
BYV26D

SINTERED GLASS JUNCTION FAST AVALANCHE RECTIFIER E: 800V CURRENT: 1.0A

VOLTAGE: 800V

MECHANICAL DATA

Case: SOD-57 sintered glass case Terminal: Plated axial leads solderable per MIL-STD 202E, method 208C Polarity: color band denotes cathode end Mounting position: any

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

(single-phase, half-wave, 60HZ, resistive or inductive load rating at 25°C, unless otherwise stated)

	SYMBOL	BYV26D	units
Maximum Recurrent Peak Reverse Voltage	V _{RRM}	800	V
Maximum RMS Voltage	V _{RMS}	560	V
Maximum DC blocking Voltage	V _{DC}	800	V
Reverse avalanche breakdown voltage at IR = 0.1	mA V _{(BR)R}	900min	V
Maximum Average Forward Rectified Current $3/8$ "lead length at Ttp = $85^{\circ}C$	I _{FAV}	1.0	A
Non-repetitive Peak Forward Current at t=10m sine wave	s half I _{FSM}	30	А
Maximum Forward Voltage at rated Forward Cur	rent V _F	2.5	V
Non-repetitive peak reverse avalanche energy (No	te 1) E _{RSM}	10	mJ
Maximum DC Reverse CurrentTa =2at rated DC blocking voltageTa =10	25°C I _R 65°C	5.0 150.0	μΑ μΑ
Maximum Reverse Recovery Time (No	ote 2) Trr	75	nS
Diode Capacitance (No	ote 3) C _d	40	pF
Typical Thermal Resistance (No	ote 4) R _{th(ja)}	100	°C /M
Storage and Operating Junction Temperature	Tstg, Tj	-65 to +175	°C

Note:

1. I_R=400mA; Tj=Tjmax prior to surge; inductive load switched off

2. Reverse Recovery Condition If =0.5A, Ir =1.0A, Irr =0.25A

3. Measured at 1.0 MHz and applied reverse voltage of 0Vdc

4. Device mounted on an epoxy-glass printed-circuit board, 1.5mm thick

www.gulfsemi.com

RATINGS AND CHARACTERISTIC CURVES BYV26D

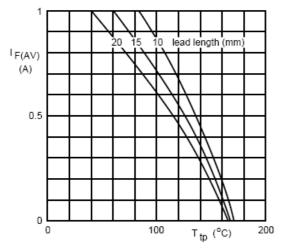


Fig.1 Maximum average forward current as a function of tie-point temperature (including losses due to reverse leakage).

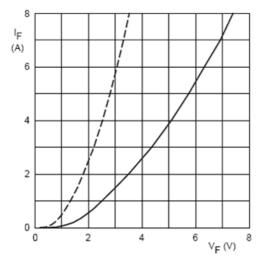


Fig. 3 Forward current as a function of forward voltage; maximum values.

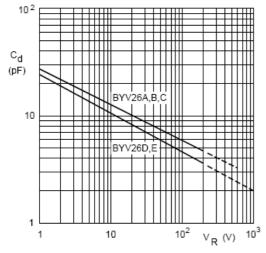


Fig. 5 Diode capacitance as a function of reverse voltage, typical values.

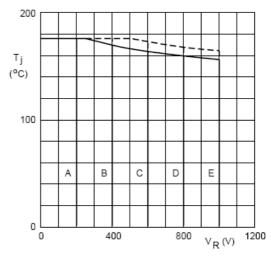


Fig. 2 Maximum permissible junction temperature as a function of reverse voltage.

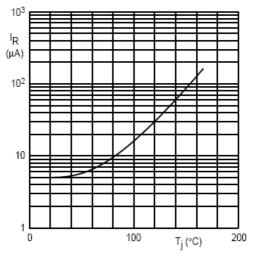


Fig.4 Reverse current as a function of junction temperature; maximum values.