP

FHWP

FHWP

HT82A623R/HT82A6208/HT82A6216

Rev. 1.10 26 October 30, 2009

Note: As defined by the values in the Block Protect (BP3, BP2, BP1, BP0) bits of the Status Register, as shown in

Table 1.

The above table shows the summary of the Software Protected Mode (SPM) and Hardware Protected Mode

(HPM).

Software Protected Mode - SPM:

� When the SRWD bit=0, no matter if FHWP/ACC is low or high, the WREN instruction may set the WEL bit

and can change the values of SRWD, BP3, BP2, BP1, BP0. The protected area, which is defined by BP3,

BP2, BP1, BP0, is in the software protected mode (SPM).

� When the SRWD bit=1 and FHWP/ACC is high, the WREN instruction may set the WEL bit and can change

the values of SRWD, BP3, BP2, BP1, BP0. The protected area, which is defined by BP3, BP2, BP1, BP0, is

in the software protected mode (SPM)

Note: If the SRWD bit=1 but FHWP/ACC is low, it is impossible to write to the Status Register even if the WEL

bit has previously been set. It is rejected to write to the Status Register and not be executed.

Hardware Protected Mode - HPM:

� When the SRWD bit=1, and then FHWP/ACC is low (or FHWP/ACC is low before SRWD bit=1), it enters the

hardware protected mode. The data of the protected area is protected by the software protected mode by

BP3, BP2, BP1, BP0 and the hardware protected mode by the FHWP/ACC against data modification.

Note: to exit the hardware protected mode requires FHWP/ACC is driven high once the hardware protected

mode is entered. If the FHWP/ACC pin is permanently connected high, the hardware protected mode can

never be entered; only the software protected mode can be used via BP3, BP2, BP1, BP0.

Protection Modes - HT82A6216 Internal Flash Memory

FHWP

FHWP

FHWP

FHWP

FHWP

HT82A623R/HT82A6208/HT82A6216

Rev. 1.10 27 October 30, 2009

CS must go high exactly at the byte boundary; other-

wise, the instruction will be rejected and not executed.

The self-timed Write Status Register cycle time (tW) is

initiated as soon as the Chip Select (FHCS#) goes

high. The Write in Progress (WIP) bit can still be

checked when the Write Status Register cycle is in

progress. The WIP is set to
1
 during the tW timing,

and cleared
0
 when the Write Status Register Cycle

has completed, and the Write Enable Latch (WEL) bit

is reset.

� Read Data Bytes - READ

The read instruction is for reading data out. The ad-

dress is latched on the rising edge of FHSCLK, and

data shifts out on the falling edge of FHSCLK at a

maximum frequency fR. The first address byte can be

at any location. The address is automatically in-

creased to the next higher address after each data

byte is shifted out, so the whole memory can be read

out with a single READ instruction. The address coun-

ter rolls over to
0
 when the highest address has

been reached.

The sequence to issue a READ instruction is: FHCS#

goes low � sending READ instruction code � 3-byte

address on SI � data out on SO � to end a READ

operation, FHCS# going high can be used at any time

during data out.

� Read Data Bytes at Higher Speed - FAST_READ

The FAST_READ instruction is to read data out

quickly. The address is latched on the rising edge of

SCLK, and each bit of data is shifted out on the falling

edge of SCLK at a maximum frequency fC. The first

address byte can be at any location. The address is

automatically increased to the next higher address af-

ter each data byte is shifted out, so the whole memory

Read Data Bytes (READ) Sequence (Command 03)

Figure 4. Read at Higher Speed (FAST_READ) Sequence (Command 0B)

FHCS#

FHSCLK

FHSI

FHSO

FHCS#

FHSCLK

FHSI

FHSO

FHCS#

FHSCLK

FHSI

FHSO

HT82A623R/HT82A6208/HT82A6216

Rev. 1.10 28 October 30, 2009

can be read out with a single FAST_READ instruction.

The address counter rolls over to
0
 when the highest

address has been reached.

The sequence to issue a FAST_READ instruction is:

FHCS# goes low � sending FAST_READ instruction

code � 3-byte address on SI � 1-dummy byte ad-

dress on SI � data out on SO � to end FAST_READ

operation can use FHCS# going high at any time dur-

ing data out. (see Figure 4) Whi le Pro-

gram/Erase/Write Status Register cycle is in

progress, FAST_READ instruction is rejected without

any impact on the Program/Erase/Write Status Regis-

ter current cycle.

� Sector Erase - SE

The Sector Erase (SE) instruction is used to erase the

data of the chosen sector to
1
. A Write Enable

(WREN) instruction must be executed to set the Write

Enable Latch (WEL) bit before sending the Sector

Erase (SE). Any address in the sector (see Table 1 or

Table 2) is a valid address for a Sector Erase (SE) in-

struction. CS must go high exactly at the byte bound-

ary (when the latest eighth address byte has been

latched-in); otherwise, the instruction will be rejected

and not executed.

Address bits [Am-A12] (Am is the most significant ad-

dress) select the sector address. The sequence to is-

sue a SE instruction is: FHCS# goes low � sending

SE instruction code � 3-byte address on SI �
FHCS# goes high.

The self-timed Sector Erase Cycle time (tSE) is initi-

ated as soon as the Chip Select (CS) goes high. The

Write in Progress (WIP) bit can still be checked when

a Sector Erase cycle is in progress. WIP is set to
1

during the tSE timing, and cleared to
0
 when the

Sector Erase Cycle is completed, and the Write En-

able Latch (WEL) bit is reset. If the page is protected

by BP2, BP1, BP0 or BP3, BP2, BP1, BP0 bitts, the

Sector Erase (SE) instruction will not be executed on

the page.

� Block Erase - BE

The Block Erase (BE) instruction erases data of the

chosen block to
1
. A Write Enable (WREN) instruc-

tion must executed to set the Write Enable Latch

(WEL) bit before sending the Block Erase (BE). Any

addresses of the block (see Table 1 or Table 2) are

valid addressed for a Block Erase (BE) instruction. CS

must go high exactly at the byte boundary (when the

latest eighth address byte been latched-in); other-

wise, the instruction will be rejected and not executed.

The sequence of issuing BE instruction is: FHCS#

goes low � sending BE instruction code � 3-byte ad-

dress on SI � FHCS# goes high.

The self-timed Block Erase Cycle time (tBE) is initi-

ated as soon as Chip Select (FHCS#) goes high. The

Write in Progress (WIP) bit still can be checked out

when the Sector Erase cycle is in progress. The WIP

is set to
1
 during the tBE timing, and cleared to
0

when the Sector Erase Cycle has completed, and the

Write Enable Latch (WEL) bit is reset. If the page is

protected by BP0~BP3 bits, the Block Erase (BE) in-

struction will not be executed on the page.

Note: SE command is 20(hex).

Sector Erase (SE) Sequence (Command 20)

Note: BE command is 52 or D8(hex).

Block Erase (BE) Sequence (Command 52 or D8)

FHCS#

FHSCLK

FHSI

FHSI

FHSCLK

FHCS#

HT82A623R/HT82A6208/HT82A6216

Rev. 1.10 29 October 30, 2009

� Chip Erase - CE

The Chip Erase (CE) instruction is used to erase the

data of the whole chip to
1
. A Write Enable (WREN)

instruction must be executed to set the Write Enable

Latch (WEL) bit before sending the Chip Erase (CE).

Any address of the sector (see Table 1 or Table 2) is a

valid address for the Chip Erase (CE) instruction.

FHCS# must go high exactly at the byte boundary

(when the latest eighth address byte has been

latched-in); otherwise, the instruction will be rejected

and not executed.

The sequence of issuing CE instruction is: FHCS#

goes low � sending CE instruction code � FHCS#

goes high. (see Figure 5).

The self-timed Chip Erase Cycle time (tCE) is initiated

as soon as the Chip Select (FHCS#) goes high. The

Write in Progress (WIP) bit still can be checked when

the Chip Erase cycle is in progress. The WIP is set to

1
 during the tCE timing, and cleared to
0
 when the

Chip Erase Cycle has completed, and the Write En-

able Latch (WEL) bit is reset. If the chip is protected by

the BP0~BP3 bits, the Chip Erase (CE) instruction will

not be executed. It will be only executed when

BP0~BP3 are all set to
0
.

� Page Program - PP

The Page Program (PP) instruction is used to pro-

gramming the memory to
0
. A Write Enable (WREN)

instruction must executed to set the Write Enable

Latch (WEL) bit before sending the Page Program

(PP). If the eighth least significant address bits

(A7~A0) are not all 0, all transmitted data which goes

beyond the end of the current page are programmed

from the start address if the same page (from the ad-

dress whose 8 least significant address bits (A7~A0)

are all 0). FHCS# must go high exactly at the byte

boundary (when the latest eighth address byte been

latched-in); otherwise, the instruction will be rejected

and not executed. If more than 256 bytes are sent to

the device, the data of the last 256-bytes are pro-

grammed at the request page and previous data will

be disregarded. If less than 256 bytes are sent to the

device, the data is programmed at the request ad-

dress of the page without effect on other address of

the same page.

Note: CE command is 60(hex) or C7(hex).

Figure 5. Chip Erase (CE) Sequence (Command 60 or C7)

Figure 6. Page Program (PP) Sequence (Command 02)

FHCS#

FHSCLK

FHSI

FHCS#

FHSCLK

FHSI

FHCS#

FHSCLK

FHSI

HT82A623R/HT82A6208/HT82A6216

Rev. 1.10 30 October 30, 2009

Release from Deep Power-down and Read Electronic Signature (RES) Sequence (Command AB)

Figure 7. Deep Power-down (DP) Sequence (Command B9)

The sequence to issue a PP instruction is: FHCS#

goes low � sending PP instruction code � 3-byte ad-

dress on SI � at least 1-byte on data on SI � FHCS#

goes high (see Figure 6).

The self-timed Page Program Cycle time(tPP) is initi-

ated as soon as the Chip Select (FHCS#) goes high.

The Write in Progress (WIP) bit still can still be

checked when the Page Program cycle is in progress.

WIP is set to
1
 during the tPP timing, and cleared to

0
 when the Page Program Cycle has completed,

and the Write Enable Latch (WEL) bit is reset. If the

page is protected by the BP0~BP3 bits, the Page Pro-

gram (PP) instruction will not be executed.

� Deep Power-down - DP

The Deep Power-down (DP) instruction is used to set

the device to a condition of minimum power consump-

tion. The standby current is reduced from ISB1 to

ISB2). The Deep Power-down mode requires the

Deep Power-down (DP) instruction to be executed.

During the Deep Power-down mode, the device is not

active and all Write/ Program/Erase instructions are

ignored. When FHCS# goes high, it will only be in

standby mode and not in deep power-down mode.

The sequence to issue a DP instruction is: FHCS#

goes low � sending DP instruction code � FHCS#

goes high. (see Figure 7) Once the DP instruction is

executed, all instructions will be ignored except the

Release from Deep Power-down mode (RDP) and

Read Electronic Signature (RES) instruction. (RES in-

struction to allow the ID been read out). During

Power-down, the deep power-down mode automati-

cally stops, and when powered-up, the device auto-

matically is in standby mode. For the RDP instruction

FHCS# must go high exactly at the byte boundary

(when the latest eighth bit of the instruction code has

been latched-in); otherwise, the instruction will not be

executed. As soon as the Chip Select (FHCS#) goes

high, a delay of tDP is required before entering the

Deep Power-down mode and reducing the current to

ISB2.

� Release from Deep Power-down (RDP), Read Elec-

tronic Signature (RES)

The Release from Deep Power-down (RDP) instruc-

tion is terminated by driving Chip Select (FHCS#)

High. When Chip Select (FHCS#) is driven High, the

device is put into the Stand-by Power mode. If the de-

vice was not previously in the Deep Power-down

mode, the transition to the Stand-by Power mode is

immediate. If the device was previously in the Deep

Power-down mode, though, the transition to the

Stand-by Power mode is delayed by tRES2, and Chip

Select (FHCS#) must remain High for at least

tRES2(max), as specified in the Table. Once in the

Stand-by Power mode, the device waits to be se-

lected, so that it can receive, decode and execute in-

structions. The RES instruction reads out the old style

of 8-bit Electronic Signature, whose values are shown

in the table of ID Definitions. This is not the same as

the RDID instruction. It is not recommended to use

FHCS#

FHSCLK

FHSI

FHCS#

FHSCLK

FHSI

FHSO

HT82A623R/HT82A6208/HT82A6216

Rev. 1.10 31 October 30, 2009

this for new designs. For new designs, use the RDID

instruction. Even in Deep power-down mode, the RDP

and RES are also allowed to be executed, except

when the device is in the program/erase/write cycle;

here there is no effect on the current pro-

gram/erase/write cycle in progress.

The sequence is shown as figure 8.

The RES instruction is ended when FHCS# goes high

after the ID has been read out at least once. The ID

outputs repeatedly if additional clock cycles on

FHSCLK are repeatedly sent while FHCS# is low. If

the device was not previously in the Deep

Power-down mode, the device transition to standby

mode is immediate. If the device was previously in the

Deep Power-down mode, there is a delay of tRES2 to

transition to the standby mode, and FHCS# must re-

main high for at least tRES2(max). Once in the

standby mode, the device waits to be selected, so it

can be receive, decode, and execute instruction.

The RDP instruction is to release the device from the

Deep Power-down Mode.

� Read Electronic Manufacturer ID & Device ID (REMS)

- for the HT82A6208 internal Flash Memory

The REMS instruction is an alternative to the Release

from Power-down/Device ID instruction that provides

both the JEDEC assigned manufacturer ID and the

specific device ID.

The REMS instruction is very similar to the Release

from Power-down/Device ID instruction. The instruc-

tion is initiated by driving the FHCS# pin low and

shifting the instruction code
90h
 followed by two

dummy bytes and one bytes address (A7~A0). After

this, the Manufacturer ID for the device (C2h) and the

Device ID are shifted out on the falling edge of

FHSCLK with the most significant bit (MSB) first as

shown in figure 9. The Device ID values are listed in

the ID Definition table. If the one-byte address is ini-

tially set to 01h, then the device ID will be read first

and then followed by the Manufacturer ID. The Manu-

facturer and Device IDs can be read continuously, al-

ternating from one to the other. The instruction is

completed by driving FHCS# high.

Command

Type
HT82A6208 Internal Flash Memory

RDID

Manufacture

ID

Memory

Type

Memory

Density

C2 20 14

RES
Electronic ID

13

REMS
Manufacture ID Device ID

C2 13

Figure 8. Release from Deep Power-down (RDP) Sequence (Command AB)

FHCS#

FHSCLK

FHSI

FHSO

HT82A623R/HT82A6208/HT82A6216

Rev. 1.10 32 October 30, 2009

Notes: ADD=00H will output the manufacturer's ID first and ADD=01H will output device ID first

Figure 9. Read Electronic Manufacturer & Device ID (REMS) Sequence (Command 90)

FHCS#

FHSCLK

FHSI

FHSO

FHCS#

FHSCLK

FHSI

FHSO

HT82A623R/HT82A6208/HT82A6216

Rev. 1.10 33 October 30, 2009

Notes: ADD=00H will output the manufacturer's ID first and ADD=01H will output device ID first

Figure 10. Read Electronic Manufacturer & Device ID (REMS) Sequence (Command 90)

� Read Electronic Manufacturer ID & Device ID

(REMS), (REMS2) - HT82A6216 internal Flash Memory

The REMS & REMS2 instruction is an alternative to

the Release from Power-down/Device ID instruction

that provides both the JEDEC assigned manufacturer

ID and the specific device ID.

The REMS & REMS2 instruction is very similar to the

Release from Power-down/Device ID instruction. The

instruction is initiated by driving the FHCS# pin low

and shifting the instruction code
90H
 or
EFh
 fol-

lowed by two dummy bytes and one bytes address

(A7~A0). After this, the Manufacturer ID for MXIC

(C2h) and the Device ID are shifted out on the falling

edge of FHSCLK with most significant bit (MSB) first

as shown in figure 10. The Device ID values are listed

in Table of ID Definitions. If the one-byte address is ini-

tially set to 01h, then the device ID will be read first

and then followed by the Manufacturer ID. The Manu-

facturer and Device IDs can be read continuously, al-

ternating from one to the other. The instruction is

completed by driving FHCS# high.

Command

Type

HT82A6216

Internal Flash Memory

RDID

(JEDEC ID)

Manufacture

ID

Memory

Type

Memory

Density

C2 20 15

RES
Electronic ID

14

REMS/REMS2
Manufacture ID Device ID

C2 14

FHCS#

FHSCLK

FHSI

FHSO

FHCS#

FHSCLK

FHSI

FHSO

HT82A623R/HT82A6208/HT82A6216

Rev. 1.10 34 October 30, 2009

FHCS# =VCC

FHSCLK

FHCS# =VCC

FHSCLK

FHSCLK

FHCS# =VCC

FHCS# =VCC

FHCS# =VCC

FHCS# =VCC

HT82A623R/HT82A6208/HT82A6216

Rev. 1.10 35 October 30, 2009

Figure 11. Maximum Negative Overshoot Waveform

FHCS# Active Setup Time (relative to FHSCLK)

FHCS# Not Active Hold Time (relative to FHSCLK)

FHCS# Active Hold Time (relative to FHSCLK)

FHCS# Not Active Setup Time (relative to FHSCLK)

FHCS# Deselect Time

FHHOLD Setup Time (relative to FHSCLK)

FHHOLD Hold Time (relative to FHSCLK)

FHHOLD Hold Time (relative to FHSCLK)

FHHOLD Setup Time (relative to FHSCLK)

FHHOLD to Output Low-Z

FHHOLD to Output High-Z

FHCS# High to Deep Power-down Mode

FHCS# High to Standby Mode without Electronic Signature Read

FHCS# High to Standby Mode with Electronic Signature Read

HT82A623R/HT82A6208/HT82A6216

Rev. 1.10 36 October 30, 2009

Serial Input Timing

Output Timing

Hold Timing

FHCS#

FHSCLK

FHSI

FHSO

FHCS#

FHSCLK

FHSO

FHSI

FHCS#

FHSCLK

FHHOLD

FHSO

HT82A623R/HT82A6208/HT82A6216

Rev. 1.10 37 October 30, 2009

Power-up Timing

FHWP Disable Setup and Hold Timing during WRSR when SRWD=1

FHCS#

FHSCLK

FHSI

FHSO

FHWP

HT82A623R/HT82A6208/HT82A6216

Rev. 1.10 38 October 30, 2009

HT82A6208 Internal Flash Memory

HT82A6216 Internal Flash Memory

Figure 12. AC Timing at Device Power-Up

Recommended Operating Conditions

At Device Power-Up

AC timing illustrated in Figure 12 is recommended for the supply voltages and the control signals at device power-up. If

the timing in the figure is ignored, the device may not operate correctly.

HT82A623R/HT82A6208/HT82A6216

Rev. 1.10 39 October 30, 2009

HT82A6208 Internal Flash Memory

Erase and Programming Performance

HT82A6216 Internal Flash Memory

HT82A623R/HT82A6208/HT82A6216

Rev. 1.10 40 October 30, 2009

Input/Output Ports

Holtek microcontrollers offer considerable flexibility on

their I/O ports. With the input or output designation of ev-

ery pin fully under user program control, pull-high op-

tions for all ports and wake-up options on certain pins,

the user is provided with an I/O structure to meet the

needs of a wide range of application possibilities.

Depending upon which package is chosen, the

microcontroller provides up to 32 bidirectional input/out-

put lines labeled with port names PA, PB, PC and PD.

These registers are mapped to the Data Memory with an

addresses as shown in the Special Purpose Data Mem-

ory table. For input operation, these ports are

non-latching, which means the inputs must be ready at

the T2 rising edge of instruction
MOV A,[m]
, where m

denotes the port address. For output operation, all the

data is latched and remains unchanged until the output

latch is rewritten.

Pull-high Resistors

Many product applications require pull-high resistors for

their switch inputs usually requiring the use of an exter-

nal resistor. To eliminate the need for these external re-

sistors, I/O pins, when configured as an input have the

capability of being connected to an internal pull-high re-

sistor. The pull-high resistors are selectable via configu-

ration options and are implemented using weak PMOS

transistors. PA pins have bit select pull-high configura-

tion options. Other ports have nibble select pull-high

configuration options.

Port Pin Wake-up

If the HALT instruction is executed, the device will enter

the Power Down Mode, where the system clock will stop

resulting in power being conserved, a feature that is im-

portant for battery and other low-power applications.

Various methods exist to wake-up the microcontroller,

one of which is to change the logic condition on one of

the port pins from high to low. After a HALT instruction

forces the microcontroller into entering the Power Down

Mode, the processor will remain in a low-power state un-

til the logic condition of the selected wake-up pin on the

port pin changes from high to low. This function is espe-

cially suitable for applications that can be woken up via

external switches.

PA pins have bit select wake-up configuration options.

Other ports have nibble select wake-up configuration

options. All wake up the MCU on a high to low transition.

This means if the pin is low, the I/O cannot wake-up the

MCU.

I/O Port Control Registers

Each I/O port has its own control register PAC, PBC,

PCC and PDC, to control the input/output configuration.

With this control register, each CMOS output or input with

or without pull-high resistor structures can be reconfig-

ured dynamically under software control. Each of the I/O

ports is directly mapped to a bit in its associated port con-

trol register. Note that PA pins can be setup to have

NMOS outputs using configuration options.

For the I/O pin to function as an input, the corresponding

bit of the control register must be written as a
1
. This

* � �

�
%
3

�
%
3

2 ;
@ � � � 1 E " � � � ' A

$ � � � � � � " . � �

� � � � " . � �

� � � � 	 " $ � � � � � � " # 	 � � � � 	 �

$ � & " # 	 � 	 �

# 	 � ! " $ � � � � � � " # 	 � � � � 	 �

� � � � 	 " � � � � " # 	 � � � � 	 �

� � � � " . � �

� K

$:
�

K

� K

$:
�

K

� � # 1 " � � " � � # ' " - � � " � + 8 " � � " � � 1 " � � �

� ; � " - � � " � + 5 " � � �

�
 � � 	
 " � � � 	 � � &

# 	 � ! " � � � � " # 	 � � � � 	 �

� � � 	 � � & " � & � � � �

� � � � � � �

� + 6 E " � + 7
� � � 1 E " � � � '

� + 1 � � $ � +

� + ' � � $ (: +

� + / � � � � +

� + 4 � � � � +

� + 6 � � � � 1

� + 7 � � � � '

� + 5 � � ; �

� + 8 � � � # 1

� . 1 � + ; 1 L � . 8 � + ; 8

� $ 1 � + ; � L � $ 8 � + ; ' 7

� � 1 � � � # '

� � ' L � � 8

Input/Output Ports

HT82A623R/HT82A6208/HT82A6216

Rev. 1.10 41 October 30, 2009

will then allow the logic state of the input pin to be di-

rectly read by instructions. When the corresponding bit

of the control register is written as a
0
, the I/O pin will

be setup as an output. If the pin is currently setup as an

output, instructions can still be used to read the output

register. However, it should be noted that the program

will in fact only read the status of the output data latch

and not the actual logic status of the output pin.

Port B VDDIO Function

The output drivers of most I/O pins use the VDD power

supply line as their high voltage level. In this device pins

PB0~PB6 can use a different voltage, other than VDD

as their high level. This is supplied externally on pin

PB7. This function is selected using configuration op-

tions.

Pin-shared Functions

The flexibility of the microcontroller range is greatly en-

hanced by the use of pins that have more than one func-

tion. Limited numbers of pins can force serious design

constraints on designers but by supplying pins with

multi-functions, many of these difficulties can be over-

come. For some pins, the chosen function of the

multi-function I/O pins is set by configuration options

while for others the function is set by application pro-

gram control.

� External interrupt input

The external interrupt pin INT is pin-shared with the

I/O pin PA6. For applications not requiring an external

interrupt input, the pin-shared external interrupt pin

can be used as a normal I/O pin, however to do this,

the external interrupt enable bits in the INTC0 register

must be disabled.

� External Timer Clock Inputs

The external timer pins TMR0 and TMR1 are

pin-shared with I/O pins. To configure these pins to

operate as timer inputs, the corresponding control bits

in the timer control register must be correctly set. For

applications that do not require external timer inputs,

these pins can be used as normal I/O pins. Note that if

used as normal I/O pins the timer mode control bits in

the timer control register must select the timer mode,

which has an internal clock source, to prevent the in-

put pin from interfering with the timer operation.

� PWM outputs

The device contains two PWM outputs which are

pin-shared with I/O pins. The PWM output functions

are chosen via configuration options and remain fixed

after the device is programmed. Note that the corre-

sponding bit of the port control register, PAC, must

setup the pin as an output to enable the PWM output.

If the PAC port control register has setup the pin as an

input, then the pin will function as a normal logic input

with the usual pull-high option, even if the PWM con-

figuration option has been selected.

� A/D inputs

These devices can have up to 16 A/D converter inputs

depending upon which package type is chosen. All of

these analog inputs are pin-shared with I/O pins on

Port B and Port C. If these pins are to be used as A/D

inputs and not as normal I/O pins then the corre-

sponding bits in the A/D Converter Control Register,

ADCR, must be properly set. There are no configura-

tion options associated with the A/D function. If used

as I/O pins, then full pull-high resistor configuration

options remain, however if used as A/D inputs then

any pull-high resistor options associated with these

pins will be automatically disconnected.

I/O Pin Structures

The vast range of I/O functions and pin-shared options

results in a huge variety of I/O pin structure types. For

this reason the generic Input/Output Port diagram pro-

vided here is for general reference only. As the exact

logical construction of the I/O pin will differ from the

drawing, they are supplied as a guide only to assist with

the functional understanding of the basic I/O pins.

Programming Considerations

Within the user program, one of the first things to con-

sider is port initialisation. After a reset, all of the data and

port control register will be set high. This means that all

I/O pins will default to an input state, the level of which

depends on the other connected circuitry and whether

pull-high options have been selected. If the PAC, PBC,

PCC and PDC port control register, are then pro-

grammed to setup some pins as outputs, these output

pins will have an initial high output value unless the as-

sociated PA, PB, PC and PD port data registers are first

programmed. Selecting which pins are inputs and which

are outputs can be achieved byte-wide by loading the

correct value into the port control register or by program-

ming individual bits in the port control register using the

SET [m].i
 and
CLR [m].i
 instructions. Note that when

using these bit control instructions, a read-modify-write

operation takes place. The microcontroller must first

read in the data on the entire port, modify it to the re-

quired new bit values and then rewrite this data back to

the output ports.

The ports have the additional capability of providing

wake-up functions. When the device is in the Power

Down Mode, various methods are available to wake the

device up. One of these is a high to low transition of any

of the port pins. Single or multiple pins on the ports can

be setup to have this function.

� ' � / � 4 � 6 � ' � / � 4 � 6

� � � � 	 " � � " � � � � # 	 � ! " - � �
 " � � � �

�
 � � 	
 " $ � � � �

� � � � " � � � �

Read/Write Timing

HT82A623R/HT82A6208/HT82A6216

Rev. 1.10 42 October 30, 2009

Timer/Event Counters

The provision of timers form an important part of any

microcontroller giving the designer a means of carrying

out time related functions. The device contains two in-

ternal 16-bit count-up timer which has three operating

modes. The timer can be configured to operate as a

general timer, external event counter or as a pulse width

measurement device. The provision of an internal

16-stage prescaler on one of the timers clock circuitry

gives added range to the timer.

There are two types of registers related to the

Timer/Event Counters. The first is the register that con-

tain the actual value of the Timer/Event Counter and into

which an initial value can be preloaded, and is known as

TMR0H, TMR0L, TMR1H or TMR1L. Reading from this

register retrieves the contents of the Timer/Event Coun-

ter. The second type of associated register is the Timer

Control Register, which defines the timer options and

determines how the Timer/Event Counter is to be used,

and has the name TMR0C or TMR1C. This device can

have the timer clocks configured to come from the inter-

nal clock sources. In addition, the timer clock sources

can also be configured to come from the external timer

pins.

Configuring the Timer/Event Counter Input Clock

Source

The internal timers clock source can originate from a

choice of internal system clocks or from an external

clock source. The system clock input timer source is

used when the timer is in the timer mode or in the pulse

width measurement mode.

The internal clock source of Timer1 passes trough a

prescaler or can directly come from fsys/4 using bits

T1S and T1PSS0/T1PSS1 in the MODE register. The

prescaler clock source can come from either WDT OSC,

RTC Oscillator or fSYS/4. The prescaler value is condi-

tioned by the bits PS1C0, PS1C1 and PS1C2 in the

TMR1C register.

An external clock source is used when the timer is in the

event counting mode, the clock source being provided

on the shared TMR0 or TMR1 pin. Depending upon the

condition of the T0E or T1E bit, each high to low, or low

to high transition on the external timer pin will increment

the counter by one.

Timer Register � TMR0H/TMR1H, TMR0L/TMR1L

The timer registers are special function registers located

in the Special Purpose Data Memory and are the places

where the actual timer values are stored. The timer reg-

isters are known as TMR0L, TMR0H, TMR1L and

TMR1H. The value in the timer registers increases by

one each time an internal clock pulse is received or an

external transition occurs on the external timer pin. The

timer will count from the initial value loaded by the

preload register to the full count of FFFFH for the 16-bit

timer at which point the timer overflows and an internal

interrupt signal is generated. The timer value will then

be reset with the initial preload register value and con-

tinue counting.

� �
 	 � � 2 , 	 � � " $ � � � � 	 �
� � ! 	 " $ � � � � � �

' 5 � . � �
� � 	 � � � ! " # 	 � � � � 	 �

� � � � " . � �

# 	 � � � !

� , 	 � - � �)
� � " � � � 	 � � � & �

(�) " .
 � 	
. � - - 	 �

� ' � ' � ' � 1

� ' � ;

= � � " .
 � 	 (�) " .
 � 	

' 5 � � � � " � �
 	 � � 2 , 	 � � " $ � � � � 	 �

� � # ' "

� ' 2

- � C � � 6

� $ " � � � � � � � � � �

� � � � � � 	 " � � 	 � � � � 	 �

� � $ � $ / L � � $ � $ 1

� � � " � � $

�
%
3

� ' �
� ' � � � 1

�
%
3

� ' � � � '

- � C � � 6

16-bit Timer/Event Counter 1 Structure

� � # 1

� 1 2

� �
 	 � � 2 , 	 � � " $ � � � � 	 �
� � ! 	 " $ � � � � � �

' 5 � . � �
� � 	 � � � ! " # 	 � � � � 	 �

� � � � " . � �

# 	 � � � !

� , 	 � - � �)
� � " � � � 	 � � � & �

(�) " .
 � 	
. � - - 	 �

� 1 � ' � 1 � 1

� 1 � ;

= � � " .
 � 	 (�) " .
 � 	

' 5 � . � � " � �
 	 � � 2 , 	 � � " $ � � � � 	 �

- � C � � 6

16-bit Timer/Event Counter 0 Structure

HT82A623R/HT82A6208/HT82A6216

Rev. 1.10 43 October 30, 2009

To achieve a maximum full range count of FFFFH, the

preload registers must first be cleared to all zeros. It

should be noted that after power-on, the preload register

will be in an unknown condition. Note that if the

Timer/Event Counter is switched off and data is written

to its preload registers, this data will be immediately writ-

ten into the actual timer registers. However, if the

Timer/Event Counter is enabled and counting, any new

data written into the preload data registers during this

period will remain in the preload registers and will only

be written into the timer registers the next time an over-

flow occurs.

For 16-bit Timer/Event Counters which have both low

byte and high byte timer registers, accessing these reg-

isters is carried out in a specific way. It must be note

when using instructions to preload data into the low byte

timer register, namely TMR1L, the data will only be

placed in a low byte buffer and not directly into the low

byte timer register. The actual transfer of the data into

the low byte timer register is only carried out when a

write to its associated high byte timer register, namely

TMR1H, is executed. On the other hand, using instruc-

tions to preload data into the high byte timer register will

result in the data being directly written to the high byte

timer register. At the same time the data in the low byte

buffer will be transferred into its associated low byte

timer register. For this reason, the low byte timer register

should be written first when preloading data into the

16-bit timer registers. It must also be noted that to read

the contents of the low byte timer register, a read to the

high byte timer register must be executed first to latch

the contents of the low byte timer register into its associ-

ated low byte buffer. After this has been done, the low

byte timer register can be read in the normal way. Note

that reading the low byte timer register will result in read-

ing the previously latched contents of the low byte buffer

and not the actual contents of the low byte timer register.

Timer Control Register � TMR0C/TMR1C

The flexible features of the Holtek microcontroller

Timer/Event Counters enable them to operate in three

different modes, the options of which are determined by

the contents of the Timer Control Register TMR0C/

TMR1C. Together with the TMR0L/TMR1L and TMR0H/

TMR1H registers, these three registers control the full

operation of the Timer/Event Counter. Before the timer

can be used, it is essential that the TMR0C/TMR1C reg-

ister is fully programmed with the right data to ensure its

correct operation, a process that is normally carried out

during program initialisation.

To choose which of the three modes the timer is to oper-

ate in, the timer mode, the event counting mode or the

pulse width measurement mode, bits T0M0/T1M0 and

T0M1/T1M1 must be set to the required logic levels. The

timer-on bit T0ON/T1ON or bit 4 of the TMR0C/TMR1C

register provides the basic on/off control of the timer,

setting the bit high allows the counter to run, clearing the

bit stops the counter. If the timer is in the event count or

pulse width measurement mode the active transition

edge level type is selected by the logic level of the

T0E/T1E or bit 3 of the TMR0C/TMR1C register.

Configuring the Timer Mode

In this mode, the Timer/Event Counter can be utilised to

measure fixed time intervals, providing an internal inter-

rupt signal each time the Timer/Event Counter over-

flows. To operate in this mode, the Operating Mode

Select bit pair, T0M1/T0M0 or T1M1/T1M0, in the Timer

Control Register must be set to the correct value as

shown.

Control Register Operating Mode

Select Bits for the Timer Mode

Bit7 Bit6

1 0

In this mode the internal clock, fSYS/4 is used as the inter-

nal clock for the Timer/Event Counter. After the other

bits in the Timer Control Register have been setup, the

enable bit T0ON or T1ON, which is bit 4 of the Timer

Control Register, can be set high to enable the

Timer/Event Counter to run. Each time an internal clock

cycle occurs, the Timer/Event Counter increments by

one. When it is full and overflows, an interrupt signal is

generated and the Timer/Event Counter will reload the

value already loaded into the preload register and con-

tinue counting. The interrupt can be disabled by ensur-

ing that the Timer/Event Counter Interrupt Enable bit in

the Interrupt Control Register, INTC, is reset to zero.

� � � � 	
 	 � �
� �
 	 � " $ � � � � � � � 	 �

� � 	 � � � � 	 � " � � � & � �

� �
 	 � " < " ' � �
 	 � " < " / � �
 	 � " < " ; � �
 	 � " < " ; " < " '

Timer Mode Timing Chart

HT82A623R/HT82A6208/HT82A6216

Rev. 1.10 44 October 30, 2009

; � � " �
 & � 	
 	 � � 	 ! E " � 	 � ! " � � " H 1 H

2 , 	 � � " $ � � � � 	 � " � � � � , 	 " 	 ! � 	 " � 	 � 	 � �
' D " � � � � � " � � " - � � � � � � " 	 ! � 	
1 D " � � � � � " � � " � � � � � � " 	 ! � 	

� �
 	 � � 2 , 	 � � " $ � � � � 	 � " � � � � � � � � " 	 � � � � 	
' D " 	 � � � � 	
1 D " ! � � � � � 	

� & 	 � � � � � � "
 � ! 	 " � 	 � 	 � �

� 1 � '
1
1
'
'

� 1 � 1
1
'
1
'

� � "
 � ! 	 " � , � � � � � � 	
	 , 	 � � " � � � � � 	 � "
 � ! 	
� �
 	 � "
 � ! 	
& � � � 	 ") � ! � "
 	 � � � � 	
 	 � � "
 � ! 	

; � � " �
 & � 	
 	 � � 	 ! E " � 	 � ! " � � " H 1 H

� 8

� 1 2� 1 � ;� 1 � 1� 1 � '

� 1

� (�) � 	 � � � � � � �

Timer/Event Counter 0 Control Register

� 8

� ' 2� ' � ;� ' � 1� ' � '

� 1

� � ' $ / � � ' $ ' � � ' $ 1

2 , 	 � � " $ � � � � 	 � " � � � � , 	 " 	 ! � 	 " � 	 � 	 � �
' D " � � � � � " � � " - � � � � � � " 	 ! � 	
1 D " � � � � � " � � " � � � � � � " 	 ! � 	 "

� � � � 	 " � � ! � " � 	 � � � � 	
 	 � � " " � � � � , 	 " 	 ! � 	 " � 	 � 	 � �
' D " � � � � � " � � � � � � � � " � � " � � � � � � " 	 ! � 	 E " � � � & " � � " - � � � � � � " 	 ! � 	
1 D " � � � � � " � � � � � � � � " � � " - � � � � � � " 	 ! � 	 E " � � � & " � � " � � � � � � " 	 ! � 	

� �
 	 � � 2 , 	 � � " $ � � � � 	 � " � � � � � � � � " 	 � � � � 	
' D " 	 � � � � 	
1 D " ! � � � � � 	

; � � " �
 & � 	
 	 � � 	 ! E " � 	 � ! " � � " H 1 H

� & 	 � � � � � � "
 � ! 	 " � 	 � 	 � �
� ' � ' " " " " � ' � 1
" " " " 1 " " " " " " " " " " " 1 " " " " " " " " " " " � � "
 � ! 	 " � , � � � � � � 	
" " " " 1 " " " " " " " " " " " ' " " " " " " " " " " " 	 , 	 � � " � � � � � 	 � "
 � ! 	
" " " " ' " " " " " " " " " " " 1 " " " " " " " " " " " � �
 	 � "
 � ! 	
" " " " ' " " " " " " " " " " " ' " " " " " " " " " " " & � � � 	 ") � ! � "
 	 � � � � 	
 	 � � "
 � ! 	

� �
 	 � " & � 	 � � � � 	 � " � � � 	 " � 	 � 	 � �

� � ' $ /
" 1
" 1
" 1
" 1
" '
" '
" '
" '

� � ' $ '
" " 1
" " 1
" " '
" " '
" " 1
" " 1
" " '
" " '

� � ' $ 1
" " " " " " 1
" " " " " " '
" " " " " " 1
" " " " " " '
" " " " " " 1
" " " " " " '
" " " " " " 1
" " " " " " '

- � � M - � � 4 /
- � � M - � � 5 6
- � � M - � � ' / �
- � � M - � � / 7 5
- � � M - � � 7 ' /
- � � M - � � ' 1 / 6
- � � M - � � / 1 6 �
- � � M - � � 6 1 9 5

� (�) � 	 � � � � � � �

Timer/Event Counter 1 Control Register

HT82A623R/HT82A6208/HT82A6216

Rev. 1.10 45 October 30, 2009

Configuring the Event Counter Mode

In this mode, a number of externally changing logic

events, occurring on the external timer pin, can be re-

corded by the Timer/Event Counter. To operate in this

mode, the Operating Mode Select bit pair, T0M1/T0M0

or T1M1/T1M0, in the Timer Control Register must be

set to the correct value as shown.

Control Register Operating Mode

Select Bits for the Event Counter Mode

Bit7 Bit6

0 1

In this mode, the external timer pin, TMR0 or TMR1, is

used as the Timer/Event Counter clock source, however

it is not divided by the internal prescaler. After the other

bits in the Timer Control Register have been setup, the

enable bit T0ON or T1ON, which is bit 4 of the Timer

Control Register, can be set high to enable the

Timer/Event Counter to run. If the Active Edge Select bit

T0E or T1E, which is bit 3 of the Timer Control Register,

is low, the Timer/Event Counter will increment each time

the external timer pin receives a low to high transition. If

the Active Edge Select bit is high, the counter will incre-

ment each time the external timer pin receives a high to

low transition. When it is full and overflows, an interrupt

signal is generated and the Timer/Event Counter will re-

load the value already loaded into the preload register

and continue counting. The interrupt can be disabled by

ensuring that the Timer/Event Counter Interrupt Enable

bit in the Interrupt Control Register, INTC, is reset to

zero.

As the external timer pin is an independent pin and not

shared with an I/O pin, the only thing to ensure the timer

operate as an event counter is to ensure that the Oper-

ating Mode Select bits in the Timer Control Register

place the Timer/Event Counter in the Event Counting

Mode. It should be noted that in the event counting

mode, even if the microcontroller is in the Power Down

Mode, the Timer/Event Counter will continue to record

externally changing logic events on the timer input pin.

As a result when the timer overflows it will generate a

timer interrupt and corresponding wake-up source.

Configuring the Pulse Width Measurement Mode

In this mode, the Timer/Event Counter can be utilised to

measure the width of external pulses applied to the ex-

ternal timer pin. To operate in this mode, the Operating

Mode Select bit pair, T0M1/T0M0 or T1M1/T1M0, in the

Timer Control Register must be set to the correct value

as shown.

Control Register Operating Mode

Select Bits for the Pulse Width

Measurement Mode

Bit7 Bit6

1 1

In this mode the internal clock, fSYS/4 is used as the inter-

nal clock for the 16-bit Timer/Event Counter 0. The T1S

and T1PSS0/T1PSS1 bits select the internal clock for

the 16-bit Timer/Event Counter 1. After the other bits in

the Timer Control Register have been setup, the enable

bit T0ON or T1ON, which is bit 4 of the Timer Control

Register, can be set high to enable the Timer/Event

Counter, however it will not actually start counting until

an active edge is received on the external timer pin.

If the Active Edge Select bit T0E or T1E, which is bit 3 of

the Timer Control Register, is low, once a high to low

transition has been received on the external timer pin,

TMR0 or TMR1, the Timer/Event Counter will start

counting until the external timer pin returns to its original

high level. At this point the enable bit will be automati-

cally reset to zero and the Timer/Event Counter will stop

counting. If the Active Edge Select bit is high, the

Timer/Event Counter will begin counting once a low to

high transition has been received on the external timer

pin and stop counting when the external timer pin re-

turns to its original low level. As before, the enable bit

will be automatically reset to zero and the Timer/Event

Counter will stop counting. It is important to note that in

the Pulse Width Measurement Mode, the enable bit is

< ' < / < 4 < 6� �
 	 �

2 B � 	 � � � � " � �
 	 �
� � � " � � & � �

� 1 � ; " � � " � ' � ;
@) � � " � 1 2 " � � " � ' 2 M 1 A

� � 	 � � � � 	 � " � � � & � �

� � � � 	
 	 � �
� �
 	 � " $ � � � � 	 �

� � 	 � � � � 	 � " � � � & � � " � � " � �
 & � 	 ! " � � " 	 , 	 �
 " - � � � � � � " 	 ! � 	 " � - " � ' 0

Pulse Width Measure Mode Timing Chart

� �
 	 � < /

2 B � 	 � � � � " 2 , 	 � �

� � � � 	
 	 � �
� �
 	 � " $ � � � � 	 � � �
 	 � < 4� �
 	 � < '

Event Counter Mode Timing Chart

HT82A623R/HT82A6208/HT82A6216

Rev. 1.10 46 October 30, 2009

automatically reset to zero when the external control

signal on the external timer pin returns to its original

level, whereas in the other two modes the enable bit can

only be reset to zero under program control.

The residual value in the Timer/Event Counter, which

can now be read by the program, therefore represents

the length of the pulse received on the external timer

pin. As the enable bit has now been reset, any further

transitions on the external timer pin will be ignored. Not

until the enable bit is again set high by the program can

the timer begin further pulse width measurements. In

this way, single shot pulse measurements can be easily

made.

It should be noted that in this mode the Timer/Event

Counter is controlled by logical transitions on the exter-

nal timer pin and not by the logic level. When the

Timer/Event Counter is full and overflows, an interrupt

signal is generated and the Timer/Event Counter will re-

load the value already loaded into the preload register

and continue counting. The interrupt can be disabled by

ensuring that the Timer/Event Counter Interrupt Enable

bit in the Interrupt Control Register, INTC, is reset to

zero.

As the external timer pin is an independent pin and not

shared with an I/O pin, the only thing to ensure the timer

operate in Pulse Width Measurement mode is to ensure

that the Operating Mode Select bits in the Timer Control

Register place the Timer/Event Counter in the Pulse

Width Measurement Mode.

Prescaler

Bits PS1C0~PS1C2 of the TMR1C register are used to

define the pre-scaling stages of the internal clock source

of the Timer/Event Counter 1.

I/O Interfacing

The Timer/Event Counter, when configured to run in the

event counter or pulse width measurement mode, re-

quire the use of external pins for correct operation. As

these pins are shared pins they must be configured cor-

rectly to ensure they are setup for use as Timer/Event

Counter inputs and not as a normal I/O pins. This is im-

plemented by ensuring that the mode select bits in the

Timer/Event Counter control register, select either the

event counter or pulse width measurement mode. Addi-

tionally the relevant Port Control Register for this pin

must be set high to ensure that the pin is setup as an in-

put. Any pull-high resistor configuration option on this

pin will remain valid even if the pin is used as a

Timer/Event Counter input.

Programming Considerations

When configured to run in the timer mode, the internal

system clock is used as the timer clock source and is

therefore synchronised with the overall operation of the

microcontroller. In this mode when the appropriate timer

register is full, the microcontroller will generate an internal

interrupt signal directing the program flow to the respec-

tive internal interrupt vector. For the pulse width mea-

surement mode, the internal system clock is also used as

the timer clock source but the timer will only run when the

correct logic condition appears on the external timer input

pin. As this is an external event and not synchronised

with the internal timer clock, the microcontroller will only

see this external event when the next timer clock pulse

arrives. As a result, there may be small differences in

measured values requiring programmers to take this into

account during programming. The same applies if the

timer is configured to be in the event counting mode,

which again is an external event and not synchronised

with the internal system or timer clock.

When the Timer/Event Counter is read, or if data is writ-

ten to the preload register, the clock is inhibited to avoid

errors, however as this may result in a counting error,

this should be taken into account by the programmer.

Care must be taken to ensure that the timers are prop-

erly initialised before using them for the first time. The

associated timer enable bits in the interrupt control reg-

ister must be properly set otherwise the internal interrupt

associated with the timer will remain inactive. The edge

select, timer mode and clock source control bits in timer

control register must also be correctly set to ensure the

timer is properly configured for the required application.

It is also important to ensure that an initial value is first

loaded into the timer registers before the timer is

switched on; this is because after power-on the initial

values of the timer registers are unknown. After the

timer has been initialised the timer can be turned on and

off by controlling the enable bit in the timer control regis-

ter. Note that setting the timer enable bit high to turn the

timer on, should only be executed after the timer mode

bits have been properly setup. Setting the timer enable

bit high together with a mode bit modification, may lead

to improper timer operation if executed as a single timer

control register byte write instruction.

HT82A623R/HT82A6208/HT82A6216

Rev. 1.10 47 October 30, 2009

When the Timer/Event counter overflows, its corre-

sponding interrupt request flag in the interrupt control

register will be set. If the timer interrupt is enabled this

will in turn generate an interrupt signal. However irre-

spective of whether the interrupts are enabled or not, a

Timer/Event counter overflow will also generate a

wake-up signal if the device is in a Power-down condi-

tion. This situation may occur if the Timer/Event Counter

is in the Event Counting Mode and if the external signal

continues to change state. In such a case, the

Timer/Event Counter will continue to count these exter-

nal events and if an overflow occurs the device will be

woken up from its Power-down condition. To prevent

such a wake-up from occurring, the timer interrupt re-

quest flag should first be set high before issuing the

HALT
 instruction to enter the Power Down Mode.

Timer Program Example

This program example shows how the Timer/Event

Counter registers are setup, along with how the inter-

rupts are enabled and managed. Note how the

Timer/Event Counter is turned on, by setting bit 4 of the

Timer Control Register. The Timer/Event Counter can

be turned off in a similar way by clearing the same bit.

This example program sets the Timer/Event Counter to

be in the timer mode, which uses the internal system

clock as the clock source.

org 04h ; USB interrupt vector
reti
org 0ch ; Timer/Event Counter 0 interrupt vector
jmp tmrint ; jump here when Timer overflows
:
org 20h ; main program
;internal Timer/Event Counter 0 interrupt routine
tmrint:
:
; Timer/Event Counter main program placed here
:
reti
:
:
begin:
;setup Timer registers
mov a,09bh ; setup Timer preload value
mov tmr0l,a;
Mov a,0ffh ; setup Timer preload value
Mov trm0h,a
mov a,080h ; setup Timer control register
mov tmr0c,a ; timer mode
; setup interrupt register
mov a,009h ; enable master interrupt and timer interrupt
mov intc0,a
set tmr0c.4 ; start Timer/Event Counter - note mode bits must be previously setup

HT82A623R/HT82A6208/HT82A6216

Rev. 1.10 48 October 30, 2009

+ � � �
 � � � � � � �
 " $ � 	 � � 	 ! " �
 " � � #
� � � � � � �
 " � 	 � " � � " $ � 	 � � 	 ! " �
 " � � - �) � � 	

% � . " � � � 	 � � � & �
# 	 � � 	 � � " � � � � " % � . � I +

2 % � 2 � �

� � � � � � �

� � � 	 � � � & �
� � � � � � �

= � �

+ � � �
 � � � � � � �
 " � � � � � � 	 ! " �
 " � � #
$ � � " � 	 " 2 � � � � 	 ! " � � � � � � �

� �
 	 � � 2 , 	 � � " $ � � � � 	 � " 1 " � , 	 � - � �)
� � � 	 � � � & � " # 	 � � 	 � � " � � � � " � � 1

2 2 �

(�)

2 � � � I .� � � I . " � � � 	 � � � & �
# 	 � � 	 � � " � � � � " � � � I .

� � � I + " � � � 	 � � � & �
# 	 � � 	 � � " � � � � " � � � I +

2 � � � I +

� �
 	 � � 2 , 	 � � " $ � � � � 	 � " ' " � , 	 � - � �)
� � � 	 � � � & � " # 	 � � 	 � � " � � � � " � � '

2 B � 	 � � � � " � � � 	 � � � & �
# 	 � � 	 � � " � � � � " 2 � �

2 � � 1

2 � � '

Interrupt Structure

Interrupts

Interrupts are an important part of any microcontroller

system. When an external interrupt pin transition or an

internal function such as a Timer/Event Counter over-

flow, an USB interrupt, or transmission or reception of

SPI data occurs, their corresponding interrupt will en-

force a temporary suspension of the main program al-

lowing the microcontroller to direct attention to their

respective needs. Each device contains two external in-

terrupts and several internal interrupts functions. The

external interrupt is controlled by the action of the exter-

nal interrupt pins, while the internal interrupts are con-

trolled by the Timer/Event Counter overflow, a USB

interrupt and SPI data transmission or reception.

Interrupt Registers

Overall interrupt control, which means interrupt enabling

and request flag setting, is controlled by the two inter-

rupt control registers, which are located in the Data

Memory. By controlling the appropriate enable bits in

these registers each individual interrupt can be enabled

or disabled. Also when an interrupt occurs, the corre-

sponding request flag will be set by the microcontroller.

The global enable flag if cleared to zero will disable all

interrupts.

Interrupt Operation

A USB interrupt , a Timer/Event Counter overflow, 8-bits

of data transmission or reception on either of the SPI in-

terfaces or an active edge on external interrupt pin will

all generate an interrupt request by setting their corre-

sponding request flag, if their appropriate interrupt en-

able bit is set. When this happens, the Program

Counter, which stores the address of the next instruction

to be executed, will be transferred onto the stack. The

Program Counter will then be loaded with a new ad-

dress which will be the value of the corresponding inter-

rupt vector. The microcontroller will then fetch its next

instruction from this interrupt vector. The instruction at

this vector will usually be a JMP statement which will

jump to another section of program which is known as

the interrupt service routine. Here is located the code to

control the appropriate interrupt. The interrupt service

routine must be terminated with a RETI statement,

which retrieves the original Program Counter address

from the stack and allows the microcontroller to continue

with normal execution at the point where the interrupt

occurred.

The various interrupt enable bits, together with their as-

sociated request flags, are shown in the accompanying

diagram with their order of priority.

Once an interrupt subroutine is serviced, all the other in-

terrupts will be blocked, as the EMI bit will be cleared au-

tomatically. This will prevent any further interrupt nesting

from occurring. However, if other interrupt requests oc-

cur during this interval, although the interrupt will not be

immediately serviced, the request flag will still be re-

corded. If an interrupt requires immediate servicing

while the program is already in another interrupt service

routine, the EMI bit should be set after entering the rou-

tine, to allow interrupt nesting. If the stack is full, the in-

terrupt request will not be acknowledged, even if the

related interrupt is enabled, until the Stack Pointer is

decremented. If immediate service is desired, the stack

must be prevented from becoming full.

HT82A623R/HT82A6208/HT82A6216

Rev. 1.10 49 October 30, 2009

* � �) � � 	 � � � � � � � �

� � � " � 	 � � � � " � � � 	 � - � � 	 " + " � � � 	 � � � & � " 	 � � � � 	
' D " 	 � � � � 	
1 D " ! � � � � � 	

� � � " � 	 � � � � " � � � 	 � - � � 	 " . " � � � 	 � � � & � " 	 � � � � 	
' D " 	 � � � � 	
1 D " ! � � � � � 	

� �
 	 � � 2 , 	 � � " $ � � � � 	 � " ' " � � � 	 � � � & � " 	 � � � � 	
' D " 	 � � � � 	
1 D " ! � � � � � 	

; � � " �
 & � 	
 	 � � 	 ! E " � 	 � ! " � � " H 1 H

� � � " � 	 � � � � " � � � 	 � - � � 	 " + " ! � � � " � � � � � - 	 � � 	 ! " � � " ! � � � " � 	 � 	 � , 	 ! " � � � 	 � � � & � " � 	 � � 	 � � " - � � �
' D " � � � � , 	
1 D " � � � � � � , 	

� � � " � 	 � � � � " � � � 	 � - � � 	 " . " ! � � � " � � � � � - 	 � � 	 ! " � � " ! � � � " � 	 � 	 � , 	 ! " � � � 	 � � � & � " � 	 � � 	 � � " - � � �
' D " � � � � , 	
1 D " � � � � � � , 	

� �
 	 � � 2 , 	 � � " $ � � � � 	 � " ' " � � � 	 � � � & � " � 	 � � 	 � � " - � � �
' D " � � � � , 	
1 D " � � � � � � , 	

; � � " �
 & � 	
 	 � � 	 ! E " � 	 � ! " � � " H 1 H

� 8 � 1

2 2 � ' 2 � � � I . 2 � � � I +� � � I +� � � I .� � '

INTC1 Register

* � �) � � 	 � � � � � � �

� � � � 	 � " � � � 	 � � � & � " � � � � � � " 	 � � � � 	
' D " � � � � � � " 	 � � � � 	
1 D " � � � � � � " ! � � � � � 	

% � . " � � � 	 � � � & � " 	 � � � � 	
' D " 	 � � � � 	
1 D " ! � � � � � 	

2 B � 	 � � � � " � � � 	 � � � & � " 	 � � � � 	
' D " 	 � � � � 	
1 D " ! � � � � � 	

� �
 	 � � 2 , 	 � � " $ � � � � 	 � " 1 " " � � � 	 � � � & � " 	 � � � � 	
' D " 	 � � � � 	
1 D " ! � � � � � 	

% � . " � � � 	 � � � & � " � 	 � � 	 � � " - � � �
' D " � � � � , 	
1 D " � � � � � � , 	

2 B � 	 � � � � " � � � 	 � � � & � " � 	 � � 	 � � " - � � �
' D " � � � � , 	
1 D " � � � � � � , 	

� �
 	 � � 2 , 	 � � " $ � � � � 	 � " 1 " � � � 	 � � � & � " � 	 � � 	 � � " - � � �
' D " � � � � , 	
1 D " � � � � � � , 	

� � � " � 	 � � "
 � ! 	 " � � 	 ! " � � �

� � � � " � 	 ") � � � � 	 � " � � " H 1 H N " � � 	 �) � � 	 "
 �
 " � 	 � � � � " � � " � � & � 	 ! � � � � � � 	 " � & 	 � � � � � �

� 8 � 1

2 2 � 2 % � 2 � �2 � �� � 1 2 � � 1% � . �

INTC0 Register

HT82A623R/HT82A6208/HT82A6216

Rev. 1.10 50 October 30, 2009

Interrupt Priority

Interrupts, occurring in the interval between the rising

edges of two consecutive T2 pulses, will be serviced on

the latter of the two T2 pulses, if the corresponding inter-

rupts are enabled. In case of simultaneous requests,

the following table shows the priority that is applied.

These can be masked by resetting the EMI bit.

Interrupt Source Priority Vector

USB Interrupt 1 0004H

External Interrupt 2 0008H

Timer/Event Counter 0 Overflow

Interrupt
3 000CH

SPI_A Interrupt 4 0010H

SPI_B Interrupt 5 0014H

Timer/Event Counter 1 Overflow

Interrupt
6 0018H

Suitable masking of the individual interrupts using the

interrupt registers can prevent simultaneous occur-

rences.

External Interrupt

For an external interrupt to occur, the global interrupt en-

able bit, EMI, and external interrupt enable bit, EEI,

must first be set. An actual external interrupt will take

place when the external interrupt request flag, EIF is set,

a situation that will occur when a high to low transition

appears on the interrupt pins. The external interrupt pin

is pin-shared with the I/O pins PA6 can only be config-

ured as an external interrupt pin if the corresponding ex-

ternal interrupt enable bits in the interrupt control

register INTC0 have been set. The pins must also be

setup as inputs by setting the corresponding PAC.6 bits

in the port control register. When the interrupt is en-

abled, the stack is not full and a high to low transition ap-

pears on the external interrupt pin, a subroutine call to

the external interrupt vector at location 08H will take

place. When the interrupt is serviced, the external inter-

rupt request flag, EIF will be automatically reset and the

EMI bit will be automatically cleared to disable other in-

terrupts. Note that any pull-high resistor configuration

options on these pins will remain valid even if the pins

are used as external interrupt inputs.

Timer/Event Counter Interrupt

For a Timer/Event Counter interrupt to occur, the global

interrupt enable bit, EMI, and the corresponding timer

interrupt enable bit, ETI0 or ETI1, must first be set. An

actual Timer/Event Counter interrupt will take place

when the Timer/Event Counter interrupt request flag,

TF0 or TF1, is set, a situation that will occur when the

Timer/Event Counter overflows. When the interrupt is

enabled, the stack is not full and a Timer/Event Counter

overflow occurs, a subroutine call to the timer interrupt

vector at location 0CH or 018H, will take place. When

the interrupt is serviced, the timer interrupt request flag,

TF0 or TF1, will be automatically reset and the EMI bit

will be automatically cleared to disable other interrupts.

SPI Interrupt

For an SPI Interrupt to occur, the global interrupt enable

bit, EMI, and the corresponding SPI interrupt enable bit,

ESII_A or ESII_B, must be first set. An actual SPI Inter-

rupt will take place when one of the two SPI interrupt re-

quest flags, SIF_A or SIF_B, are set, a situation that will

occur when 8-bits of data are transferred or received

from either of the SPI interfaces. When the interrupt is

enabled, the stack is not full and an SPI_A interrupt oc-

curs, a subroutine call to the SPI_A interrupt vector at lo-

cation 10H, will take place. For an SPI_B interrupt, a

subroutine call to the SPI_B interrupt vector at location

14H, will take place. When the interrupt is serviced, the

SPI interrupt request flag, SIF_A or SIF_B, will be auto-

matically reset and the EMI bit will be automatically

cleared to disable other interrupts.

USB Interrupt

A USB interrupts will be triggered by the following USB

events, at which point the the related interrupt request

flag, USBF in the INTC0 register, will be set.

� Accessing the corresponding USB FIFO from the PC

� A USB suspend signal from the PC

� A USB resume signal from the PC

� A USB Reset signal

When the interrupt is enabled, the stack is not full and

the USB interrupt is active, a subroutine call to location

04H will occur. The interrupt request flag, USBF, and the

EMI bit will be cleared to disable other interrupts.

When PC Host accesses the FIFO of the device, the

corresponding request USR bit is set, and a USB inter-

rupt is triggered. Therefore it can be determined which

FIFO has been accessed. When the interrupt has been

served, the corresponding bit should be cleared by the

program. When the device receive a USB Suspend sig-

nal from the Host PC, the suspend line, bit0 of USC, is

set and a USB interrupt is also triggered. Also when de-

vice receive a Resume signal from the Host PC, the re-

sume line, bit3 of USC, is set and a USB interrupt is

triggered.

Programming Considerations

By disabling the interrupt enable bits, a requested inter-

rupt can be prevented from being serviced, however,

once an interrupt request flag is set, it will remain in this

condition in the interrupt control register until the corre-

sponding interrupt is serviced or until the request flag is

cleared by a software instruction.

HT82A623R/HT82A6208/HT82A6216

Rev. 1.10 51 October 30, 2009

It is recommended that programs do not use the
CALL

subroutine
 instruction within the interrupt subroutine.

Interrupts often occur in an unpredictable manner or

need to be serviced immediately in some applications. If

only one stack is left and the interrupt is not well con-

trolled, the original control sequence will be damaged

once a
CALL subroutine
 is executed in the interrupt

subroutine.

All of these interrupts have the capability of waking up

the processor when in the Power Down Mode.

Only the Program Counter is pushed onto the stack. If

the contents of the accumulator or status register are al-

tered by the interrupt service program, which may cor-

rupt the desired control sequence, then the contents

should be saved in advance.

Reset and Initialisation

A reset function is a fundamental part of any

microcontroller ensuring that the device can be set to

some predetermined condition irrespective of outside

parameters. The most important reset condition is after

power is first applied to the microcontroller. In this case,

internal circuitry will ensure that the microcontroller, af-

ter a short delay, will be in a well defined state and ready

to execute the first program instruction. After this

power-on reset, certain important internal registers will

be set to defined states before the program com-

mences. One of these registers is the Program Counter,

which will be reset to zero forcing the microcontroller to

begin program execution from the lowest Program

Memory address.

In addition to the power-on reset, situations may arise

where it is necessary to forcefully apply a reset condition

when the microcontroller is running. One example of this

is where after power has been applied and the

microcontroller is already running, the RES line is force-

fully pulled low. In such a case, known as a normal oper-

ation reset, some of the microcontroller registers remain

unchanged allowing the microcontroller to proceed with

normal operation after the reset line is allowed to return

high. Another type of reset is when the Watchdog Timer

overflows and resets the microcontroller. All types of re-

set operations result in different register conditions be-

ing setup.

Another reset exists in the form of a Low Voltage Reset,

LVR, where a full reset, similar to the RES reset is imple-

mented in situations where the power supply voltage

falls below a certain threshold.

Reset Functions

There are five ways in which a microcontroller reset can

occur, through events occurring both internally and ex-

ternally:

� Power-on Reset

The most fundamental and unavoidable reset is the

one that occurs after power is first applied to the

microcontroller. As well as ensuring that the Program

Memory begins execution from the first memory ad-

dress, a power-on reset also ensures that certain

other registers are preset to known conditions. All the

I/O port and port control registers will power up in a

high condition ensuring that all pins will be first set to

inputs.

Although the microcontroller has an internal RC reset

function, if the VDD power supply rise time is not fast

enough or does not stabilise quickly at power-on, the

internal reset function may be incapable of providing a

proper reset operation. In such cases it is recom-

mended that an external RC network is connected to

the RES pin, whose additional time delay will ensure

that the RES pin remains low for an extended period

to allow the power supply to stabilise. During this time

delay, normal operation of the microcontroller will be

inhibited. After the RES line reaches a certain voltage

value, the reset delay time tRSTD is invoked to provide

an extra delay time after which the microcontroller will

begin normal operation. The abbreviation SST in the

figures stands for System Start-up Timer.

For most applications a resistor connected between

VDD and the RES pin and a capacitor connected be-

tween VSS and the RES pin will provide a suitable ex-

ternal reset circuit. Any wiring connected to the RES

pin should be kept as short as possible to minimise

any stray noise interference.

For applications that operate within an environment

where more noise is present the Enhanced Reset Cir-

cuit shown is recommended.

More information regarding external reset circuits is

located in Application Note HA0075E on the Holtek

website.

2 �

* � �

� � � " � �
 	 � � � �

� � � 	 � � � � " # 	 � 	 �

1 0 9 " * � �

� # � � �

Power-On Reset Timing Chart

2 �

* � �

* � �

1 0 ' � �

' 1 1 � �

Basic Reset Circuit

2 �

1 0 ' � �

' 1 1 � �

* � �

* � �

1 0 1 ' � �

' 1 � �

Enhanced Reset Circuit

HT82A623R/HT82A6208/HT82A6216

Rev. 1.10 52 October 30, 2009

� RES Pin Reset

This type of reset occurs when the microcontroller is

already running and the RES pin is forcefully pulled

low by external hardware such as an external switch.

In this case as in the case of other reset, the Program

Counter will reset to zero and program execution initi-

ated from this point. Note that as the external reset pin

is also pin-shared with PA7, if it is to be used as a reset

pin, the correct reset configuration option must be se-

lected.

� Low Voltage Reset � LVR

The microcontroller contains a low voltage reset cir-

cuit in order to monitor the supply voltage of the de-

vice. The LVR function is selected via a configuration

option. If the supply voltage of the device drops to

within a range of 0.9V~VLVR such as might occur when

changing the battery, the LVR will automatically reset

the device internally. For a valid LVR signal, a low sup-

ply voltage, i.e., a voltage in the range between

0.9V~VLVR must exist for a time greater than that spec-

ified by tLVR in the A.C. characteristics. If the low sup-

ply voltage state does not exceed this value, the LVR

will ignore the low supply voltage and will not perform

a reset function. The actual VLVR value can be se-

lected via configuration options.

� Watchdog Time-out Reset during Normal Operation

The Watchdog time-out Reset during normal opera-

tion is the same as a hardware RES pin reset except

that the Watchdog time-out flag TO will be set to
1
.

� Watchdog Time-out Reset during Power Down

The Watchdog time-out Reset during Power Down is

a little different from other kinds of reset. Most of the

conditions remain unchanged except that the Pro-

gram Counter and the Stack Pointer will be cleared to

0
 and the TO flag will be set to
1
. Refer to the A.C.

Characteristics for tSST details.

Reset Initial Conditions

The different types of reset described affect the reset

flags in different ways. These flags, known as PDF and

TO are located in the status register and are controlled

by various microcontroller operations, such as the

Power Down function or Watchdog Timer. The reset

flags are shown in the table:

TO PDF RESET Conditions

0 0 RES reset during power-on

0 0 RES wake-up during Power Down

0 0 RES or LVR reset during normal operation

1 u WDT time-out reset during normal operation

1 1 WDT time-out reset during Power Down

Note:
u
 stands for unchanged

The following table indicates the way in which the vari-

ous components of the microcontroller are affected after

a power-on reset occurs.

Item Condition After RESET

Program Counter Reset to zero

Interrupts All interrupts will be disabled

WDT
Clear after reset, WDT begins

counting

Timer/Event

Counter
Timer Counter will be turned off

Prescaler
The Timer Counter Prescaler will

be cleared

Input/Output Ports I/O ports will be setup as inputs

Stack Pointer
Stack Pointer will point to the top

of the stack

� � � " � �
 	 � � � �

� � � " � �
 	 � � � �

� � � 	 � � � � " # 	 � 	 �

� # � � �

WDT Time-out Reset during Normal Operation

Timing Chart

� � � " � �
 	 � � � �

� � � " � �
 	 � � � �

� � � �

WDT Time-out Reset during Power Down

Timing Chart
2 �

� � � " � �
 	 � � � �

� � � 	 � � � � " # 	 � 	 �

1 0 9 " * � �

1 0 6 " * � �

� # � � �

RES Reset Timing Chart

(* #

� � � " � �
 	 � � � �

� � � 	 � � � � " # 	 � 	 �

� # � � �

Low Voltage Reset Timing Chart

HT82A623R/HT82A6208/HT82A6216

Rev. 1.10 53 October 30, 2009

The different kinds of resets all affect the internal registers of the microcontroller in different ways. To ensure reliable

continuation of normal program execution after a reset occurs, it is important to know what condition the microcontroller

is in after a particular reset occurs. The following table describes how each type of reset affects the microcontroller in-

ternal registers.

Register
Reset

(Power-on)

WDT Time-out

(Normal

Operation)

RES Reset

(Normal

Operation)

RES Reset

(HALT)

WDT

Time-out

(HALT)*

USB Reset

(Normal)

USB Reset

(HALT)

MP0 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx uuuu uuuu xxxx xxxx xxxx xxxx

MP1 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx uuuu uuuu xxxx xxxx xxxx xxxx

ACC xxxx xxxx uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu

PCL 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000

TBLP xxxx xxxx uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu

TBLH xxxx xxxx uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu

WDTS ---- -111 ---- -111 ---- -111 ---- -111 ---- -111 ---- -111 ---- -uuu

STATUS --00 xxxx --1u uuuu --00 uuuu --00 uuuu --11 uuuu --uu uuuu --01 uuuu

INTC0 0000 0000 0000 0000 0000 0000 0000 0000 uuuu uuuu 0000 0000 0000 0000

TMR1H xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx uuuu uuuu uuuu uuuu uuuu uuuu

TMR1L xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx uuuu uuuu uuuu uuuu uuuu uuuu

TMR1C 00-0 1--- 00-0 1--- 00-0 1--- 00-0 1--- uu-u u--- uu-u u--- uu-u u---

TMR0H xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx uuuu uuuu xxxx xxxx xxxx xxxx

TMR0L xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx uuuu uuuu xxxx xxxx xxxx xxxx

TMR0C 00-0 1--- 00-0 1--- 00-0 1--- 00-0 1--- uu-u u--- uu-u u--- uu-u u---

PA 1111 1111 1111 1111 1111 1111 1111 1111 uuuu uuuu 1111 1111 1111 1111

PAC 1111 1111 1111 1111 1111 1111 1111 1111 uuuu uuuu 1111 1111 1111 1111

PB 1111 1111 1111 1111 1111 1111 1111 1111 uuuu uuuu 1111 1111 1111 1111

PBC 1111 1111 1111 1111 1111 1111 1111 1111 uuuu uuuu 1111 1111 1111 1111

PC 1111 1111 1111 1111 1111 1111 1111 1111 uuuu uuuu 1111 1111 1111 1111

PCC 1111 1111 1111 1111 1111 1111 1111 1111 uuuu uuuu 1111 1111 1111 1111

PD 1111 1111 1111 1111 1111 1111 1111 1111 uuuu uuuu 1111 1111 1111 1111

PDC 1111 1111 1111 1111 1111 1111 1111 1111 uuuu uuuu 1111 1111 1111 1111

USB_STAT --xx 0000 --xx 0000 --xx 0000 --xx 0000 --xx 0000 --xx 0000 --xx 0000

UINT 0000 1111 0000 uuuu 0000 1111 0000 1111 0000 uuuu 0000 1111 0000 1111

INTC1 -000 -000 -000 -000 -000 -000 -000 -000 -uuu -uuu -000 -000 -000 -000

TBHP xxxx xxxx uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu

USC 1000 0000 uuuu xuux 1000 0000 1000 0000 uuuu xuux 1uuu 0100 1uuu 0100

USR ---- 0000 ---- uuuu ---- 0000 ---- 0000 ---- uuuu ---- 0000 ---- 0000

UCC 0000 0000 uuuu uuuu 0000 0000 0000 0000 uuuu uuuu 0uu0 u000 0uu0 u000

AWR 0000 0000 uuuu uuuu 0000 0000 0000 0000 uuuu uuuu 0000 0000 0000 0000

STALL ---- 0000 ---- uuuu ---- 0000 ---- 0000 ---- uuuu ---- 0000 ---- 0000

SIES 00-0 0000 uu-x xuuu 00-0 0000 00-0 0000 uu-x uuuu 00-0 0000 00-0 0000

MISC 0000 0000 xxuu uuuu 0000 0000 0000 0000 xxuu uuuu 0000 0000 0000 0000

UFIEN ---- 0000 ---- uuuu ---- 0000 ---- 0000 ---- uuuu ---- 0000 ---- 0000

FIFO0 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx

HT82A623R/HT82A6208/HT82A6216

Rev. 1.10 54 October 30, 2009

Register
Reset

(Power-on)

WDT Time-out

(Normal

Operation)

RES Reset

(Normal

Operation)

RES Reset

(HALT)

WDT

Time-out

(HALT)*

USB Reset

(Normal)

USB Reset

(HALT)

FIFO1 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx

FIFO2 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx

FIFO3 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx

UFOEN ---- 0000 ---- uuuu ---- 0000 ---- 0000 ---- uuuu ---- 0000 ---- 0000

UFC0 0000 0000 uuuu uuuu 0000 0000 0000 0000 uuuu uuuu 0000 0000 0000 0000

SBCRA 0110 0000 0110 0000 0110 0000 0110 0000 uuuu uuuu uuuu uuuu uuuu uuuu

SBDRA uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu

ADRL xxxx ---- xxxx ---- xxxx ---- xxxx ---- uuuu ---- xxxx ---- xxxx ----

ADRH xxxx xxxx xxxx xxxx xxxx xxxx uuuu uuuu uuuu uuuu xxxx xxxx xxxx xxxx

ADCR 0100 0000 0100 0000 0100 0000 0100 0000 uuuu uuuu 0100 0000 0100 0000

ACSR 0--- --00 0--- --00 0--- --00 ---- --00 u--- --uu 1--- --00 ---- --00

SBCRB 0110 0000 0110 0000 0110 0000 0110 0000 uuuu uuuu uuuu uuuu uuuu uuuu

SBDRB uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu

MODE xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx

SPI_REG 0000 0000 0000 0000 0000 0000 0000 0000 uuuu uuuu 0000 0000 0000 0000

PWMBR0 0000 0000 0000 0000 0000 0000 0000 0000 uuuu uuuu 0000 0000 0000 0000

PWM0DR 0000 0000 0000 0000 0000 0000 0000 0000 uuuu uuuu 0000 0000 0000 0000

PWMBR1 0000 0000 0000 0000 0000 0000 0000 0000 uuuu uuuu 0000 0000 0000 0000

PWM1DR 0000 0000 0000 0000 0000 0000 0000 0000 uuuu uuuu 0000 0000 0000 0000

PWMCTL 0000 0000 0000 0000 0000 0000 0000 0000 uuuu uuuu 0000 0000 0000 0000

Note:
*
 means
warm reset
,
-
 not implemented

u
 means
unchanged
,
x
 means
unknown

HT82A623R/HT82A6208/HT82A6216

Rev. 1.10 55 October 30, 2009

Oscillator

These devices provide two types of system oscillator cir-

cuits, an 6MHz or 12MHz crystal oscillator and a

32768Hz crystal oscillator, the choice of which is deter-

mined by software.

To use the 6MHz or 12MHz oscillator, a suitable crystal

is connected between OSC1 and OSC2. It is a default

option at IC power-on. The other oscillator circuit is de-

signed for the real time clock. For this device, only a

32768Hz crystal oscillator can be used. The crystal

should be connected between OSC3 and OSC4. This

oscil lator is designed for system clocks. The

Power-down mode stops the system oscillator to con-

serve power.

A crystal across OSC1 and OSC2 is needed to provide

the feedback and phase shift required for the oscillator.

No other external components are required. In stead of

a crystal, a resonator can also be connected between

OSC1 and OSC2 to get a frequency reference, but two

external capacitors in OSC1 and OSC2 may be re-

quired.

The devices can operate only with 6MHz or 12MHz sys-

tem clocks. In order to ensure that the USB SIE func-

tions properly, users should correctly configure the

SCLKSEL bit of the SCC Register. The default system

clock is 12MHz.

RTC Oscillator

When the device enter a Power-down condition, the in-

ternal clocks are normally switched off to stop

microcontroller activity and to conserve power. How-

ever, in many microcontroller applications it may be nec-

essary to keep some internal functions operational,

such as timers, even when the microcontroller is in the

Power-down mode. To provide this feature, this device

incorporates an RTC oscillator, which will remain active

at all times, even when the microcontroller is in the

power down condition. This clock source has a fixed fre-

quency of 32768Hz and requires a 32768Hz crystal to

be connected between pins OSC3 and OSC4.

The RTC oscillator circuit enable/disable is controlled by

the F32K_dis bit in the MODE register. An additional bit

F32K_CTRL enables the RTC oscillator to be powered

up quickly.

Watchdog Timer Oscillator

The WDT oscillator is a fully self-contained free running

on-chip RC oscillator with a typical period of 65�s at 5V

requiring no external components. When the device en-

ters the Power Down Mode, the system clock will stop

running but the WDT oscillator continues to free-run and

to keep the watchdog active. However, to preserve

power in certain applications the WDT oscillator can be

disabled via a configuration option.

Operation Mode

The device supports two system clocks: a high fre-

quency system clock (6MHz, 12MHz) or a low system

clock, 32768Hz. There is a single register that deter-

mines how to define which system mode is in operation.

The system clock is changed as shown in the following

procedure.

From high frequency to low frequency:

� Set MODS to
1

� Wait a delay time - 400ms if the 32K oscillator is off, no

delay if the if the 32K oscillator is on

� The MCU will switch to the low frequency 32768Hz

oscillator and turn-off the high frequency system clock

From low frequency to high frequency:

� Set Hfreq_en to
1
 to turn-on the high frequency os-

cillator

� Wait a delay time to make sure that the high frequency

oscillator is stable - 5ms

� Set MODS to
0

� The MCU will switch to the high frequency oscillator

but the 32768Hz oscillator will continue to oscillate.

� � $ /

� � $ '

Crystal Oscillator

� � $ 6

� � $ 4

Crystal/Ceramic Oscillator

! " + � � # � � ,
� # � � $ � � " %

� � � 2 M '
= - � 	 � M 1

� � � � � � # � � ,
� # � � $ � � " %

� � � 2 M 1
= - � 	 � M '

� 	 � " = - � 	 � " � � " H ' H
� 	 � �
 " - � � " � � � � � " � � " � � � � � � � � 	
$ � 	 � � " � � � � " � � " H 1 H

� 	 � " � � � � " � � " H ' H
� 	 � �
 " � � " 4 / : " � � � � � � � � � � " � - -
= - � 	 � " � � � � " � � 	 � � 	 ! " � � " H 1 H

Mode Switching

HT82A623R/HT82A6208/HT82A6216

Rev. 1.10 56 October 30, 2009

Bit No. Label Function

0 MODS

High/Low frequency system clock select bit

0: High frequency system clock - 6MHz or 12MHz select - default

1: 32768Hz system clock select

1 Hfreq_en
1: Enable High frequency system clock, hardware will automatically clear this bit when

MODS switches from low to high

2 F32K_dis
1: Disable 32768Hz oscillator - default enable

0: Enable 32768Hz oscillator

3 2.2LVD
1: VDD < 2.2V

0: VDD > 2.2V

4

5

T1PSS0

T1PSS1

Timer/Event Counter 1 clock source select

00: RTC (default)

01: fSYS/4

10: WDT OSC

11: no source

6 T1S

Timer/Event Counter 1 clock source select

0: fSYS/4 (default)

1: Timer1 Prescaler output

7 F32K_ctrl

RTC oscillator quick start function

1: Quick start enabled

0: Quick start disabled - lower operating current

This bit will set by the hardware during power on, once the 32K oscillator is stable the bit can

be cleared by the application program to reduce power consumption.

MODE (40H) Register

Power Down Mode and Wake-up

Power Down Mode

All of the Holtek microcontrollers have the ability to enter

a Power Down Mode. When the device enters this mode,

the normal operating current, will be reduced to an ex-

tremely low standby current level. This occurs because

when the device enters the Power Down Mode, the sys-

tem oscillator is stopped which reduces the power con-

sumption to extremely low levels, however, as the device

maintains its present internal condition, it can be woken

up at a later stage and continue running, without requiring

a full reset. This feature is extremely important in applica-

tion areas where the microcontroller must have its power

supply constantly maintained to keep the device in a

known condition but where the power supply capacity is

limited such as in battery applications.

Entering the Power Down Mode

There is only one way for the device to enter the Power

Down Mode and that is to execute the
HALT
 instruc-

tion in the application program. When this instruction is

executed, the following will occur:

� The system oscillator will stop running and the appli-

cation program will stop at the
HALT
 instruction.

� If the RTC oscillator configuration option is enabled

then the RTC clock will keep running.

� The Data Memory contents and registers will maintain

their present condition.

� The WDT will be cleared and resume counting if the

WDT clock source is selected to come from the WDT

or RTC oscillator. The WDT will stop if its clock source

originates from the system clock.

� The I/O ports will maintain their present condition.

� In the status register, the Power Down flag, PDF, will

be set and the Watchdog time-out flag, TO, will be

cleared.

Standby Current Considerations

As the main reason for entering the Power Down Mode

is to keep the current consumption of the microcontroller

to as low a value as possible, perhaps only in the order

of several micro-amps, there are other considerations

which must also be taken into account by the circuit de-

signer if the power consumption is to be minimised.

Special attention must be made to the I/O pins on the

device. All high-impedance input pins must be con-

nected to either a fixed high or low level as any floating

input pins could create internal oscillations and result in

increased current consumption. Care must also be

taken with the loads, which are connected to I/O pins,

which are setup as outputs. These should be placed in a

condition in which minimum current is drawn or con-

nected only to external circuits that do not draw current,

such as other CMOS inputs.

HT82A623R/HT82A6208/HT82A6216

Rev. 1.10 57 October 30, 2009

If the configuration options have enabled the Watchdog

Timer internal oscillator then this will continue to run

when in the Power Down Mode and will thus consume

some power. For power sensitive applications it may be

therefore preferable to use the system clock source for

the Watchdog Timer. If any I/O pins are configured as

A/D analog inputs using the channel configuration bits in

the ADCR register, then the A/D converter will be turned

on and a certain amount of power will be consumed. It

may be therefore desirable before entering te Power

Down Mode to ensure that the A/D converter is powered

down by ensuring that any A/D input pins are setup as

normal logic inputs with pull-high resistors.

Wake-up

After the system enters the Power Down Mode, it can be

woken up from one of various sources listed as follows:

� An external reset

� An external falling edge on any of the I/O pins

� A system interrupt

� A WDT overflow

If the system is woken up by an external reset, the de-

vice will experience a full system reset, however, if the

device is woken up by a WDT overflow, a Watchdog

Timer reset will be initiated. Although both of these

wake-up methods will initiate a reset operation, the ac-

tual source of the wake-up can be determined by exam-

ining the TO and PDF flags. The PDF flag is cleared by a

system power-up or executing the clear Watchdog

Timer instructions and is set when executing the
HALT

instruction. The TO flag is set if a WDT time-out occurs,

and causes a wake-up that only resets the Program

Counter and Stack Pointer, the other flags remain in

their original status.

Each pins on Port A or any nibble on the other ports can

be setup via an individual configuration option to permit

a negative transition on the pin to wake-up the system.

When a Port pins wake-up occurs, the program will re-

sume execution at the instruction following the
HALT

instruction.

If the system is woken up by an interrupt, then two possi-

ble situations may occur. The first is where the related

interrupt is disabled or the interrupt is enabled but the

stack is full, in which case the program will resume exe-

cution at the instruction following the
HALT
 instruction.

In this situation, the interrupt which woke-up the device

will not be immediately serviced, but will rather be ser-

viced later when the related interrupt is finally enabled or

when a stack level becomes free. The other situation is

where the related interrupt is enabled and the stack is

not full, in which case the regular interrupt response

takes place. If an interrupt request flag is set to
1
 be-

fore entering the Power Down Mode, the wake-up func-

tion of the related interrupt will be disabled.

No matter what the source of the wake-up event is, once

a wake-up situation occurs, a time period equal to 1024

system clock periods will be required before normal sys-

tem operation resumes. However, if the wake-up has

originated due to an interrupt, the actual interrupt sub-

routine execution will be delayed by an additional one or

more cycles. If the wake-up results in the execution of

the next instruction following the
HALT
 instruction, this

will be executed immediately after the 1024 system

clock period delay has ended.

Low Voltage Detector � LVD

This Low Voltage Detect internal function provides a

means for the user to monitor when the power supply

voltage falls below a certain fixed level as specified in

the DC characteristics. The LVD is enabled using a con-

figuration option. Bit 3 of the MODE register is used to

monitor the overall function of the LVD. Under normal

operation, and when the power supply voltage is above

the specified VLVD value in the DC characteristic sec-

tion, the 2.2LVD bit will remain at a zero value. If the

power supply voltage should fall below this VLVD value

then the 2.2LVD bit will change to a high value indicating

a low voltage condition. Note that the LVDO bit is a

read-only bit. By polling the 2.2LVD bit in the MODE reg-

ister, the application program can therefore determine

the presence of a low voltage condition.

It is important not to confuse the LVD with the LVR func-

tion. In the LVR function an automatic reset will be gen-

erated by the microcontroller, whereas in the LVD

function only the 2.2LVD bit will be affected with no influ-

ence on other microcontroller functions.

Watchdog Timer

The Watchdog Timer is provided to prevent program

malfunctions or sequences from jumping to unknown lo-

cations, due to certain uncontrollable external events

such as electrical noise. It operates by providing a de-

vice reset when the WDT counter overflows. The WDT

clock is supplied by one of two sources selected by con-

figuration option: its own self-contained dedicated inter-

nal WDT oscillator, or the instruction clock which is the

system clock divided by 4. Note that if the WDT configu-

ration option has been disabled, then any instruction re-

lating to its operation will result in no operation.

The internal WDT oscillator has an approximate period

of 32�s at a supply voltage of 5V. If selected, it is first di-

vided by 256 via an 8-stage counter to give a nominal

period of 8ms. Note that this period can vary with VDD,

temperature and process variations. For longer WDT

time-out periods the WDT prescaler can be utilized. By

writing the required value to bits 0, 1 and 2 of the WDTS

register, known as WS0, WS1 and WS2, longer time-out

periods can be achieved. With WS0, WS1 and WS2 all

HT82A623R/HT82A6208/HT82A6216

Rev. 1.10 58 October 30, 2009

equal to
1
, the division ratio is 1:128 which gives a

maximum time-out period of about 1.0s.

A configuration option can select the instruction clock,

which is the system clock divided by 4, as the WDT clock

source instead of the internal WDT oscillator. If the in-

struction clock is used as the clock source, it must be

noted that when the system enters the Power Down

Mode, as the system clock is stopped, then the WDT

clock source will also be stopped. Therefore the WDT

will lose its protecting purposes. In such cases the sys-

tem cannot be restarted by the WDT and can only be re-

started using external signals. For systems that operate

in noisy environments, using the internal WDT oscillator

is therefore the recommended choice.

Under normal program operation, a WDT time-out will

initialise a device reset and set the status bit TO. How-

ever, if the system is in the Power Down Mode, when a

WDT time-out occurs, only the Program Counter and

Stack Pointer will be reset. Three methods can be

adopted to clear the contents of the WDT and the WDT

prescaler. The first is an external hardware reset, which

means a low level on the RES pin, the second is using

the watchdog software instructions and the third is via a

HALT
 instruction.

There are two methods of using software instructions to

clear the Watchdog Timer, one of which must be chosen

by configuration option. The first option is to use the sin-

gle
CLR WDT
 instruction while the second is to use

the two commands
CLR WDT1
 and
CLR WDT2
. For

the first option, a simple execution of
CLR WDT
 will

clear the WDT while for the second option, both
CLR

WDT1
 and
CLR WDT2
 must both be executed to

successfully clear the WDT. Note that for this second

option, if
CLR WDT1
 is used to clear the WDT, suc-

cessive executions of this instruction will have no effect,

only the execution of a
CLR WDT2
 instruction will

clear the WDT. Similarly, after the
CLR WDT2
 instruc-

tion has been executed, only a successive
CLR WDT1

instruction can clear the Watchdog Timer.

Pulse Width Modulator

The device is provided with two Pulse Width Modulator,

PWM, outputs. The internal PWM function within the de-

vice is useful for applications which require functions

such as motor control, heating control, illumination con-

trol etc. By providing a signal of fixed frequency but of

varying duty cycle on the PWM output pins, a square

wave AC waveform can be generated with varying

equivalent DC RMS values. As both the period and duty

cycle of the PWM waveform can be controlled the

choice of generated waveform is extremely flexible.

PWM Registers

There are a total of five registers to control the PWM

function. Each PWM output has a pair of registers, one

to control the waveform period, and another to control

the duty cycle. The period control registers are known

as PWMBR0 and PWMBR1 while the duty cycle regis-

ters have the name PWM0DR and PWM1DR. An addi-

tion register, the PWMCTL register, is the control

register for both outputs and contains the output en-

able/disable bits and also select the PWM clock source

to be either fSYS or fSYS/4.

� � / - . � � � 	 � � � � � � �

� 8 � 1

� � � " & � 	 � � � � 	 � " � � � 	 " � 	 � 	 � �

� � /
1
1
1
1
'
'
'
'

� � '
1
1
'
'
1
1
'
'

� � 1
1
'
1
'
1
'
1
'

� � � " # � � 	
" " " " " " ' D '
" " " " " " ' D /
" " " " " " ' D 6
" " " " " " ' D �
" " " " " " ' D ' 5
" " " " " " ' D 4 /
" " " " " " ' D 5 6
" " " " " " ' D ' / �

; � � " � � 	 !

� � ' � � 1

Watchdog Timer Register

� � � � � " $ � � � � 	 �

" " " " " @ � / 7 5 A 8 � � � � " � � 	 � � � � 	 �

� � � � � ' " � % 3

� � � " � �
 	 � � � �

� � 1 L � � /
� � � " $ � � � � " � � � � � 	

$ � 	 � � " � � � " �
 & 	

$ � � - � � � � � � � � � " � & � � � �

$ (# " � � � ' " � � � �

$ (# " � � � / " � � � �

' " � � " / " � � � � � � � � � � � �
$ (# "

$ (# "
- � C � � 6

� � � " � � � � � � � � � �

� � � " $ � � � � " � � � � � 	

$ � � - � � � � � � � � � " � & � � � �

Watchdog Timer

HT82A623R/HT82A6208/HT82A6216

Rev. 1.10 59 October 30, 2009

PWM Operation

The clock source for the PWM output is selected to be

either fSYS or fSYS/4 using bits in the PWMCTL register.

The period of the PWM waveform for each PWM output

is setup by programming the required value into the

PWMBR0 or PWMBR1 register using the following for-

mula:

PWM waveform period = 256��1/fSYS)�(PWMBRn+1),

or 256 � (4/fSYS� � (PWMBRn+1) depending upon which

clock source is selected.

For example if the system frequency is 6MHz, if fSYS/4 is

selected as the PWM source clock and a decimal value

of 17 is in the PWMBRn register, then the PWM wave-

form will have a period of {256�(4/(6�10�6)�18}= 3072�s

which is equivalent to a frequency of 0.325kHz.

The duty cycle for each PWM output can be by config-

ured using the PWM0DR and PWM1DR registers. The

value in these registers represents the ratio of the high

to low pulse in each waveform period. Therefore the ra-

tio of the high pulse to the low pulse, which is in fact just

the duty cycle, is given by (PWMnDR+1)/256.

The PWM output can now be controlled using the en-

able/disable bits in the CTRL register. As the PWM out-

puts are pin shared with normal I/O pins they must first

be setup as outputs for correct operation. When the

PWM output is disabled using the enable/disable bit in

the CTRL register it can still be used as a normal I/O pin.

Analog to Digital Converter

The need to interface to real world analog signals is a

common requirement for many electronic systems.

However, to properly process these signals by a

microcontroller, they must first be converted into digital

signals by A/D converters. By integrating the A/D con-

version electronic circuitry into the microcontroller, the

need for external components is reduced significantly

with the corresponding follow-on benefits of lower costs

and reduced component space requirements.

A/D Overview

The device contains a multi-channel channel analog to

digital converter which can directly interface to external

analog signals, such as that from sensors or other con-

trol signals and convert these signals directly into an

12-bit digital value. The number of available channels

depends upon which package type is chosen.

Package Channels Resolution Input Pins

28-pin 7 12-bit
PB4~PB7

PC5~PC7

32-pin 8 12-bit PB0~PB7

44-pin 16 12-bit
PB0~PB7

PC0~PC7

The A/D block diagram shows the overall internal struc-

ture of the A/D converter, together with its associated

registers.

A/D Converter Data Registers � ADRL, ADRH

The devices, which contain a single12-bit A/D converter,

require two data registers, known as ADRL and ADRH .

After the conversion process takes place, these regis-

ters can be directly read by the microcontroller to obtain

the digitised conversion value.

In the following tables, D0~D7 are the A/D conversion

data result bits.

Register
Bit

7

Bit

6

Bit

5

Bit

4

Bit

3

Bit

2

Bit

1

Bit

0

ADRL D3 D2 D1 D0 � � � �

ADRH D11 D10 D9 D8 D7 D6 D5 D4

Note: D11~D0 is the A/D conversion result data bit

MSB~LSB.

A/D Data Register

� - () � ! � 	 � � � � � � �

� � � 1 " � � � � � " � � � � � 	
' D " - � C � � 6 " @ ! 	 - � � � � A
1 D " - � C �

� � � ' " � � � � � " � � � � � 	
' D " - � C � � 6 " @ ! 	 - � � � � A
1 D " - � C �

� � � " 	 � � � � 	 � ! � � � � � 	
' D " 	 � � � � 	
1 D " ! � � � � � 	 " @ ! 	 - � � � � A

� 	 � � � � � 	 ! " 	 � �) 	 � 	
' D " % � . " � � 2 " ! � � � � � 	 " @ ! 	 - � � � � A
1 D " % � . " � � 2 " 	 � � � � 	

; � � " �
 & � 	
 	 � � 	 ! E " � 	 � ! " � � " H 1 H

� 8 � 1

� � � 1 I �� � � ' I �� � � 1 I 	 �� � � ' I 	 �% � . ! � �

Pulse Width Modulator Control Register

� � � " = � � " � � � � 	

� � � " $
 � � 	 " � 	 � � � !

HT82A623R/HT82A6208/HT82A6216

Rev. 1.10 60 October 30, 2009

A/D Converter Control Register � ADCR

To control the function and operation of the A/D con-

verter, control registers known as ADCR and ADSR are

provided. These 8-bit registers define functions such as

the selection of which analog channel is connected to

the internal A/D converter, which pins are used as ana-

log inputs and which are used as normal I/Os as well as

controlling the start function and monitoring the A/D con-

verter end of conversion status.

One section of this register contains the bits

ACS3~ACS0 which define the channel number. As each

of the devices contains only one actual analog to digital

converter circuit, each of the individual analog inputs

must be routed to the converter. It is the function of the

ACS3~ACS0 bits in the ADCR register to determine

which analog channel is actually connected to the inter-

nal A/D converter.

The START bit in the ADCR register is used to start and

reset the A/D converter. When the microcontroller sets

this bit from low to high and then low again, an analog to

digital conversion cycle will be initiated. When the

START bit is brought from low to high but not low again,

the EOCB bit in the ADCR register will be set to a
1

and the analog to digital converter will be reset. It is the

START bit that is used to control the overall on/off oper-

ation of the internal analog to digital converter.

The EOCB bit in the ADCR register is used to indicate

when the analog to digital conversion process is com-

plete. This bit will be automatically set to
0
 by the

microcontroller after a conversion cycle has ended. In

addition, the corresponding A/D interrupt request flag

will be set in the interrupt control register, and if the inter-

rupts are enabled, an appropriate internal interrupt sig-

nal will be generated. This A/D internal interrupt signal

will direct the program flow to the associated A/D inter-

nal interrupt address for processing. If the A/D internal

interrupt is disabled, the microcontroller can be used to

poll the EOCB bit in the ADCR register to check whether

it has been cleared as an alternative method of detect-

ing the end of an A/D conversion cycle.

+ � $ " � � � � � 	
- � C � � 4 E " - � C � � 5 E
- � C � � � E " - � C � � ' 5 "

� ; + $ � # " # 	 � � � � 	 �

+ � $

* # 2 �

+ � � " � 	 - 	 � 	 � � 	 " , � � � � � 	

+ � #
+ � � " � � � �
# 	 � � � � 	 � �

� $ # 1 L � $ # 4 + � $ � 1 L + � $ � 4 � � + # � 2 � $.
+ � $ #
# 	 � � � � 	 �

� � � " $ � � - � � � � � � � � �
. � � �

$ � � � 	 � " � 	 � 	 � �
. � � �

� � � � � " . � �

$ � � � � " � � , � ! 	
� � � �

2 � ! " � -
$ � � , 	 � � � � � " . � �

� $ 1 � + ; � L
� $ 8 � + ; ' 7

� . 1 � + ; 1 L
� . 8 � + ; 8

A/D Converter Structure

� .) 	 � 	 � � � � � � �

� 	 � 	 � � " + � � " � � � � 	 �

� 8 � 1

� � + # � + $ � / + $ � ' + $ � 1

+ $ � '
1
1
'
'
D
D
'

+ $ � /
1
1
1
1
D
D
'

+ $ � 1
1
'
1
'
D
D
'

D " + ; 1
D " + ; '
D " + ; /
D " + ; 4
" " " " D
" " " " D
D " + ; ' 7 "

2 � ! " � - " + � � " � � � , 	 � � � � � " - � � �
' D " � � � " 	 � ! " � - " + � � " � � � , 	 � � � � � " � " + � � " � � � , 	 � � � � � ") � � � � � � " � � " � � " & � � � � 	 � �
1 D " 	 � ! " � - " + � � " � � � , 	 � � � � � " � " + � � " � � � , 	 � � � � � " 	 � ! 	 !

� � � � � " � 	 " + � � " � � � , 	 � � � � �

1 " � � ' " � � 1 " D " � � � � �

1 " � " ' " D " # 	 � 	 � " + � � " � � � , 	 � � 	 � " � � ! " � 	 � " 2 � $. " � � " H ' H

2 � $. + $ � 4

+ $ � 4
1
1
1
1
D
D
'

; � � " �
 & � 	
 	 � � 	 ! E " � 	 � ! " � � " H 1 H

A/D Converter Control Register

HT82A623R/HT82A6208/HT82A6216

Rev. 1.10 61 October 30, 2009

A/D Converter Clock Source Register � ACSR

The clock source for the A/D converter, which originates

from the system clock fSYS, is first divided by a division

ratio, the value of which is determined by the ADCS1

and ADCS0 bits in the ACSR register.

The ACSR control register also contains the

PCR3~PCR0 bits which determine which pins on Port B

and Port C are used as analog inputs for the A/D con-

verter and which pins are to be used as normal I/O pins.

If the 4-bit address on PCR3~PCR0 has a value of

1111
 or higher, then all 16 pins, namely AN0~ AN15 will

all be set as analog inputs. Note that if the PCR3~PCR0

bits are all set to zero, then all the Port B and Port C pins

will be setup as normal I/Os and the internal A/D con-

verter circuitry will be powered off to reduce the power

consumption.

Although the A/D clock source is determined by the sys-

tem clock fSYS, and by bits ADCS1 and ADCS0, there are

some limitations on the maximum A/D clock source speed

that can be selected. As the minimum value of permissible

A/D clock period, tAD, is 0.5�s, care must be taken for sys-

tem clock speeds in excess of 4MHz. For system clock

speeds in excess of 4MHz, the ADCS1 and ADCS0 bits

should not be set to
00
. Doing so will give A/D clock peri-

ods that are less than the minimum A/D clock period which

may result in inaccurate A/D conversion values. Refer to

the following table for examples, where values marked

with an asterisk * show where, depending upon the de-

vice, special care must be taken, as the values may be

less than the specified minimum A/D Clock Period.

A/D Input Pins

All of the A/D analog input pins are pin-shared with the

I/O pins on Port B and Port C. Bits PCR3~PCR0 in the

ACSR register, not configuration options, determine

whether the input pins are setup as normal Port B and

Port C input/output pins or whether they are setup as an-

alog inputs. In this way, pins can be changed under pro-

gram control to change their function from normal I/O

operation to analog inputs and vice versa. Pull-high resis-

tors, which are setup through configuration options, apply

to the input pins only when they are used as normal I/O

pins, if setup as A/D inputs the pull-high resistors will be

automatically disconnected. Note that it is not necessary

to first setup the A/D pin as an input in the PBC or PCC

port control register to enable the A/D input as when the

PCR3~PCR0 bits enable an A/D input, the status of the

port control register will be overridden.

Initialising the A/D Converter

The internal A/D converter must be initialised in a spe-

cial way. Each time the Port B and Port C A/D channel

selection bits are modified by the program, the A/D con-

verter must be re-initialised. If the A/D converter is not

initialised after the channel selection bits are changed,

the EOCB flag may have an undefined value, which may

produce a false end of conversion signal. To initialise the

A/D converter after the channel selection bits have

changed, then, within a time frame of one to ten instruc-

tion cycles, the START bit in the ADCR register must

first be set high and then immediately cleared to zero.

This will ensure that the EOCB flag is correctly set to a

high condition.

�) � 	 � 	 � � � � � � �

� 	 � 	 � � " + � � " � � � , 	 � � 	 � " � � � � � " � � � � � 	

� 8 � 1

� 2 � � + � $ � ' + � $ � 1

+ � $ � '
1
1
'
'

+ � $ � 1
1
'
1
'

D " �
 � � 	
 " � � � � � � 4
D " �
 � � 	
 " � � � � � � 5
D " �
 � � 	
 " � � � � � � �
D " �
 � � 	
 " � � � � � � ' 5

� . " � � ! " � $ " + � � " � � � � 	 � " � � � - � � � � � � � � �

� � � " � 	 � � "
 � ! 	 " � � 	 " � � �

� $ # 4 � $ # / � $ # ' � $ # 1

� $ # 4
1
1
1
1
1
1
1
1
'
'
'
'
'
'
'
'

� $ # /
1
1
1
1
'
'
'
'
1
1
1
1
'
'
'
'

D " � . " � � ! " � $ " + � � " � � � � 	 � " � " � � � " � - -
D " � . 1 " � � " + ; 1
D " � . 1 L � . ' " � � " + ; 1 L + ; '
D " � . 1 L � . / " � � " + ; 1 L + ; /
D " � . 1 L � . 4 " � � " + ; 1 L + ; 4
D " � . 1 L � . 6 " � � " + ; 1 L + ; 6
D " � . 1 L � . 7 " � � " + ; 1 L + ; 7
D " � . 1 L � . 5 " � � " + ; 1 L + ; 5
D " � . 1 L � . 8 " � � " + ; 1 L + ; 8
D " � . 1 L � . 8 E " � $ 1 " � � " + ; 1 L + ; �
D " � . 1 L � . 8 E " � $ 1 L � $ ' " � � " + ; 1 L + ; 9
D " � . 1 L � . 8 E " � $ 1 L � $ / " � � " + ; 1 L + ; ' 1
D " � . 1 L � . 8 E " � $ 1 L � $ 4 " � � " + ; 1 L + ; ' '
D " � . 1 L � . 8 E " � $ 1 L � $ 6 " � � " + ; 1 L + ; ' /
D " � . 1 L � . 8 E " � $ 1 L � $ 7 " � � " + ; 1 L + ; ' 4
D " � . 1 L � . 8 E " � $ 1 L � $ 8 " � � " + ; 1 L + ; ' 7

� $ # '
1
1
'
'
1
1
'
'
1
1
'
'
1
1
'
'

� $ # 1
1
'
1
'
1
'
1
'
1
'
1
'
1
'
1
'

1 D " ! � � � � � 	 " @ ! 	 - � � � � A
' D " 	 � � � � 	

+ � � ;

A/D Converter Clock Source Register

HT82A623R/HT82A6208/HT82A6216

Rev. 1.10 62 October 30, 2009

Summary of A/D Conversion Steps

The following summarises the individual steps that

should be executed in order to implement an A/D con-

version process.

� Step 1

Select the required A/D conversion clock by correctly

programming bits ADCS1 and ADCS0 in the ACSR

register.

� Step 2

Select which channel is to be connected to the internal

A/D converter by correctly programming the ACS3~

ACS0 bits which are also contained in the ADCR register.

� Step 3

Select which pins on Port B and Port C are to be used

as A/D inputs and configure them as A/D input pins by

correctly programming the PCR3~PCR0 bits in the

ACSR register.

� Step 4

If the interrupts are to be used, the interrupt control

registers must be correctly configured to ensure the

A/D converter interrupt function is active. The master

interrupt control bit, EMI, in the INTC interrupt control

register must be set to
1
 and the A/D converter inter-

rupt bit, EADI, in the INTC register must also be set to

1
.

� Step 5

The analog to digital conversion process can now be

initialised by setting the START bit in the ADCR regis-

ter from
0
 to
1
 and then to
0
 again. Note that this

bit should have been originally set to
0
.

� Step 6

To check when the analog to digital conversion pro-

cess is complete, the EOCB bit in the ADCR register

can be polled. The conversion process is complete

when this bit goes low. When this occurs the A/D data

registers ADR can be read to obtain the conversion

value. As an alternative method if the interrupts are

enabled and the stack is not full, the program can wait

for an A/D interrupt to occur.

Note: When checking for the end of the conversion

process, if the method of polling the EOCB bit in

the ADCR register is used, the interrupt enable

step above can be omitted.

The A/D conversion timing diagram shows graphically

the various stages involved in an analog to digital con-

version process and its associated timing.

The setting up and operation of the A/D converter func-

tion is fully under the control of the application program

as there are no configuration options associated with

the A/D converter. After an A/D conversion process has

been initiated by the application program, the

microcontroller internal hardware will begin to carry out

the conversion, during which time the program can con-

tinue with other functions. The time taken for the A/D

conversion is 76tAD where tAD is equal to the A/D clock

period.

Programming Considerations

When programming, special attention must be given to

the A/D channel selection bits in the ADSR register. If

these bits are all cleared to zero no external pins will be

selected for use as A/D input pins allowing the pins to be

used as normal I/O pins. When this happens the power

supplied to the internal A/D circuitry will be reduced re-

sulting in a reduction of supply current. This ability to re-

duce power by turning off the internal A/D function by

clearing the A/D channel selection bits may be an impor-

tant consideration in battery powered applications.

Another important programming consideration is that

when the A/D channel selection bits change value, the

A/D converter must be re-initialised. This is achieved by

pulsing the START bit in the ADCR register immediately

after the channel selection bits have changed state. The

exception to this is where the channel selection bits are

all cleared, in which case the A/D converter is not re-

quired to be re-initialised.

1 1 1 .

1 1 1 .

1 ' ' .

1 ' 1 .

� � + # �

2 � $.

� $ # 4 L
� $ # 1

+ $ � 4 L
+ $ � 1

� �) 	 � � � �
# 	 � 	 �

2 � ! " � - " + � �
� � � , 	 � � � � �' D " � 	 - � � 	 " � . E " � $ " � � � - � � � � � � � � �

/ D " � 	 � 	 � � " � � � � � � " � � � � 	 �

� � � � � " � - " + � �
� � � , 	 � � � � �

# 	 � 	 � " + � �
� � � , 	 � � 	 �

1 1 1 .

� � � � � " � - " + � �
� � � , 	 � � � � �

# 	 � 	 � " + � �
� � � , 	 � � 	 �

1 1 1 .

' 0 " � � � � " . " � � ! " � � � � " $ " � 	 � � & " � � " � � � �
/ 0 " + � � " � � � , 	 � � 	 � " � � " & �) 	 � 	 ! " � - -
" " " " � � " � 	 ! � � 	 " & �) 	 � " � � � � �
 & � � � �

' 1 1 .

1 1 ' .

� � � � � " � - " + � �
� � � , 	 � � � � �

# 	 � 	 � " + � �
� � � , 	 � � 	 �

� � � O � " � � � 	

2 � ! " � - " + � �
� � � , 	 � � � � �

2 � ! " � - " + � �
� � � , 	 � � � � �

� � + # � " � � � " � 	 � " � � ") � � � � " � � 	 " � � " � 	 � " � � � � � � � � � � � " �
 � � 	 � " � - � 	 � " � 	 " � $ # 1 L � $ # / " � � � � " � � � � 	 " � � � � 	

+ � � " � � � � � "
 � � � " � 	 " - � C � � 4 E " - � C � � 5 E " - � C � � � E " - � C � � ' 5; � � 	 D "

+ � � " � �
 & � � � � " � �
 	 + � � " � �
 & � � � � " � �
 	+ � � " � �
 & � � � � " � �
 	

" " 4 / � + � " " 4 / � + � " " 4 / � + �

� + � $

+ � � " � � � , 	 � � � � � " � �
 	 + � � " � � � , 	 � � � � � " � �
 	 + � � " � � � , 	 � � � � � " � �
 	

� + � $ � + � $

A/D Conversion Timing

HT82A623R/HT82A6208/HT82A6216

Rev. 1.10 63 October 30, 2009

A/D Programming Example

The following two programming examples illustrate how to setup and implement an A/D conversion. In the first exam-

ple, the method of polling the EOCB bit in the ADCR register is used to detect when the conversion cycle is complete,

whereas in the second example, the A/D interrupt is used to determine when the conversion is complete.

Example: using an EOCB polling method to detect the end of conversion

clr EADI ; disable ADC interrupt
mov a,00011001
mov acsr,a ; setup the ACSR register to select fsys/6 as the A/D clock

; setup the ACSR register to configure Port PB0~PB2 as A/D
; Inputs

mov a,00000000
mov adcr,a ; setup the ADCR register and select AN0 to be connected to

; the A/D converter
; As the Port B and Port C channel bits have changed the

; following START signal (0�1�0) must be issued within
; 10 instruction cycles

:
Start_conversion:

clr START
set START ; reset A/D
clr START ; start A/D

Polling_:
sz EOCB ; poll the ADCR register EOCB bit to detect end

; of A/D conversion
jmp polling_EOC ; continue polling
mov a,ADR ; read conversion result value
mov adrl_buffer,a ; save result to user defined register

:
jmp start_conversion ; start next A/D conversion

Example: using the interrupt method to detect the end of conversion

clr EADI ; disable ADC interrupt
mov a,00011001B
mov ACSR,a ; setup the ACSR register to select fSYS/6 as the A/D clock

mov a,00000000B ; setup ADCR register to configure Port PB0~PB2
; as A/D inputs

mov ADCR,a ; and select AN0 to be connected to the A/D
:

; As the Port B channel bits have changed the

; following START signal(0�1�0) must be issued
; within 10 instruction cycles

:
Start_conversion:

clr START
set START ; reset A/D
clr START ; start A/D
clr ADF ; clear ADC interrupt request flag
set EADI ; enable ADC interrupt
set EMI ; enable global interrupt

:
:
:

; ADC interrupt service routine
ADC_:

mov acc_stack,a ; save ACC to user defined memory
a,STATUS

mov status_stack,a ; save STATUS to user defined memory
:
:

mov a,ADR ; read conversion result value
mov adrl_buffer,a ; save result to user defined register

:
:

EXIT_INT_ISR:
mov a,status_stack
mov STATUS,a ; restore STATUS from user defined memory
mov a,acc_stack ; restore ACC from user defined memory

HT82A623R/HT82A6208/HT82A6216

Rev. 1.10 64 October 30, 2009

� � 2 =

@ " " " " " " " " " A

+ � � " $ � � , 	 � � � � �
# 	 � � � �

� � � =

� � � =

1 4 =

1 / =

1 ' =

1 0 7 " (� .

1 ' / 4 6 1 9 4 6 1 9 6 6 1 9 7 6 1 9 5

+ � � � � � " � � & � � " * � � � � � 	

' 0 7 " (� .

* � �

6 1 9 5

Ideal A/D Transfer Function

A/D Transfer Function

As the device contain a 12-bit A/D converter, its

full-scale converted digitised value is equal to FFFH.

Since the full-scale analog input value is equal to the

VDD voltage, this gives a single bit analog input value of

VDD/4096. The diagram show the ideal transfer function

between the analog input value and the digitised output

value for the A/D converter.

Note that to reduce the quantisation error, a 2.5 LSB off-

set is added to the A/D Converter input. Except for the

digitised zero value, the subsequent digitised values will

change at a point 2.5 LSB below where they would

change without the offset, and the last full scale digitised

value will change at a point 2.5 LSB below the VDD level.

SPI Serial Interface

The device includes two SPI Serial Interfaces. The SPI

interface is a full duplex serial data link, originally de-

signed by Motorola, which allows multiple devices con-

nected to the same SPI bus to communicate with each

other. The devices communicate using a master/slave

technique where only the single master device can initi-

ate a data transfer. A simple four line signal bus is used

for all communication.

SPI Interface Communication

Four lines are used for each SPI function. These are,

SDIA/B - Serial Data Input, SDOA/B - Serial Data Out-

put, SCLKA/B - Serial Clock and SCSA/B - Slave Select.

Note that the condition of the Slave Select line is condi-

tioned by the CSENA/B bit in the SBCRA/B control reg-

ister. If the CSENA/B bit is high then the SCSA/B line is

active while if the bit is low then the SCSA/B line will be

in a floating condition. The accompanying timing dia-

gram depicts the basic timing protocol of the SPI bus.

SPI Registers

There are two registers for control of the SPI Interface.

These are the SBCRA/B register which is the control

register and the SBDRA/B which is the data register.

The SBCRA/B register is used to setup the required

setup parameters for the SPI bus and also used to store

associated operating flags, while the SBDRA/B register

is used for data storage.

After Power on, the contents of the SBDRA/B register

will be in an unknown condition while the SBCRA/B reg-

ister will default to the condition below:

CKSn M1n M0n SBENn MLSn CSENn WCOLn TRFn

0 1 1 0 0 0 0 0

Note:
n
 where n=A~B

Note that data written to the SBDRA/B register will only be

written to the TXRX buffer, whereas data read from the

SBDRA/B register will actual be read from the register.

SPI Bus Enable/Disable

To enable the SPI bus, the SBENA/B bit should be set

high, then the SCLKA/B, SDIA/B, SDOA/B and SCSA/B

lines should all be zero, then wait for data to be written to

the SBDRA/B (TXRX buffer) register. For the Master

Mode, after data has been written to the SBDRA/B

(TXRX buffer) register then transmission or reception

will start automatically. When all the data has been

transferred, the TRFA/B bit should be set. For the Slave

Mode, when clock pulses are received on SCLKA/B,

data in the TXRX buffer will be shifted out or data on

SDIA/B will be shifted in.

To Disable the SPI bus SCLKA/B, SDIA/B, SDOA/B,

SCSA/B should be floating.

HT82A623R/HT82A6208/HT82A6216

Rev. 1.10 65 October 30, 2009

SPI Operation

All communication is carried out using the 4-line inter-

face for both Master or Slave Mode. The timing diagram

shows the basic operation of the bus.

The CSENA/B bit in the SBCRA/B register controls the

overall function of the SPI interface. Setting this bit high,

will enable the SPI interface by allowing the SCSA/B line

to be active, which can then be used to control the SPI in-

terface. If the CSENA/B bit is low, the SPI interface will be

disabled and the SCSA/B line will be in a floating condi-

tion and can therefore not be used for control of the SPI

interface. The SBENA/B bit in the SBCRA/B register

must also be high which will place the SDIA/B line in a

floating condition and the SDOA/B line high. If in the Mas-

ter Mode the SCLKA/B line will be either high or low de-

pending upon the clock polarity configuration option. If in

the Slave Mode the SCLKA/B line will be in a floating con-

dition. If SBENA/B is low then the bus will be disabled and

SCSA/B, SDIA/B, SDOA/B and SCLKA/B will all be in a

floating condition.

In the Master Mode, the Master will always generate the

clock signal. The clock and data transmission will be ini-

tiated after data has been written to the SBDRA/B regis-

ter. In the Slave Mode, the clock signal will be received

from an external master device for both data transmis-

sion or reception. The following sequences show the or-

der to be followed for data transfer in both Master and

Slave Mode:

� Master Mode

Step 1. Select the clock source using the CKSA/B

bit in the SBCRA/B control register

Step 2. Setup the M0A/B and M1A/B bits in the

SBCRA/B control register to select the

Master Mode and the required Baud rate.

Values of 00, 01 or 10 can be selected.

Step 3. Setup the CSENA/B bit and setup the

MLSA/B bit to choose if the data is MSB

or LSB first, this must be same as the Slave

device.

Step 4. Setup the SBENA/B bit in the SBCRA/B

control register to enable the SPI interface.

� 8 � 5 � 7 � 6 � 4 � / � ' � 1

� . � # " @ # 	 � 	 � , 	 ! " � � � � " # 	 � � � � 	 � A

�
%
3

� � � " . � - - 	 �

�
%
3

� (�

� � � � " . � �

�
%
3

� � � � 	 � " � � " � � � , 	

� � � + � .

� � � + � .

� � � 	 � � � � " . � � ! " # � � 	 " $ � � � �

� $: + � .

$ � � � � " � � � � � � �

$ /$ '$ 1

� . 2 ; + � .

� � � 	 � � � � " . � �
 " � � � �

� . 2 ; + � .

� � � � 	 " � . � # + � .

� $ � (+ � . " � � � �

� # � + � .
� � ! E " � � � � �

� . 2 ; + � .

2 ;

+ ; �

� � � � 	 " � . � # + � .

� � � � 	 " � . � # + � . " 2 � � � � 	 � � � � � � � 	

� $ � + � .2 ;

� � � � 	 � " � � " � � � , 	

$ � 2 ; + � .
� . 2 ; + � .

� � ! E " � � � � �

� � ! E " � � � � �

SPI Block Diagram

Note: WCOLA/B: set by SPI cleared by users

CSENA/B: enable/disable chip selection function pin

master mode: 1/0 = with/without SCSA/B output function

Slave mode: 1/0 = with/without SCSA/B input control function

SBENA/B: enable/disable serial bus (0: initialise all status flags)

when SBENA/B=0, all status flags should be initialised

when SBENA/B=1, all SPI related function pins should stay at floating state

TRFA/B: 1 = data transmitted or received, 0= data is transmitting or still not received

CPOL: I/O = clock polarity rising/falling edge : mask option

If clock polarity set to rising edge (SPIA_CPOL/SPIB_CPOL=1), serial clock timing follow CLK, otherwise

(SPIA_CPOL/SPIB_CPOL=0) CLK is the serial clock timing.

HT82A623R/HT82A6208/HT82A6216

Rev. 1.10 66 October 30, 2009

Step 5. For write operations: write the data to the

SBDRA/B register, which will actually place

the data into the TXRX buffer. Then use

the SCLKA/B and SCSA/B lines to output

the data.

Goto to step 6.For read operations: the data

transferred in on the SDIA/B line will be

stored in the TXRX buffer until all the data has

been received at which point it will be latched

into the SBDRA/B register.

Step 6. Check the WCOLA/B bit, if set high then a

collision error has occurred so return to step5.

If equal to zero then go to the following step.

Step 7. Check the TRFA/B bit or wait for an SPI

serial bus interrupt.

Step 8. Read data from the SBDRA/B register.

Step 9. Clear TRFA/B.

Step10. Goto step 5.

� Slave Mode:

Step 1. The CKSA/B bit has a don�t care value in

the slave mode.

Step 2. Setup the M0A/B and M1A/B bits to 00

to select the Slave Mode. The CKSA/B bit

is don�t care.

Step 3. Setup the CSENA/B bit and setup the

MLSA/B bit to choose if the data is MSB

or LSB first, this must be same as the Master

device.

Step 4. Setup the SBENA/B bit in the SBCRA/B

control register to enable the SPI interface.

Step 5. For write operations: write data to the

SBCRA/B register, which will actually

place the data into the TXRX register, then

wait for the master clock and SCSA/B

signal. After this goto step 6.

For read operations: the data transferred in

on the SDIA/B line will be stored in the

TXRX buffer until all the data has been

received at which point it will be latched into

the SBDRA/B register.

Step 6. Check the WCOLA/B bit, if set high

then a collision error has occurred so return to

step5. If equal to zero then goto the following

step.

Step 7. Check the TRFA/B bit or wait for an SPI

serial bus interrupt.

Step 8. Read data from the SBDRA/B register.

Step 9. Clear TRFA/B

Step10. step 5

SPI Configuration Options and Status Control

One option is to enable the operation of the WCOLA/B,

write collision bit, in the SBCRA/B register. Some control

in SPIR register. The SPIA_CPOL/ SPIB_CPOL select

the clock polarity of the SCK line. The SPIA_MODE/

SPIB_MODE select SPI data output mode.

SPI include four pins , can share I/O mode status . The

status control combine with four bits for SPI and

SBCRA/B register. Include SPIA_CSEN/SPIB_CSEN,

SPIA_IO/SPIB_IO for SPI register and CSENA/B,

SBENA/B for SBCRA/B register.

Control Bit for Register SPI Share Function Pins Status

SPIn_IO SPIn_CSEN SBENn CSENn SCSn SCKn SDOn SDIn

0 x x x I/O Mode I/O Mode I/O Mode I/O Mode

1 0 0 x I/O Mode I/O Mode I/O Mode I/O Mode

1 0 1 x I/O Mode SPI Mode SPI Mode SPI Mode(Z)

1 1 0 x I/O Mode I/O Mode I/O Mode I/O Mode

1 1 1 0 SPI Mode (Z) SPI Mode SPI Mode SPI Mode(Z)

1 1 1 1 SPI Mode SPI Mode SPI Mode SPI Mode(Z)

Note:
n
 where n=A~B

X: don�t care

(Z) floating

HT82A623R/HT82A6208/HT82A6216

Rev. 1.10 67 October 30, 2009

� + 4 � � � � + E " � . 4 � � � � .

� + / � � � � + E " � . / � � � � .

� + ' � � $ (: + E " � . ' � � $ (: .
@ � � � + I $ � � (� � � � . I $ � � (M 1 A

� + ' � � $ (: + E " � . ' � � $ (: .
@ � � � + I $ � � (� � � � . I $ � � (M ' A

� � * / � " , � 0 �

� � * / � " , � 0 �

� + / � � � � + E " � . / � � � � .

� + 4 � � � � + E " � . 4 � � � � .

� + ' � � $ (: + E " � . ' � � $ (: .
@ � � � + I $ � � (� � � � . I $ � � (M ' A

� + 1 � � $ � + E " � . 1 � � $ � . "
@ � � � + I $ � 2 ; � � � � . I $ � 2 ; M ' A

� + 1 � � $ � + E " � . 1 � � $ � . "
@ � � � + I $ � 2 ; � � � � . I $ � 2 ; M ' A

� + ' � � $ (: + E " � . ' � � $ (: .
@ � � � + I $ � � (� � � � . I $ � � (M 1 A

� . $ # �

� 	 - � � � �

� . � # �

� 	 - � � � �

; � � 	 D

$: � � � ' � � 1 � � . 2 ; � � (� � $ � 2 ; � � $ � (� � # � �

� 8 � 5 � 7 � 6 � 4 � / � ' � 1

1 ' ' 1 1 1 1 1

� 8 � 5 � 7 � 6 � 4 � / � ' � 1

% % % % % % % %

� . $ # � " D " � 	 � � � � " . � �

$ � � � � � � " # 	 � � � � 	 �

� . � # � " D " � � 	 � � � � " . � �

� + � + " # 	 � � � � 	 �

H � H ") 	 � 	 " � M + L .
H % H "
 	 � � � " � � � � � � 	 ! 0

� 8 � � 1 � 5 � � ' � 7 � � / � 6 � � 4 � 4 � � 6 � / � � 7 � ' � � 5 � 1 � � 8

� 8 � � 1 � 5 � � ' � 7 � � / � 6 � � 4 � 4 � � 6 � / � � 7 � ' � � 5 � 1 � � 8

� 8 � � 1 � 5 � � ' � 7 � � / � 6 � � 4 � 4 � � 6 � / � � 7 � ' � � 5 � 1 � � 8

� 8 � � 1 � 5 � � ' � 7 � � / � 6 � � 4 � 4 � � 6 � / � � 7 � ' � � 5 � 1 � � 8

� . 2 ; + � . M $ � 2 ; + � . M ' " � � ! ") � � � 	 " ! � � � " � � " � . � # + � .

� . 2 ; + � . M ' E " $ � 2 ; + � . M 1 " � � ! ") � � � 	 " ! � � � " � � " � . � # + � . " @ � - " & � � � � � � 	 ! A

� . 2 ; + � . M $ � 2 ; + � . M ' " � � ! ") � � � 	 " ! � � � " � � " � . � # + � .

� . 2 ; + � . M ' E " $ � 2 ; + � . M 1 " � � ! ") � � � 	 " ! � � � " � � " � . � # + � . " @ � - " & � � � � � � 	 ! A

SPI Bus Timing

HT82A623R/HT82A6208/HT82A6216

Rev. 1.10 68 October 30, 2009

Error Detection

The WCOLA/B bit in the SBCRA/B register is provided

to indicate errors during data transfer. The bit is set by

the Serial Interface but must be cleared by the applica-

tion program. This bit indicates a data collision has oc-

curred which happens if a write to the SBDRA/B register

takes place during a data transfer operation and will pre-

vent the write operation from continuing. The bit will be

set high by the Serial Interface but has to be cleared by

the user application program. The overall function of the

WCOLA/B bit can be disabled or enabled by a configu-

ration option.

� 1) 	 � � � 1) 	 1 � 	 � � � � � � �

� 8 � 1

$: � � ' � 1 � . 2 ; � (� $ � 2 ; � $ � (� # �

� � � � �
 � � � � # 	 � 	 � , 	 " - � � �
1 D " ; � � " � �
 & � 	 � 	
' D " � � � � �
 � � � � � � � � 	 � 	 & � � � � " � �
 & � 	 � 	

� � � � 	 " � � � � � � � � � " � � �
1 D " $ � � � � � � � � " - � 	 	
' D " $ � � � � � � � � " ! 	 � 	 � � 	 !

� 	 � 	 � � � � � " � � � � � � " 	 � � � � 	 � ! � � � � � 	 " � � �
1 D " � $ � + � � $ � . " - � � � � � � �
' D " 2 � � � � 	

� � . � (� . " - � � � � " � � �
1 D " (� . " � � - � " - � � � �
' D " � � . " � � - � " - � � � �

� 	 � � � � " . � � " 	 � � � � 	 � ! � � � � � 	 " � � �
1 D " � � � � � � 	
' D " 2 � � � � 	
" " " " � 	 & 	 � ! 	 � � " � & � � " $ � 2 ; + � $ � 2 ; . " � � �

� � � � 	 � � � � � , 	 � . � � ! " � � � 	 " � � � �

� � � � 	 � E " � � � ! " � � � 	 D " - � � �
� � � � 	 � E " � � � ! " � � � 	 D " - � � � � 6
� � � � 	 � E " � � � ! " � � � 	 D " - � � � � ' 5
� � � , 	 "
 � ! 	

� '
1
1
'
'

� 1
1
'
1
'

$ � � � � " � � � � � 	 " � 	 � 	 � � " � � �
1 D " - � � � M - � C � � 6
' D " - � � � M - � C �

SPI Interface Control Register

HT82A623R/HT82A6208/HT82A6216

Rev. 1.10 69 October 30, 2009

Programming Considerations

When the device is placed into the Power Down Mode note that data reception and transmission will continue. The

TRFA/B bit is used to generate an interrupt when the data has been transferred or received.

SPI Transfer Control Flowchart

� � � + I � � M ' " � �
� � � . I � � M '

� � � � 	 " � � � � " � � � �
� . � # + � .

� $ � (+ � . M ' P

$ � 	 � � " � $ � (+ � .

C 	 �

; �

� 	 � ! " ! � � � " - � �

� . � # + � .

� � 	 � � " � # � + � .

� � � � � - 	 �
� � � � � 	 ! P

2 ; �

� � � � 	 � " � �
� � � , 	

� � � � 	 � � � � , 	

+

+

� � � F / D 1 G M ' 1 '

� � � " " � � � � � - 	 � "

� � � F / D 1 G M 1 1 1 E "
1 1 ' E 1 ' 1 E 1 ' ' " � � " ' 1 1

$ � � - � � � � 	 "
$ � 2 ; + � . " � � ! " � (�

� � � � �
 � � � � � � "
$ �
 & � 	 � 	 ! P
@ � # � + � . M ' P A

C 	 �

C 	 �

; �

; �

HT82A623R/HT82A6208/HT82A6216

Rev. 1.10 70 October 30, 2009

Bit No. Label Function

0 SPIA_IO 1: IO, 0: SPI (default)

1 SPIA_MODE

1: SPI first output the data immediately after the SPI is enable. And SPI output the data

in the falling edge (polarity=1) or rising edge (polarity=0); SPI read data in the in the ris-

ing edge (polarity=1) or falling edge (polarity=0)

0: SPI output the data in the rising edge (polarity=1) or falling edge (polarity=0); SPI

read data in the in the falling edge (polarity=1) or rising edge (polarity=0); (default)

2 SPIA_CPOL
1: clock polarity rising

0: clock polarity falling (default falling)

3 SPIA_CSEN

1: SPI_CSEN: Enable , this bit is used to enable/disable software CSEN function

(default enable)

0: SPI_CSEN disable, SCSA define as GPIO

4 SPIB_IO 1: IO, 0: SPI (default)

5 SPIB_MODE

1: SPI first output the data immediately after the SPI is enable. And SPI output the data

in the falling edge (polarity=1) or rising edge (polarity=0); SPI read data in the in the ris-

ing edge (polarity=1) or falling edge (polarity=0)

0: SPI output the data in the rising edge (polarity=1) or falling edge (polarity=0); SPI

read data in the in the falling edge (polarity=1) or rising edge (polarity=0); (default)

6 SPIB_CPOL
1: clock polarity rising

0: clock polarity falling (default falling)

7 SPIB_CSEN

1: SPI_CSEN: Enable, this bit is used to enable/disable software CSEN function

(default enable)

0: SPI_CSEN disable, SCSB define as GPIO

SPI Register

USB Interface

The device includes a USB interface function allowing

for the convenient design of USB peripheral products.

The USB disable/enable control bit
USBdis
 is in the

PWMCTL Register. If the USB is disabled, then V33O

and the D+/D- lines will be floating and the USB SIE will

be disabled.

Power Plane

There are four power planes for the device: USB SIE

VDD, VDDIO and the MCU VDD and Flash memory

power for the HT82A6208/HT82A6216. For the USB

SIE VDD will supply all circuits related to the USB SIE

and be sourced from pin
UBUS
. Once the USB is re-

moved from the USB and there is no power in the USB

BUS, the USB SIE circuit is no longer operational.

For the PB port, it can be configured using a

configuration option to define the if the pins PB0~PB7

are supplied by either the MCU VDD, or if pins

PB0~PB6 are supplied by the power pin VDDIO, in

which case power will be supplied on pin PB7. In the lat-

ter configuration, PB7 will be configured as a power pin

VDDIO and not a normal I/O pin.

For the MCU VDD, it supplies all the HT82A623R circuit

except the USB SIE which is supply by UBUS.

For the HT82A6208 and HT82A6216 the internal Flash

memory is supplied by VCC.

USB Suspend Wake-Up Remote Wake-Up

If there is no signal on the USB bus for over 3ms, the de-

vice will enter a suspend mode. The Suspend flag,

SUSP, in the USC register, will then be set high and a

USB interrupt will be generated to indicate that the de-

vice should jump to the suspend state to meet the re-

quirements of the USB suspend current spec. In order to

meet the requirements of the suspend current, the firm-

ware should disable the USB clock by clearing the

USBCKEN bit to zero.

The suspend current can be further decreased by set-

ting the SUSP2 bit in the UCC register. When the re-

sume signal is sent out by the host, the device will be

woken up the by the USB interrupt and the Resume bit

in the USC register will be set. To ensure correct device

operation, the program must set the USBCKEN bit in the

UCC register high and clear the SUSP2 bit in the UCC

register. The Resume signal will be cleared before the

Idle signal is sent out by the host and the Suspend line in

the USC register will change to zero. So when the MCU

� % � � 2 ; �

% � . " # 	 � �
 	 " � � � � � �

% � . I � ; �

HT82A623R/HT82A6208/HT82A6216

Rev. 1.10 71 October 30, 2009

detects the Suspend bit in the USC register, the condi-

tion of the Resume line should be noted and taken into

consideration.

The device has a remote wake up function which can

wake-up the USB Host by sending a wake-up pulse

through RMWK in the USC register. Once the USB Host

receives a wake-up signal from the device it will send a

Resume signal to the device.

USB Interface Operation

The device has 8 Endpoints, EP0~EP3. EP0 supports

Control transfer. All EP1~EP3 support Interrupt or Bulk

transfer.

All endpoints except EP0 can be configured as 8, 16, 32

or 64 FIFO size using the register UFC0 and UFC1. EP0

has an 8-byte FIFO size. The Total FIFO size is 64+8

bytes. The URD in the USC register is the USB reset

signal control function definition bit.

Bit No. Label Function

0 ESD
This bit will set to
1
 when there are ESD issue.

This bit is set by SIE and clear by F/W.

1 PUB
Bit3=1, D+, and D- have a 500k� pull-high

Bit3=0, no pull-high (default on MCU reset)

2 SE0
This bit is used to indicate the SIE has detect a SE0 noise in the USB bus. This bit is set by

SIE and clear by F/W.

3 SE1
This bit is used to indicate the SIE has detect a SE1 noise in the USB bus. This bit is set by

SIE and clear by F/W.

4 PS2/DAI USBD-/DATA input.

5 PS2/CKI USBD+/CLK input.

6 PS2/DAO
Output for driving USBD-/DATA pin, when work under 3D PS2 mouse function. Default

value is
1
.

7 PS2/CKO
Output for driving USBD+/CLK pin, when work under 3D PS2 mouse function. Default value

is
1
.

USB_STAT Register

Bit No. Label Function

0 EP0EN Control the USB endpoint0 interrupt (1=enabled; 0=disabled)

1 EP1EN Control the USB endpoint1 interrupt (1=enabled; 0=disabled)

2 EP2EN Control the USB endpoint2 interrupt (1=enabled; 0=disabled)

3 EP3EN Control the USB endpoint3 interrupt (1=enabled; 0=disabled)

4~7 � Unused bit, read as
0

UINT1 Register

� % � � 2 ; �

% � . " # 	 � �
 	 " � � � � � �

% � . I � ; �

� � :

� � � 0 " '

% � . " $ (:

� � � 0 " / 0 7
 �

HT82A623R/HT82A6208/HT82A6216

Rev. 1.10 72 October 30, 2009

Bit No. Label Function

0 SUSP

Read only, USB suspend indication. When this bit is set to
1
 (set by SIE), it indicates that

the USB bus has entered the suspend mode. The USB interrupt is also triggered when this

bit changes from low to high.

1 RMWK
USB remote wake-up command. It is set by MCU to leave the USB host leaving the suspend

mode.

2 URST

USB reset indication. This bit is set/cleared by the USB SIE. This bit is used to detect a USB

reset event on the USB bus. When this bit is set to
1
, this indicates that a USB reset has

occurred and that a USB interrupt will be initialized.

3 RESUME

USB resume indication. When the USB leaves the suspend mode, this bit is set to
1
 (set

by SIE). When the RESUME is set by SIE, an interrupt will be generated to wake-up the

MCU. In order to detect the suspend state, the MCU should set USBCKEN and clear

SUSP2 (in the UCC register) to enable the SIE detect function. RESUME will be cleared

when the SUSP goes to
0
. When the MCU is detecting the SUSP, the condition of RE-

SUME (causes the MCU to wake-up) should be noted and taken into consideration.

4 V33O 0/1: Turn-off/on V33O output.

5 PLL 0: Turn-on PLL (default), 1: turn off PLL.

6 SELPS2 When set to �1�, indicated the chip work under PS2 mode. Default value is
0
.

7 URD

USB reset signal control function definition.

1: USB reset signal will reset MCU.

0: USB reset signal cannot reset MCU.

USC Register

The USR register which is the endpoint interrupt status register, is used to indicate which endpoint is accessed and to

select the USB bus. The endpoint request flags, EP0F, EP1F, EP2F and EP3F, are used to indicate which endpoints

are accessed. If an endpoint is accessed, the related endpoint request flag will be set high and a USB interrupt will be

generated, if the USB interrupt is enabled and the stack is not full. When the active endpoint request flag is serviced,

the endpoint request flag has to be cleared to zero using the program.

Bit No. Label Function

0 EP0F

When this bit is set to
1
 (set by SIE), it indicates that endpoint 0 has been accessed and a

USB interrupt will occur. When the interrupt has been serviced, this bit should be cleared by

software.

1 EP1F

When this bit is set to
1
 (set by SIE), it indicates that endpoint 1 has been accessed and a

USB interrupt will occur. When the interrupt has been serviced, this bit should be cleared by

software.

2 EP2F

When this bit is set to
1
 (set by SIE), it indicates that endpoint 2 has been accessed and a

USB interrupt will occur. When the interrupt has been serviced, this bit should be cleared by

software.

3 EP3F

When this bit is set to
1
 (set by SIE), it indicates that endpoint 3 has been accessed and a

USB interrupt will occur. When the interrupt has been serviced, this bit should be cleared by

software.

4~7 � Unused bit, read as
0

USR Register

HT82A623R/HT82A6208/HT82A6216

Rev. 1.10 73 October 30, 2009

There is a system clock control register to select the clock used in the MCU. This register consists of a USB clock con-

trol bit, USBCKEN, a second suspend mode control bit, SUSP2, and a system clock selection bit, SYSCLK.

The endpoint selection is determined by EPS2, EPS1 and EPS0.

Bit No. Label Function

0

1

2

EPS0

EPS1

EPS2

Accessing endpoint FIFO selection.

EPS2, EPS1, EPS0:

000: Select endpoint 0 FIFO (control)

001: Select endpoint 1 FIFO

010: Select endpoint 2 FIFO

011: Select endpoint 3 FIFO

If the selected endpoints do not exist, the related functions will be absent.

3 USBCKEN
USB clock control bit. When this bit is set to
1
, it indicates that the USB clock is en-

abled. Otherwise, the USB clock is turned-off.

4 SUSP2

This bit is used for reducing power consumption in suspend mode.

In normal mode, clean this bit to
0
.

In halt mode, set this bit to
1
 for reducing power consumption.

5 FSYS16MHz

This bit is used to define if the MCU system clock comes form an external OSC or comes

from the PLL output 16MHz clock.

0: system clock sourced from OSC.

1: system clock sourced from the PLL output 16MHz.

6 SYSCLK

This bit is used to specify the MCU system clock oscillator frequency.

For a 6MHz crystal oscillator or resonator, set this bit to
1
.

For a 12MHz crystal oscillator or resonator, clear this bit to
0
.

7 RCTRL

This bit is used to control whether there is 7.5k� resistor between D+ and Vbus.

0: no 7.5k� between D+ and Vbus (default)

1: has 7.5k� between D+ and Vbus

UCC Register

The AWR register contains the current address and a remote wake up function control bit. The initial value of AWR is

00H
. The address value extracted from the USB command has not to be loaded into this register until the SETUP

stage has finished.

Bit No. Label Function

0 WKEN USB remote-wake-up enable/disable (1/0)

1~7 AD0~AD6 USB device address

AWR Register

The STALL register shows if the corresponding endpoint has worked properly or not. As soon as endpoint improper op-

eration occurs, the related bit in the STALL register has to be set high. The STALL register bits will be cleared by a USB

reset signal and a setup token event.

Bit No. Label Function

0~3
STL0~

STL3

Set by the users when related USB endpoints were stalled. Cleared by a USB reset.

The STL0 is also cleared by a Setup Token event.

4~7 � Unused bit, read as
0

STALL Register

HT82A623R/HT82A6208/HT82A6216

Rev. 1.10 74 October 30, 2009

The SIES register is only used for EP0 except for the NMI bit, which can control all endpoints

Bit No. Label Function

0 ASET

This bit is used to configure the SIE to automatically change the device address by the

value stored in the AWR register. When this bit is set to
1
 by firmware, the SIE will update

the device address by the value stored in the AWR register after the PC host has success-

fully read the data from he device by an IN operation. Otherwise, when this bit is cleared to

0
, the SIE will update the device address immediately after an address is written to the

AWR register. So, in order to work properly, the firmware has to clear this bit after a next

valid SETUP token is received.

1 ERR
This bit is used to indicate that some errors have occurred when the FIFO is accessed.

This bit is set by SIE and should be cleared by firmware. This bit is used for all endpoint

2 OUT

This bit is used to indicate the OUT token (except the OUT zero length token) has been re-

ceived. The firmware clears this bit after the OUT data has been read. Also, this bit will be

cleared by SIE after the next valid SETUP token is received.

3 IN This bit is used to indicate the current USB receiving signal from PC host is IN token.

4 NO ACK
This bit will set to
1
 once SIE discover ther are some error condition so the SIE is not re-

sponse (NAK or ACK or DATA) for the USB token. This bit is set by SIE and clear by F/W.

5 � Unused bit, read as
0

6 CRCF

This bit will set to
1
 when there are the following three condition is happened: CRC error,

PID error, Bit stuffing error.

This bit is set by SIE and clear by F/W.

7 NMI

NAK token interrupt mask flag. If this bit set, when the device sent a NAK token to the host,

an interrupt will be disabled. Otherwise if this bit is cleared, when the device sends a NAK

token to the host, it will enter the interrupt sub-routine. This bit is used for all endpoint.

SIES Register

The MISC register combines command and status to control the desired endpoint FIFO action and to show the status of

the desired endpoint FIFO. MISC will be cleared by a USB reset signal.

Bit No. Label Function

0 REQUEST
After setting the status of the desired one, FIFO can be requested by setting this bit high.

After finishing, this bit must be set low.

1 TX

To represent the direction and transition end MCU access. When set to logic 1, the MCU

desires to write data to the FIFO. After finishing, this bit must be set to logic 0 before termi-

nating request to represent transition end. For an MCU read operation, this bit must be set

to logic 0 and set to logic 1 after finishing.

2 CLEAR

MCU requests to clear the FIFO, even if the FIFO is not ready. After clearing the FIFO, the

USB interface will send force_tx_err to tell the Host that data under-run if the Host wants to

read data.

3~4 � Unused bit, read as
0

5 SETCMD
To show that the data in the FIFO is a setup command. This bit is set by Hardware and

clear by Firmware.

6 READY To show that the desired FIFO is ready.

7 LEN0
To show that the host sent a 0-sized packet to the MCU. This bit must be cleared by a read

action to the corresponding FIFO.

MISC Register

HT82A623R/HT82A6208/HT82A6216

Rev. 1.10 75 October 30, 2009

Bit No. Label Function

0 FIFO_def
Once this bit set to
1
 by Firmware, The SIE should redefine the FIFO configuration. This bit

is automatically cleared by SIE

1 SETI1* Input FIFO for EP1 eanble 1/disable 0; default disable

2 SETI2* Input FIFO for EP2 eanble 1/disable 0; default disable

3 SETI3* Input FIFO for EP3 eanble 1/disable 0; default disable

4~7 � Unused bit, read as
0

Note:
*
 It is only required to set the data pipe as an input pile or output pile. The purpose of this function is to avoid

the host sending an abnormal IN or OUT token and disabling the endpoint.

UFIEN Register, USB Endpoint 1~Endpoint 3 set IN Pipe Enable Register.

Bit No. Label Function

0 DATATG* DATA token toggle bit

1 SETO1** Output FIFO for EP1 eanble 1/disable 0; default disable

2 SETO2** Output FIFO for EP2 eanble 1/disable 0; default disable

3 SETO3** Output FIFO for EP3 eanble 1/disable 0; default disable

4~7 � Unused bit, read as
0

Note:
*
 USB definition: when the host sends a
set Configuration
, the Data pipe should send the DATA0 (about the

Data toggle) first. So, when the Device receives a
set configuration
 setup command, the user needs to toggle

this bit as the following data will send a Data0 first.

**
 It is only required to set the data pipe as an input pile or output pile. The purpose of this function is to avoid

the host sending a abnormal IN or OUT token and disabling the endpoint.

UFOEN Register, USB Endpoint 1~Endpoint 3 set OUT pipe enable register

Bit No. Label Function

0

1

RAM_def0

RAM_def1

00: RAM0 input FIFO, RAM1 output FIFO

01: Both RAM0 and RAM1 are output FIFO

10: Both RAM0 and RAM1 are input FIFO

11: RAM0 output FIFO, RAM1 input FIFO

2

3

E1FS0

E1FS1

Define endpoint 1 FIFO size

E1FS1, E1FS0:

00: 8-byte

01: 16-byte

10: 32-byte

11: 64-byte

4

5

E2FS0

E2FS1

Define endpoint 2 FIFO size

E2FS1, E2FS0:

00: 8-byte

01: 16-byte

10: 32-byte

11: 64-byte

6

7

E3FS0

E3FS1

Define endpoint 3 FIFO size

E3FS1, E3FS0:

00: 8-byte

01: 16-byte

10: 32-byte

11: 64-byte

UFC0 USB FIFO Size Control Register 0

HT82A623R/HT82A6208/HT82A6216

Rev. 1.10 76 October 30, 2009

The total FIFO size is 64+8 bytes. All endpoints except EP0 can be defined by registers UFOEN, UFIEN, UFC0 and

UFC. There are three FIFO mapped as follow:

8 bytes FIFO for Endpoint0

RAM0 FIFO for other input Endpoint (1~3)

RAM1 FIFO for other output Endpoint (1~3)

Bit No. Label Function

0~3
FIFO0~

FIFO3

EPi accessing register (i=0~3). When an endpoint is disabled, the corresponding accessing

register should be disabled.

4~7 � Unused bit, read as
0

FIFO0~FIFO3 USB endpoint accessing registers definitions

Configuration Options

No. Options

1 PA pull-high enable/disable (1/0) (default: enable)

2 PB pull-high enable/disable (1/0) by nibble (default: enable)

3 PC pull-high enable/disable (1/0) by nibble (default: enable)

4 PC, wake-up enable/disable (1/0) by nibble (default: disable)

5 SPIA WCOL: Enable/Disable (default disable)

6 Built-in 1.5K (default no built-in)

7 Has 7.5k� resistor enable bit (default no)

8 TBHP enable or disable (default disable)

9 Low voltage reset: enable/disable (default: enable)

10 WDT enable/disable (0/1) (default: enable)

11 WDT clock source: fSYS/4 or RC (default T1)

12 CLR WDT instructions: one or two clear WDT instruction(s) (0/1) (default: 1 inst.)

13 PA NMOS or CMOS output type (default CMOS)

14 Port A wake-up enable/disable (1/0) by bit (default: enable)

15 PB0~PB3 NMOS or CMOS output type (default CMOS)

16 Port B wake-up enable/disable (1/0) by bit (default: disable)

17
0: PB7 used as GPIO

1: PB7 used as VDDIO pin

18
0: PB0~PB6 use power=VDD

1: PB0~PB6 use power=VDDIO

19 PD NMOS or CMOS output type (default CMOS)

20 PD pull-high enable/disable (1/0) by nibble (default: enable)

21 PD, wake-up enable/disable (1/0) by nibble (default: disable)

22 SPIB WCOL: enable/disable (default disable)

Application Circuits

Crystal or Ceramic Resonator for Multiple I/O Applications

Note: The resistance and capacitance for the reset circuit should be designed in such a way as to ensure that VDD is

stable and remains within a valid operating voltage range before bringing RES high.

X1 can be 6MHz or 12MHz, and should be located as close to the OSC1/OSC2 pins as possible.

* These capacitors should be placed close to the USB connector.

** This capacitor should be placed close to the MCU.

HT82A623R/HT82A6208/HT82A6216

Rev. 1.10 77 October 30, 2009

% � . � < � $ (:

% � . � � � � + � +

* 4 4 �
' 0 7 � �

* � �

% � . �

% � . <

* � �

4 4 �

4 4 �

� + 1 L � + 8

� . 1 L � . 8

� $ 1 L � $ 8

� � 1 L � � 8

1 0 ' � �

1 0 ' � � Q

* � �

� � $ '

� � $ /

2 �

* � �

1 0 ' � �

' 1 1 � �' 1 � � Q

3 '

1 0 ' � � Q Q

HT82A623R/HT82A6208/HT82A6216

Rev. 1.10 78 October 30, 2009

Instruction Set

Introduction

Central to the successful operat ion of any

microcontroller is its instruction set, which is a set of pro-

gram instruction codes that directs the microcontroller to

perform certain operations. In the case of Holtek

microcontrollers, a comprehensive and flexible set of

over 60 instructions is provided to enable programmers

to implement their application with the minimum of pro-

gramming overheads.

For easier understanding of the various instruction

codes, they have been subdivided into several func-

tional groupings.

Instruction Timing

Most instructions are implemented within one instruc-

tion cycle. The exceptions to this are branch, call, or ta-

ble read instructions where two instruction cycles are

required. One instruction cycle is equal to 4 system

clock cycles, therefore in the case of an 8MHz system

oscillator, most instructions would be implemented

within 0.5�s and branch or call instructions would be im-

plemented within 1�s. Although instructions which re-

quire one more cycle to implement are generally limited

to the JMP, CALL, RET, RETI and table read instruc-

tions, it is important to realize that any other instructions

which involve manipulation of the Program Counter Low

register or PCL will also take one more cycle to imple-

ment. As instructions which change the contents of the

PCL will imply a direct jump to that new address, one

more cycle will be required. Examples of such instruc-

tions would be
CLR PCL
 or
MOV PCL, A
. For the

case of skip instructions, it must be noted that if the re-

sult of the comparison involves a skip operation then

this will also take one more cycle, if no skip is involved

then only one cycle is required.

Moving and Transferring Data

The transfer of data within the microcontroller program

is one of the most frequently used operations. Making

use of three kinds of MOV instructions, data can be

transferred from registers to the Accumulator and

vice-versa as well as being able to move specific imme-

diate data directly into the Accumulator. One of the most

important data transfer applications is to receive data

from the input ports and transfer data to the output ports.

Arithmetic Operations

The ability to perform certain arithmetic operations and

data manipulation is a necessary feature of most

microcontroller applications. Within the Holtek

microcontroller instruction set are a range of add and

subtract instruction mnemonics to enable the necessary

arithmetic to be carried out. Care must be taken to en-

sure correct handling of carry and borrow data when re-

sults exceed 255 for addition and less than 0 for

subtraction. The increment and decrement instructions

INC, INCA, DEC and DECA provide a simple means of

increasing or decreasing by a value of one of the values

in the destination specified.

Logical and Rotate Operations

The standard logical operations such as AND, OR, XOR

and CPL all have their own instruction within the Holtek

microcontroller instruction set. As with the case of most

instructions involving data manipulation, data must pass

through the Accumulator which may involve additional

programming steps. In all logical data operations, the

zero flag may be set if the result of the operation is zero.

Another form of logical data manipulation comes from

the rotate instructions such as RR, RL, RRC and RLC

which provide a simple means of rotating one bit right or

left. Different rotate instructions exist depending on pro-

gram requirements. Rotate instructions are useful for

serial port programming applications where data can be

rotated from an internal register into the Carry bit from

where it can be examined and the necessary serial bit

set high or low. Another application where rotate data

operations are used is to implement multiplication and

division calculations.

Branches and Control Transfer

Program branching takes the form of either jumps to

specified locations using the JMP instruction or to a sub-

routine using the CALL instruction. They differ in the

sense that in the case of a subroutine call, the program

must return to the instruction immediately when the sub-

routine has been carried out. This is done by placing a

return instruction RET in the subroutine which will cause

the program to jump back to the address right after the

CALL instruction. In the case of a JMP instruction, the

program simply jumps to the desired location. There is

no requirement to jump back to the original jumping off

point as in the case of the CALL instruction. One special

and extremely useful set of branch instructions are the

conditional branches. Here a decision is first made re-

garding the condition of a certain data memory or indi-

vidual bits. Depending upon the conditions, the program

will continue with the next instruction or skip over it and

jump to the following instruction. These instructions are

the key to decision making and branching within the pro-

gram perhaps determined by the condition of certain in-

put switches or by the condition of internal data bits.

HT82A623R/HT82A6208/HT82A6216

Rev. 1.10 79 October 30, 2009

Bit Operations

The ability to provide single bit operations on Data Mem-

ory is an extremely flexible feature of all Holtek

microcontrollers. This feature is especially useful for

output port bit programming where individual bits or port

pins can be directly set high or low using either the
SET

[m].i
 or
CLR [m].i
 instructions respectively. The fea-

ture removes the need for programmers to first read the

8-bit output port, manipulate the input data to ensure

that other bits are not changed and then output the port

with the correct new data. This read-modify-write pro-

cess is taken care of automatically when these bit oper-

ation instructions are used.

Table Read Operations

Data storage is normally implemented by using regis-

ters. However, when working with large amounts of

fixed data, the volume involved often makes it inconve-

nient to store the fixed data in the Data Memory. To over-

come this problem, Holtek microcontrollers allow an

area of Program Memory to be setup as a table where

data can be directly stored. A set of easy to use instruc-

tions provides the means by which this fixed data can be

referenced and retrieved from the Program Memory.

Other Operations

In addition to the above functional instructions, a range

of other instructions also exist such as the
HALT
 in-

struction for Power-down operations and instructions to

control the operation of the Watchdog Timer for reliable

program operations under extreme electric or electro-

magnetic environments. For their relevant operations,

refer to the functional related sections.

Instruction Set Summary

The following table depicts a summary of the instruction

set categorised according to function and can be con-

sulted as a basic instruction reference using the follow-

ing listed conventions.

Table conventions:

x: Bits immediate data

m: Data Memory address

A: Accumulator

i: 0~7 number of bits

addr: Program memory address

Mnemonic Description Cycles Flag Affected

Arithmetic

ADD A,[m]

ADDM A,[m]

ADD A,x

ADC A,[m]

ADCM A,[m]

SUB A,x

SUB A,[m]

SUBM A,[m]

SBC A,[m]

SBCM A,[m]

DAA [m]

Add Data Memory to ACC

Add ACC to Data Memory

Add immediate data to ACC

Add Data Memory to ACC with Carry

Add ACC to Data memory with Carry

Subtract immediate data from the ACC

Subtract Data Memory from ACC

Subtract Data Memory from ACC with result in Data Memory

Subtract Data Memory from ACC with Carry

Subtract Data Memory from ACC with Carry, result in Data Memory

Decimal adjust ACC for Addition with result in Data Memory

1

1Note

1

1

1Note

1

1

1Note

1

1Note

1Note

Z, C, AC, OV

Z, C, AC, OV

Z, C, AC, OV

Z, C, AC, OV

Z, C, AC, OV

Z, C, AC, OV

Z, C, AC, OV

Z, C, AC, OV

Z, C, AC, OV

Z, C, AC, OV

C

Logic Operation

AND A,[m]

OR A,[m]

XOR A,[m]

ANDM A,[m]

ORM A,[m]

XORM A,[m]

AND A,x

OR A,x

XOR A,x

CPL [m]

CPLA [m]

Logical AND Data Memory to ACC

Logical OR Data Memory to ACC

Logical XOR Data Memory to ACC

Logical AND ACC to Data Memory

Logical OR ACC to Data Memory

Logical XOR ACC to Data Memory

Logical AND immediate Data to ACC

Logical OR immediate Data to ACC

Logical XOR immediate Data to ACC

Complement Data Memory

Complement Data Memory with result in ACC

1

1

1

1Note

1Note

1Note

1

1

1

1Note

1

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Increment & Decrement

INCA [m]

INC [m]

DECA [m]

DEC [m]

Increment Data Memory with result in ACC

Increment Data Memory

Decrement Data Memory with result in ACC

Decrement Data Memory

1

1Note

1

1Note

Z

Z

Z

Z

HT82A623R/HT82A6208/HT82A6216

Rev. 1.10 80 October 30, 2009

Mnemonic Description Cycles Flag Affected

Rotate

RRA [m]

RR [m]

RRCA [m]

RRC [m]

RLA [m]

RL [m]

RLCA [m]

RLC [m]

Rotate Data Memory right with result in ACC

Rotate Data Memory right

Rotate Data Memory right through Carry with result in ACC

Rotate Data Memory right through Carry

Rotate Data Memory left with result in ACC

Rotate Data Memory left

Rotate Data Memory left through Carry with result in ACC

Rotate Data Memory left through Carry

1

1Note

1

1Note

1

1Note

1

1Note

None

None

C

C

None

None

C

C

Data Move

MOV A,[m]

MOV [m],A

MOV A,x

Move Data Memory to ACC

Move ACC to Data Memory

Move immediate data to ACC

1

1Note

1

None

None

None

Bit Operation

CLR [m].i

SET [m].i

Clear bit of Data Memory

Set bit of Data Memory

1Note

1Note

None

None

Branch

JMP addr

SZ [m]

SZA [m]

SZ [m].i

SNZ [m].i

SIZ [m]

SDZ [m]

SIZA [m]

SDZA [m]

CALL addr

RET

RET A,x

RETI

Jump unconditionally

Skip if Data Memory is zero

Skip if Data Memory is zero with data movement to ACC

Skip if bit i of Data Memory is zero

Skip if bit i of Data Memory is not zero

Skip if increment Data Memory is zero

Skip if decrement Data Memory is zero

Skip if increment Data Memory is zero with result in ACC

Skip if decrement Data Memory is zero with result in ACC

Subroutine call

Return from subroutine

Return from subroutine and load immediate data to ACC

Return from interrupt

2

1Note

1note

1Note

1Note

1Note

1Note

1Note

1Note

2

2

2

2

None

None

None

None

None

None

None

None

None

None

None

None

None

Table Read

TABRDC [m]

TABRDL [m]

Read table (current page) to TBLH and Data Memory

Read table (last page) to TBLH and Data Memory

2Note

2Note

None

None

Miscellaneous

NOP

CLR [m]

SET [m]

CLR WDT

CLR WDT1

CLR WDT2

SWAP [m]

SWAPA [m]

HALT

No operation

Clear Data Memory

Set Data Memory

Clear Watchdog Timer

Pre-clear Watchdog Timer

Pre-clear Watchdog Timer

Swap nibbles of Data Memory

Swap nibbles of Data Memory with result in ACC

Enter power down mode

1

1Note

1Note

1

1

1

1Note

1

1

None

None

None

TO, PDF

TO, PDF

TO, PDF

None

None

TO, PDF

Note: 1. For skip instructions, if the result of the comparison involves a skip then two cycles are required,

if no skip takes place only one cycle is required.

2. Any instruction which changes the contents of the PCL will also require 2 cycles for execution.

3. For the
CLR WDT1
 and
CLR WDT2
 instructions the TO and PDF flags may be affected by

the execution status. The TO and PDF flags are cleared after both
CLR WDT1
 and

CLR WDT2
 instructions are consecutively executed. Otherwise the TO and PDF flags

remain unchanged.

Instruction Definition

ADC A,[m] Add Data Memory to ACC with Carry

Description The contents of the specified Data Memory, Accumulator and the carry flag are added. The

result is stored in the Accumulator.

Operation ACC � ACC + [m] + C

Affected flag(s) OV, Z, AC, C

ADCM A,[m] Add ACC to Data Memory with Carry

Description The contents of the specified Data Memory, Accumulator and the carry flag are added. The

result is stored in the specified Data Memory.

Operation [m] � ACC + [m] + C

Affected flag(s) OV, Z, AC, C

ADD A,[m] Add Data Memory to ACC

Description The contents of the specified Data Memory and the Accumulator are added. The result is

stored in the Accumulator.

Operation ACC � ACC + [m]

Affected flag(s) OV, Z, AC, C

ADD A,x Add immediate data to ACC

Description The contents of the Accumulator and the specified immediate data are added. The result is

stored in the Accumulator.

Operation ACC � ACC + x

Affected flag(s) OV, Z, AC, C

ADDM A,[m] Add ACC to Data Memory

Description The contents of the specified Data Memory and the Accumulator are added. The result is

stored in the specified Data Memory.

Operation [m] � ACC + [m]

Affected flag(s) OV, Z, AC, C

AND A,[m] Logical AND Data Memory to ACC

Description Data in the Accumulator and the specified Data Memory perform a bitwise logical AND op-

eration. The result is stored in the Accumulator.

Operation ACC � ACC
AND
 [m]

Affected flag(s) Z

AND A,x Logical AND immediate data to ACC

Description Data in the Accumulator and the specified immediate data perform a bitwise logical AND

operation. The result is stored in the Accumulator.

Operation ACC � ACC
AND
 x

Affected flag(s) Z

ANDM A,[m] Logical AND ACC to Data Memory

Description Data in the specified Data Memory and the Accumulator perform a bitwise logical AND op-

eration. The result is stored in the Data Memory.

Operation [m] � ACC
AND
 [m]

Affected flag(s) Z

HT82A623R/HT82A6208/HT82A6216

Rev. 1.10 81 October 30, 2009

CALL addr Subroutine call

Description Unconditionally calls a subroutine at the specified address. The Program Counter then in-

crements by 1 to obtain the address of the next instruction which is then pushed onto the

stack. The specified address is then loaded and the program continues execution from this

new address. As this instruction requires an additional operation, it is a two cycle instruc-

tion.

Operation Stack � Program Counter + 1

Program Counter � addr

Affected flag(s) None

CLR [m] Clear Data Memory

Description Each bit of the specified Data Memory is cleared to 0.

Operation [m] � 00H

Affected flag(s) None

CLR [m].i Clear bit of Data Memory

Description Bit i of the specified Data Memory is cleared to 0.

Operation [m].i � 0

Affected flag(s) None

CLR WDT Clear Watchdog Timer

Description The TO, PDF flags and the WDT are all cleared.

Operation WDT cleared

TO � 0

PDF � 0

Affected flag(s) TO, PDF

CLR WDT1 Pre-clear Watchdog Timer

Description The TO, PDF flags and the WDT are all cleared. Note that this instruction works in conjunc-

tion with CLR WDT2 and must be executed alternately with CLR WDT2 to have effect. Re-

petitively executing this instruction without alternately executing CLR WDT2 will have no

effect.

Operation WDT cleared

TO � 0

PDF � 0

Affected flag(s) TO, PDF

CLR WDT2 Pre-clear Watchdog Timer

Description The TO, PDF flags and the WDT are all cleared. Note that this instruction works in conjunc-

tion with CLR WDT1 and must be executed alternately with CLR WDT1 to have effect. Re-

petitively executing this instruction without alternately executing CLR WDT1 will have no

effect.

Operation WDT cleared

TO � 0

PDF � 0

Affected flag(s) TO, PDF

HT82A623R/HT82A6208/HT82A6216

Rev. 1.10 82 October 30, 2009

CPL [m] Complement Data Memory

Description Each bit of the specified Data Memory is logically complemented (1�s complement). Bits

which previously contained a 1 are changed to 0 and vice versa.

Operation [m] � [m]

Affected flag(s) Z

CPLA [m] Complement Data Memory with result in ACC

Description Each bit of the specified Data Memory is logically complemented (1�s complement). Bits

which previously contained a 1 are changed to 0 and vice versa. The complemented result

is stored in the Accumulator and the contents of the Data Memory remain unchanged.

Operation ACC � [m]

Affected flag(s) Z

DAA [m] Decimal-Adjust ACC for addition with result in Data Memory

Description Convert the contents of the Accumulator value to a BCD (Binary Coded Decimal) value re-

sulting from the previous addition of two BCD variables. If the low nibble is greater than 9 or

if AC flag is set, then a value of 6 will be added to the low nibble. Otherwise the low nibble

remains unchanged. If the high nibble is greater than 9 or if the C flag is set, then a value of

6 will be added to the high nibble. Essentially, the decimal conversion is performed by add-

ing 00H, 06H, 60H or 66H depending on the Accumulator and flag conditions. Only the C

flag may be affected by this instruction which indicates that if the original BCD sum is

greater than 100, it allows multiple precision decimal addition.

Operation [m] � ACC + 00H or

[m] � ACC + 06H or

[m] � ACC + 60H or

[m] � ACC + 66H

Affected flag(s) C

DEC [m] Decrement Data Memory

Description Data in the specified Data Memory is decremented by 1.

Operation [m] � [m] � 1

Affected flag(s) Z

DECA [m] Decrement Data Memory with result in ACC

Description Data in the specified Data Memory is decremented by 1. The result is stored in the Accu-

mulator. The contents of the Data Memory remain unchanged.

Operation ACC � [m] � 1

Affected flag(s) Z

HALT Enter power down mode

Description This instruction stops the program execution and turns off the system clock. The contents

of the Data Memory and registers are retained. The WDT and prescaler are cleared. The

power down flag PDF is set and the WDT time-out flag TO is cleared.

Operation TO � 0

PDF � 1

Affected flag(s) TO, PDF

HT82A623R/HT82A6208/HT82A6216

Rev. 1.10 83 October 30, 2009

INC [m] Increment Data Memory

Description Data in the specified Data Memory is incremented by 1.

Operation [m] � [m] + 1

Affected flag(s) Z

INCA [m] Increment Data Memory with result in ACC

Description Data in the specified Data Memory is incremented by 1. The result is stored in the Accumu-

lator. The contents of the Data Memory remain unchanged.

Operation ACC � [m] + 1

Affected flag(s) Z

JMP addr Jump unconditionally

Description The contents of the Program Counter are replaced with the specified address. Program

execution then continues from this new address. As this requires the insertion of a dummy

instruction while the new address is loaded, it is a two cycle instruction.

Operation Program Counter � addr

Affected flag(s) None

MOV A,[m] Move Data Memory to ACC

Description The contents of the specified Data Memory are copied to the Accumulator.

Operation ACC � [m]

Affected flag(s) None

MOV A,x Move immediate data to ACC

Description The immediate data specified is loaded into the Accumulator.

Operation ACC � x

Affected flag(s) None

MOV [m],A Move ACC to Data Memory

Description The contents of the Accumulator are copied to the specified Data Memory.

Operation [m] � ACC

Affected flag(s) None

NOP No operation

Description No operation is performed. Execution continues with the next instruction.

Operation No operation

Affected flag(s) None

OR A,[m] Logical OR Data Memory to ACC

Description Data in the Accumulator and the specified Data Memory perform a bitwise logical OR oper-

ation. The result is stored in the Accumulator.

Operation ACC � ACC
OR
 [m]

Affected flag(s) Z

HT82A623R/HT82A6208/HT82A6216

Rev. 1.10 84 October 30, 2009

OR A,x Logical OR immediate data to ACC

Description Data in the Accumulator and the specified immediate data perform a bitwise logical OR op-

eration. The result is stored in the Accumulator.

Operation ACC � ACC
OR
 x

Affected flag(s) Z

ORM A,[m] Logical OR ACC to Data Memory

Description Data in the specified Data Memory and the Accumulator perform a bitwise logical OR oper-

ation. The result is stored in the Data Memory.

Operation [m] � ACC
OR
 [m]

Affected flag(s) Z

RET Return from subroutine

Description The Program Counter is restored from the stack. Program execution continues at the re-

stored address.

Operation Program Counter � Stack

Affected flag(s) None

RET A,x Return from subroutine and load immediate data to ACC

Description The Program Counter is restored from the stack and the Accumulator loaded with the

specified immediate data. Program execution continues at the restored address.

Operation Program Counter � Stack

ACC � x

Affected flag(s) None

RETI Return from interrupt

Description The Program Counter is restored from the stack and the interrupts are re-enabled by set-

ting the EMI bit. EMI is the master interrupt global enable bit. If an interrupt was pending

when the RETI instruction is executed, the pending Interrupt routine will be processed be-

fore returning to the main program.

Operation Program Counter � Stack

EMI � 1

Affected flag(s) None

RL [m] Rotate Data Memory left

Description The contents of the specified Data Memory are rotated left by 1 bit with bit 7 rotated into bit

0.

Operation [m].(i+1) � [m].i; (i = 0~6)

[m].0 � [m].7

Affected flag(s) None

RLA [m] Rotate Data Memory left with result in ACC

Description The contents of the specified Data Memory are rotated left by 1 bit with bit 7 rotated into bit

0. The rotated result is stored in the Accumulator and the contents of the Data Memory re-

main unchanged.

Operation ACC.(i+1) � [m].i; (i = 0~6)

ACC.0 � [m].7

Affected flag(s) None

HT82A623R/HT82A6208/HT82A6216

Rev. 1.10 85 October 30, 2009

RLC [m] Rotate Data Memory left through Carry

Description The contents of the specified Data Memory and the carry flag are rotated left by 1 bit. Bit 7

replaces the Carry bit and the original carry flag is rotated into bit 0.

Operation [m].(i+1) � [m].i; (i = 0~6)

[m].0 � C

C � [m].7

Affected flag(s) C

RLCA [m] Rotate Data Memory left through Carry with result in ACC

Description Data in the specified Data Memory and the carry flag are rotated left by 1 bit. Bit 7 replaces

the Carry bit and the original carry flag is rotated into the bit 0. The rotated result is stored in

the Accumulator and the contents of the Data Memory remain unchanged.

Operation ACC.(i+1) � [m].i; (i = 0~6)

ACC.0 � C

C � [m].7

Affected flag(s) C

RR [m] Rotate Data Memory right

Description The contents of the specified Data Memory are rotated right by 1 bit with bit 0 rotated into

bit 7.

Operation [m].i � [m].(i+1); (i = 0~6)

[m].7 � [m].0

Affected flag(s) None

RRA [m] Rotate Data Memory right with result in ACC

Description Data in the specified Data Memory and the carry flag are rotated right by 1 bit with bit 0 ro-

tated into bit 7. The rotated result is stored in the Accumulator and the contents of the Data

Memory remain unchanged.

Operation ACC.i � [m].(i+1); (i = 0~6)

ACC.7 � [m].0

Affected flag(s) None

RRC [m] Rotate Data Memory right through Carry

Description The contents of the specified Data Memory and the carry flag are rotated right by 1 bit. Bit 0

replaces the Carry bit and the original carry flag is rotated into bit 7.

Operation [m].i � [m].(i+1); (i = 0~6)

[m].7 � C

C � [m].0

Affected flag(s) C

RRCA [m] Rotate Data Memory right through Carry with result in ACC

Description Data in the specified Data Memory and the carry flag are rotated right by 1 bit. Bit 0 re-

places the Carry bit and the original carry flag is rotated into bit 7. The rotated result is

stored in the Accumulator and the contents of the Data Memory remain unchanged.

Operation ACC.i � [m].(i+1); (i = 0~6)

ACC.7 � C

C � [m].0

Affected flag(s) C

HT82A623R/HT82A6208/HT82A6216

Rev. 1.10 86 October 30, 2009

SBC A,[m] Subtract Data Memory from ACC with Carry

Description The contents of the specified Data Memory and the complement of the carry flag are sub-

tracted from the Accumulator. The result is stored in the Accumulator. Note that if the result

of subtraction is negative, the C flag will be cleared to 0, otherwise if the result is positive or

zero, the C flag will be set to 1.

Operation ACC � ACC � [m] � C

Affected flag(s) OV, Z, AC, C

SBCM A,[m] Subtract Data Memory from ACC with Carry and result in Data Memory

Description The contents of the specified Data Memory and the complement of the carry flag are sub-

tracted from the Accumulator. The result is stored in the Data Memory. Note that if the re-

sult of subtraction is negative, the C flag will be cleared to 0, otherwise if the result is

positive or zero, the C flag will be set to 1.

Operation [m] � ACC � [m] � C

Affected flag(s) OV, Z, AC, C

SDZ [m] Skip if decrement Data Memory is 0

Description The contents of the specified Data Memory are first decremented by 1. If the result is 0 the

following instruction is skipped. As this requires the insertion of a dummy instruction while

the next instruction is fetched, it is a two cycle instruction. If the result is not 0 the program

proceeds with the following instruction.

Operation [m] � [m] � 1

Skip if [m] = 0

Affected flag(s) None

SDZA [m] Skip if decrement Data Memory is zero with result in ACC

Description The contents of the specified Data Memory are first decremented by 1. If the result is 0, the

following instruction is skipped. The result is stored in the Accumulator but the specified

Data Memory contents remain unchanged. As this requires the insertion of a dummy in-

struction while the next instruction is fetched, it is a two cycle instruction. If the result is not

0, the program proceeds with the following instruction.

Operation ACC � [m] � 1

Skip if ACC = 0

Affected flag(s) None

SET [m] Set Data Memory

Description Each bit of the specified Data Memory is set to 1.

Operation [m] � FFH

Affected flag(s) None

SET [m].i Set bit of Data Memory

Description Bit i of the specified Data Memory is set to 1.

Operation [m].i � 1

Affected flag(s) None

HT82A623R/HT82A6208/HT82A6216

Rev. 1.10 87 October 30, 2009

SIZ [m] Skip if increment Data Memory is 0

Description The contents of the specified Data Memory are first incremented by 1. If the result is 0, the

following instruction is skipped. As this requires the insertion of a dummy instruction while

the next instruction is fetched, it is a two cycle instruction. If the result is not 0 the program

proceeds with the following instruction.

Operation [m] � [m] + 1

Skip if [m] = 0

Affected flag(s) None

SIZA [m] Skip if increment Data Memory is zero with result in ACC

Description The contents of the specified Data Memory are first incremented by 1. If the result is 0, the

following instruction is skipped. The result is stored in the Accumulator but the specified

Data Memory contents remain unchanged. As this requires the insertion of a dummy in-

struction while the next instruction is fetched, it is a two cycle instruction. If the result is not

0 the program proceeds with the following instruction.

Operation ACC � [m] + 1

Skip if ACC = 0

Affected flag(s) None

SNZ [m].i Skip if bit i of Data Memory is not 0

Description If bit i of the specified Data Memory is not 0, the following instruction is skipped. As this re-

quires the insertion of a dummy instruction while the next instruction is fetched, it is a two

cycle instruction. If the result is 0 the program proceeds with the following instruction.

Operation Skip if [m].i � 0

Affected flag(s) None

SUB A,[m] Subtract Data Memory from ACC

Description The specified Data Memory is subtracted from the contents of the Accumulator. The result

is stored in the Accumulator. Note that if the result of subtraction is negative, the C flag will

be cleared to 0, otherwise if the result is positive or zero, the C flag will be set to 1.

Operation ACC � ACC � [m]

Affected flag(s) OV, Z, AC, C

SUBM A,[m] Subtract Data Memory from ACC with result in Data Memory

Description The specified Data Memory is subtracted from the contents of the Accumulator. The result

is stored in the Data Memory. Note that if the result of subtraction is negative, the C flag will

be cleared to 0, otherwise if the result is positive or zero, the C flag will be set to 1.

Operation [m] � ACC � [m]

Affected flag(s) OV, Z, AC, C

SUB A,x Subtract immediate data from ACC

Description The immediate data specified by the code is subtracted from the contents of the Accumu-

lator. The result is stored in the Accumulator. Note that if the result of subtraction is nega-

tive, the C flag will be cleared to 0, otherwise if the result is positive or zero, the C flag will

be set to 1.

Operation ACC � ACC � x

Affected flag(s) OV, Z, AC, C

HT82A623R/HT82A6208/HT82A6216

Rev. 1.10 88 October 30, 2009

SWAP [m] Swap nibbles of Data Memory

Description The low-order and high-order nibbles of the specified Data Memory are interchanged.

Operation [m].3~[m].0 � [m].7 ~ [m].4

Affected flag(s) None

SWAPA [m] Swap nibbles of Data Memory with result in ACC

Description The low-order and high-order nibbles of the specified Data Memory are interchanged. The

result is stored in the Accumulator. The contents of the Data Memory remain unchanged.

Operation ACC.3 ~ ACC.0 � [m].7 ~ [m].4

ACC.7 ~ ACC.4 � [m].3 ~ [m].0

Affected flag(s) None

SZ [m] Skip if Data Memory is 0

Description If the contents of the specified Data Memory is 0, the following instruction is skipped. As

this requires the insertion of a dummy instruction while the next instruction is fetched, it is a

two cycle instruction. If the result is not 0 the program proceeds with the following instruc-

tion.

Operation Skip if [m] = 0

Affected flag(s) None

SZA [m] Skip if Data Memory is 0 with data movement to ACC

Description The contents of the specified Data Memory are copied to the Accumulator. If the value is

zero, the following instruction is skipped. As this requires the insertion of a dummy instruc-

tion while the next instruction is fetched, it is a two cycle instruction. If the result is not 0 the

program proceeds with the following instruction.

Operation ACC � [m]

Skip if [m] = 0

Affected flag(s) None

SZ [m].i Skip if bit i of Data Memory is 0

Description If bit i of the specified Data Memory is 0, the following instruction is skipped. As this re-

quires the insertion of a dummy instruction while the next instruction is fetched, it is a two

cycle instruction. If the result is not 0, the program proceeds with the following instruction.

Operation Skip if [m].i = 0

Affected flag(s) None

TABRDC [m] Read table (current page) to TBLH and Data Memory

Description The low byte of the program code (current page) addressed by the table pointer (TBLP) is

moved to the specified Data Memory and the high byte moved to TBLH.

Operation [m] � program code (low byte)

TBLH � program code (high byte)

Affected flag(s) None

TABRDL [m] Read table (last page) to TBLH and Data Memory

Description The low byte of the program code (last page) addressed by the table pointer (TBLP) is

moved to the specified Data Memory and the high byte moved to TBLH.

Operation [m] � program code (low byte)

TBLH � program code (high byte)

Affected flag(s) None

HT82A623R/HT82A6208/HT82A6216

Rev. 1.10 89 October 30, 2009

XOR A,[m] Logical XOR Data Memory to ACC

Description Data in the Accumulator and the specified Data Memory perform a bitwise logical XOR op-

eration. The result is stored in the Accumulator.

Operation ACC � ACC
XOR
 [m]

Affected flag(s) Z

XORM A,[m] Logical XOR ACC to Data Memory

Description Data in the specified Data Memory and the Accumulator perform a bitwise logical XOR op-

eration. The result is stored in the Data Memory.

Operation [m] � ACC
XOR
 [m]

Affected flag(s) Z

XOR A,x Logical XOR immediate data to ACC

Description Data in the Accumulator and the specified immediate data perform a bitwise logical XOR

operation. The result is stored in the Accumulator.

Operation ACC � ACC
XOR
 x

Affected flag(s) Z

HT82A623R/HT82A6208/HT82A6216

Rev. 1.10 90 October 30, 2009

Package Information

28-pin SOP (300mil) Outline Dimensions

� MS-013

Symbol
Dimensions in mil

Min. Nom. Max.

A 393 � 419

B 256 � 300

C 12 � 20

C� 697 � 713

D � � 104

E � 50 �

F 4 � 12

G 16 � 50

H 8 � 13

� 0	 � 8	

HT82A623R/HT82A6208/HT82A6216

Rev. 1.10 91 October 30, 2009

/ �

'

' 7

' 6

+ .

$

�

�

$ O
�

=

�2

28-pin SSOP (150mil) Outline Dimensions

Symbol
Dimensions in mil

Min. Nom. Max.

A 228 � 244

B 150 � 157

C 8 � 12

C� 386 � 394

D 54 � 60

E � 25 �

F 4 � 10

G 22 � 28

H 7 � 10

� 0	 � 8	

HT82A623R/HT82A6208/HT82A6216

Rev. 1.10 92 October 30, 2009

/ �

'

' 7

' 6

+ .

$

�

�

$ O
�

=

�
2

SAW Type 48-pin (7mm�7mm) QFN Outline Dimensions

Symbol
Dimensions in mm.

Min. Nom. Max.

A 0.70 � 0.80

A1 0.00 � 0.05

A3 � 0.203 �

b 0.18 � 0.30

D � 7.0 �

E � 7.0 �

e � 0.50 �

D2 4.50 � 5.75

E2 4.50 � 5.75

L 0.30 � 0.50

K 0.20 � �

HT82A623R/HT82A6208/HT82A6216

Rev. 1.10 93 October 30, 2009

�

2

	

�

+ '

+ 4

+

� /

(

2 /

:

'

' /

' 4/ 6

/ 7

4 5

4 8 6 �

44-pin QFP (10mm�10mm) Outline Dimensions

Symbol
Dimensions in mm

Min. Nom. Max.

A 13.0 � 13.4

B 9.9 � 10.1

C 13.0 � 13.4

D 9.9 � 10.1

E � 0.8 �

F � 0.3 �

G 1.9 � 2.2

H � � 2.7

I 0.25 � 0.50

J 0.73 � 0.93

K 0.1 � 0.2

L � 0.1 �

� 0	 � 7	

HT82A623R/HT82A6208/HT82A6216

Rev. 1.10 94 October 30, 2009

4 6

' ''

6 6

+ .

/ /

' /

2

�

�

=

�

R

: �

4 4 / 4

$

�

(

52-pin QFP (14mm�14mm) Outline Dimensions

Symbol
Dimensions in mm

Min. Nom. Max.

A 17.30 � 17.50

B 13.90 � 14.10

C 17.30 � 17.50

D 13.90 � 14.10

E � 1.00 �

F � 0.40 �

G 2.50 � 3.10

H � � 3.40

I � 0.10 �

J 0.73 � 1.03

K 0.10 � 0.20

� 0	 � 7	

HT82A623R/HT82A6208/HT82A6216

Rev. 1.10 95 October 30, 2009

4 9

6 1

7 /

'

/ 8

' 4

+ .

$

�

' 6

/ 5

2

�

�

=

�

R

:

Product Tape and Reel Specifications

Reel Dimensions

SOP 28W (300mil)

Symbol Description Dimensions in mm

A Reel Outer Diameter 330.0�1.0

B Reel Inner Diameter 100.0�1.5

C Spindle Hole Diameter 13.0 +0.5/-0.2

D Key Slit Width 2.0�0.5

T1 Space Between Flange 24.8 +0.3/-0.2

T2 Reel Thickness 30.2�0.2

SSOP 28S (150mil)

Symbol Description Dimensions in mm

A Reel Outer Diameter 330.0�1.0

B Reel Inner Diameter 100.0�1.5

C Spindle Hole Diameter 13.0 +0.5/-0.2

D Key Slit Width 2.0�0.5

T1 Space Between Flange 16.8 +0.3/-0.2

T2 Reel Thickness 22.2�0.2

HT82A623R/HT82A6208/HT82A6216

Rev. 1.10 96 October 30, 2009

+ $.

� '

� /
�

Carrier Tape Dimensions

SOP 28W (300mil)

Symbol Description Dimensions in mm

W Carrier Tape Width 24.0�0.3

P Cavity Pitch 12.0�0.1

E Perforation Position 1.75�0.10

F Cavity to Perforation (Width Direction) 11.5�0.1

D Perforation Diameter 1.5 +0.1/-0.0

D1 Cavity Hole Diameter 1.50 +0.25/-0.00

P0 Perforation Pitch 4.0�0.1

P1 Cavity to Perforation (Length Direction) 2.0�0.1

A0 Cavity Length 10.85�0.10

B0 Cavity Width 18.34�0.10

K0 Cavity Depth 2.97�0.10

t Carrier Tape Thickness 0.35�0.01

C Cover Tape Width 21.3�0.1

SSOP 28S (150mil)

Symbol Description Dimensions in mm

W Carrier Tape Width 16.0�0.3

P Cavity Pitch 8.0�0.1

E Perforation Position 1.75�0.1

F Cavity to Perforation (Width Direction) 7.5�0.1

D Perforation Diameter 1.55 +0.10/-0.00

D1 Cavity Hole Diameter 1.50 +0.25/-0.00

P0 Perforation Pitch 4.0�0.1

P1 Cavity to Perforation (Length Direction) 2.0�0.1

A0 Cavity Length 6.5�0.1

B0 Cavity Width 10.3�0.1

K0 Cavity Depth 2.1�0.1

t Carrier Tape Thickness 0.30�0.05

C Cover Tape Width 13.3�0.1

HT82A623R/HT82A6208/HT82A6216

Rev. 1.10 97 October 30, 2009

�� '

�

� '� 1
�

2

�

�

: 1

. 1

+ 1

$

� $ " & � � � � � 	 " & � � " ' " � � ! " � 	 " � 	 	 � " � � 	 �
� � 	 " � � � � � 	 ! " � � " � 	 " � �
 	 " � � ! 	 0

# 	 	 � " = � � 	

HT82A623R/HT82A6208/HT82A6216

Rev. 1.10 98 October 30, 2009

Copyright � 2009 by HOLTEK SEMICONDUCTOR INC.

The information appearing in this Data Sheet is believed to be accurate at the time of publication. However, Holtek as-
sumes no responsibility arising from the use of the specifications described. The applications mentioned herein are used
solely for the purpose of illustration and Holtek makes no warranty or representation that such applications will be suitable
without further modification, nor recommends the use of its products for application that may present a risk to human life

due to malfunction or otherwise. Holtek�s products are not authorized for use as critical components in life support devices
or systems. Holtek reserves the right to alter its products without prior notification. For the most up-to-date information,
please visit our web site at http://www.holtek.com.tw.

Holtek Semiconductor Inc. (Headquarters)
No.3, Creation Rd. II, Science Park, Hsinchu, Taiwan
Tel: 886-3-563-1999
Fax: 886-3-563-1189
http://www.holtek.com.tw

Holtek Semiconductor Inc. (Taipei Sales Office)
4F-2, No. 3-2, YuanQu St., Nankang Software Park, Taipei 115, Taiwan
Tel: 886-2-2655-7070
Fax: 886-2-2655-7373
Fax: 886-2-2655-7383 (International sales hotline)

Holtek Semiconductor Inc. (Shenzhen Sales Office)
5F, Unit A, Productivity Building, No.5 Gaoxin M 2nd Road, Nanshan District, Shenzhen, China 518057
Tel: 86-755-8616-9908, 86-755-8616-9308
Fax: 86-755-8616-9722

Holtek Semiconductor (USA), Inc. (North America Sales Office)
46729 Fremont Blvd., Fremont, CA 94538, USA
Tel: 1-510-252-9880
Fax: 1-510-252-9885
http://www.holtek.com

