32 BIT/DUAL 16 BIT BINARY UP COUNTER WITH BYTE MULTIPLEXED THREE-STATE OUTPUTS

FEATURES:

- DC to 15 MHz Count Frequency
- Byte Multiplexer
- DC to 1 MHz Scan Frequency
$\cdot+4.75 \mathrm{~V}$ to +5.25 V Operation (Vdd - Vss)
- Three-State Data Outputs, Bus and TTL Compatible
- Inputs TTL and CMOS Compatible
- Unique Cascade Feature Allows Multiplexing of Successive Bytes of Data in Sequence in Multiple Counter Systems
- Low Power Dissipation
- LS7060, LS7062 (DIP); LS7060-S, LS7062-S (SOIC) See Figures 1 \& 2

DESCRIPTION:

The LS7060/LS7062 is a MOS, 32 bit/dual 16 bit up counter. The IC includes latches, multiplexer, eight three-state binary data output drivers and output cascading logic.

DESCRIPTION OF OPERATION:

32 (16) BIT BINARY UP COUNTER - LS7060 (LS7062)
The 32(16) bit static ripple through counter increments on the negative edge of the input count pulse. Maximum ripple time is $4 \mu \mathrm{~s}(2 \mu \mathrm{~s})$ - transition count of 32(16) ones to 32(16) zeros. Guaranteed count frequency is DC to 15 MHz .
See Figure 9A(9B) for Block Diagram.

COUNT, $\overline{\text { ALT COUNT }}$ (LS7060)

Input count pulses to the 32 bit counter may be applied through either of these two inputs. The ALT COUNT input circuitry contains a Schmitt trigger network which allows proper counting with "infinitely" long clock edges. A high applied to either of these two inputs inhibits counting.

COUNT A, ALT COUNT A (LS7062)

Input count pulses to the first 16 bit counter may be applied through either of these two inputs. The ALT COUNT A input circuitry contains a Schmitt trigger network which allows proper counting with "infinitely" long clock edges. A high applied to either of these two inputs inhibits counting.

RESET

All 32 counter bits are reset to zero when $\overline{\operatorname{RESET}}$ is brought low for a minimum of $1 \mu \mathrm{~s}$. RESET must be high for a minimum of 300 ns before next valid count can be recorded.

TEST COUNT (LS7060)

Count pulses may be applied to the last 16 bits of the binary counter through this input, as long as Bit 16 of the counter is a low. The counter advances on the negative transition of these pulses. This input is intended to be used for test purposes.

$\overline{\text { COUNT B }}$ (LS7062)

Count pulses may be applied to the last 16 bits of the binary counter through this input. The counter advances on the negative transition of these pulses.

LATCHES - LS7060 (LS7062)
32 bits of latch are provided for storage of counter data. All latches are loaded when the LOAD input is brought low for a minimum of $1 \mu \mathrm{~s}$ and kept low until a minimum of $4 \mu \mathrm{~s}(2 \mu \mathrm{~s})$ has elapsed from previous negative edge of count pulse (ripple time). Storage of valid data occurs when LOAD is brought high for a minimum of 250 ns before next negative edge of count pulse or RESET.

SCAN COUNTER AND DECODER

The scan counter is reset to the least significant byte position (State 1) when SCAN RESET input is brought low for a minimum of $1 \mu \mathrm{~s}$. The scan counter is enabled for counting as long as the ENABLE input is held low. The counter advances to the next significant byte position on each negative transition of the SCAN pulse. When the scan counter advances to State 5 it disables the Output Drivers and stops in that state until
SCAN RESET is again brought low.

SCAN

When the scan counter is enabled, each negative transition of this input advances the scan counter to its next state. When SCAN is low the Data Outputs are disabled. When SCAN is brought high the Data Outputs are enabled and present the latched counter data corresponding to the present state of the scan counter. Therefore, in microprocessor applications, the Data Output Bus may be utilized for other activities while new data is propagating to the outputs. This positive SCAN pulse can be viewed as a "Place the next byte on my bus" instruction from the microprocessor. Minimum positive and negative pulse widths of 500 ns for the SCAN signal are required for scan counter operation.

$\overline{\text { SCAN RESET }} / \overline{\text { LOAD }}$

When this input is brought low for a minimum of $1 \mu \mathrm{~s}$, the scan counter is reset to State 1, the least significant byte position, and the latches are simultaneously loaded with new count information.

ENABLE

When this input is high, the scan counter and the Data Outputs are disabled. When ENABLE is low, the scan counter and Data Outputs are enabled for normal operation. Transition of this input should only be made while the SCAN input is in a low state in order to prevent false clocking of the scan counter.

CASCADE ENABLE

This output is normally high. It transitions low and stays low when the scan counter advances to State 5. In a multiple counter system this output is connected to the ENABLE input of the next counter in the cascade string. The SCAN input and SCAN RESET/LOAD input are carried to all the counters in the "Cascade". Counter 1 then presents its bytes of data to the Output Bus on each positive transition of the SCAN pulse as previously discussed. When State 5 of Counter 1 is achieved, Counter 2 presents its data to the Output Bus. This sequence continues until all counters in the cascade have been addressed. See Figure 5 for an illustration of a 3 device cascade design. This output is TTL and CMOS compatible.

THREE-STATE DATA OUTPUT DRIVERS

The eight Data Output Drivers are disabled when either ENABLE input is high, the scan counter is in State 5, or the SCAN input is low. The Output Drivers are TTL and Bus compatible.

The information included herein is believed to be accurate and reliable. However, LSI Computer Systems, Inc. assumes no responsibilities for inaccuracies, nor for any infringements of patent rights of others which may result from its use.

ABSOLUTE MAXIMUM RATINGS:

PARAMETER
Storage Temperature
Operating Temperature
Voltage (any pin to Vss)

SYMBOL
TstG
TA
VIN

VALUE	UNIT
-55 to +150	${ }^{\circ} \mathrm{C}$
0 to +70	${ }^{\circ} \mathrm{C}$
+10 to -0.3	V

DC ELECTRICAL CHARACTERISTICS:
(VDD $=+5 \mathrm{~V} \pm 5 \%, \mathrm{Vss}=0 \mathrm{~V}, \mathrm{TA}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ unless otherwise noted.)

PARAMETER
Power Supply Current
Input High Voltage
Input Low Voltage
Output High Voltage
CASCADE ENABLE
B0-B7
Output Low Voltage
CASCADE ENABLE
B0-B7
Output Source Current
B0-B7 Outputs
Output Sink Current
B0 - B7 Outputs
Output Leakage Current
B0 - B7 (Off State)
Input Capacitance
Output Capacitance
Input Leakage Current
ENABLE, RESET, SCAN

SYMBOL	Min	MAX	UNIT IDD	-		
mA					\quad	CONDITIONS
:---						
At Maximum Operating Frequency						
VIH						

INPUT CURRENT

*SCAN RESET/LOAD

IIH	-	-2.5
IIL	-	-5
IIH	-	5
IIL	-	1

$\mu \mathrm{A}$	$\mathrm{VDD}=\mathrm{Max}, \mathrm{V}$ IH $=+3.5$
$\mu \mathrm{~A}$	$\mathrm{VDD}=\mathrm{Max}, \mathrm{VIL}=0$
$\mu \mathrm{~A}$	$\mathrm{VDD}=\mathrm{Max}, \mathrm{VIH}=+3.5$
$\mu \mathrm{~A}$	$\mathrm{VDD}=\mathrm{Max}, \mathrm{VIL}=0$

*Input has internal pull-up resistor to VDD
** Inputs have internal pull-down resistor to Vss

DYNAMIC ELECTRICAL CHARACTERISTICS:
(VDD $=+5 \mathrm{~V} \pm 5 \%, \mathrm{VsS}=0 \mathrm{~V}, \mathrm{TA}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ unless otherwise noted.)

PARAMETER Count Frequency (All Count inputs) Count Pulse Width (All Count Inputs)	SYMBOL fc	MIN DC	MAX Count Rise \& Fall time	tcPw	30

FIGURE 3. SCAN COUNTER \& DECODER OUTPUTS TIMING DIAGRAM

FIGURE 4. COUNTER TIMING DIAGRAM

FIGURE 5. ILLUSTRATION OF A 3 DEVICE CASCADE

FIGURE 6. TIMING DIAGRAM FOR THE 3 DRIVER CASCADE

COUNT PULSES
(Same as input to $\overline{\text { Alt Count) }}$

METHOD 2

FIGURE 7. SYNCHRONIZING INHIBIT WITH COUNT PULSES FOR LS7060
 INHIBIT $\quad \underset{\sim}{\square}$

\square

(*Reference LS7062 Block Diagram, Figure 9B)

> NOTE: Count A may only change during positive portion of Count Pulses (Alt Count $A)$ when $\overline{\text { Count } A \text { is used as an inhibit. }}$

FIGURE 8. SYNCHRONIZING INHIBIT WITH COUNT PULSES FOR COUNTER A FOR LS7062

FIGURE 9A. LS7060 BLOCK DIAGRAM

