

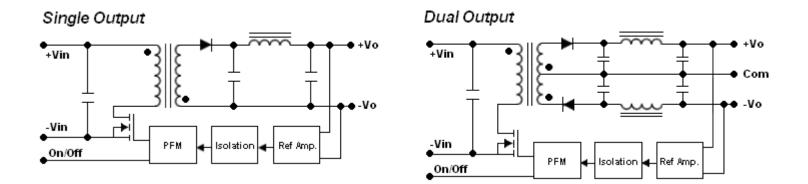
FEATURES

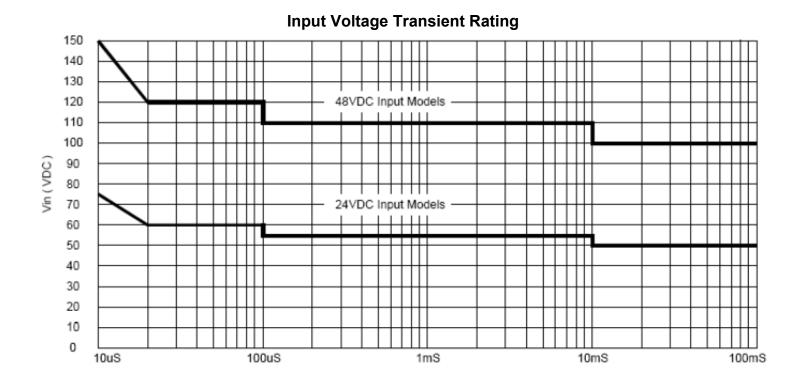
- Low Cost
- 1000VDC Isolation
- Efficiency up to 80%
- Low Ripple and Noise
- MTBF > 1,000,000 Hours
- Remote ON/OFF Control
- Internal SMT Construction
- 4:1 Ultra Wide Input Range
- UL 94V-0 Package Material
- Temperature Performance -40°C to +85°C

SPECIFICATIONS: LANEUW Series					
	, Nominal Input Voltage, and Maximum Output		otherwise	e noted.	
	ht to change specifications based on technolog	gical advances.			
SPECIFICATION	TEST CONDITIONS	Min	Nom	Max	Unit
INPUT (V _{in})					
Input Voltage Range (24V input models)		9	24	36	VDC
Input Voltage Range (48V input models)		18	48	75	VDC
Start Voltage 24V input models)		8	12	18	VDC
Start Voltage (48V input models)		16	24	36	VDC
Under Voltage Shutdown (24V input models)				8	VDC
Under Voltage Shutdown (48V input models)				16	VDC
Reverse Polarity Input Current	All models			0.5	А
Input Surge Voltage (1000ms) (24V input models)		-0.7		50	VDC
Input Surge Voltage (1000ms) (48V input models)		-0.7		100	VDC
Reflected Ripple Current			See	Table	1
Short Circuit Input Power	All models			1500	mW
Input Filter	All models		Canaci	tor Type	
OUTPUT (V _o)			Cupuoi		
Output Voltage Range			See	Table	
Output Voltage Accuracy			±1.0	±2.0	%
Output Voltage Balance	Dual Output, Balanced Loads		±1.0	±2.0	%
Load Regulation	lo = 25% to 100%		±0.5	±0.75	%
Line Regulation	Vin = Min to Max		±0.3	±0.75	%
Output Power			10.5	2	W
Output Current Range			See	Table	VV
Ripple & Noise (20MHz)			30	50	mV _{pk-pk}
Ripple & Noise (20MHz)	Over Line, Load, and Temperature			75	mV _{pk-pk}
Ripple & Noise (20MHz)				15	mVrms
Transient Recovery Time	25% Load Step Change		100	300	
Transient Response Deviation	25% Load Step Change		±3	±5	µs %
Temperature Coefficient	25% Load Step Change		±3 ±0.01	±5 ±0.02	% %/°C
REMOTE ON/OFF			±0.01	±0.02	%/ C
) () h () m) (100	
Supply On	Under 0.6VDC or Open Circuit, d		DC by 2mv	1	
Supply Off		2.7	0.4	15	VDC
Device Standby Input Current			0.1	0.2	mA
Control Input Current (On)				-1	mA
Control Input Current (Off)				1	mA
Control Common	Referenced to N	legative Input			
PROTECTION			1	1	1.01
Over Power Protection		120			%
Short Circuit Protection				nuous	
Input Fuse Recommendation (24V input models)			50mA Slov		
Input Fuse Recommendation (48V input models)		1	35mA Slov	w-Blow Ty	ре
GENERAL					
Efficiency				Table	
Switching Frequency			300		KHz
Isolation Voltage Rated	60 seconds	1000			VDC
Isolation Voltage Test	Flash Tested for 1 second	1100			VDC
Isolation Resistance	500VDC	1000			MΩ
Isolation Capacitance	100KHz, 1V		250	500	pF
Maximum Capacitive Load			See	Table	
Internal Power Dissipation				2500	mW

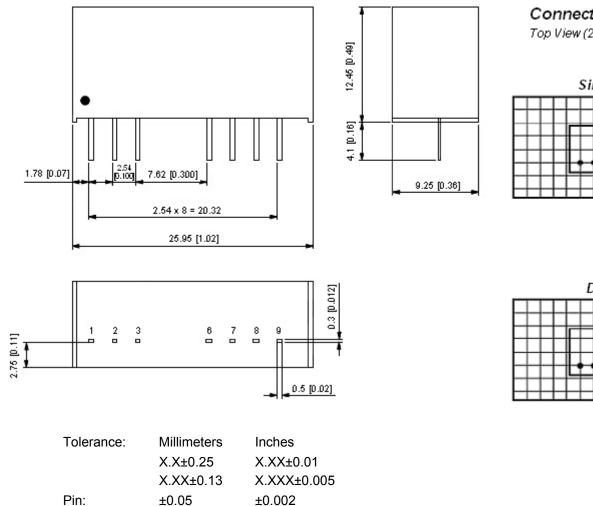
SPECIFICATION	TEST CONDITIONS	Min	Nom	Max	Unit	
ENVIRONMENTAL						
Operating Temperature (Ambient)		-40		+85	°C	
Operating Temperature (Case)		-40		+90	°C	
Storage Temperature		-55		+105	°C	
Lead Temperature	1.5mm from case for 10 seconds			260	°C	
Humidity				95	%	
Cooling			Free air convection			
MTBF	MIL-HDBK-217F @ 25°C, Ground Benign		1,000,00	00 Hours		
PHYSICAL						
Weight			6.5 g	rams		
Dimensions		2	25.95 x 9.25 x 12.45 mm			
Case Material		No	Non-conductive black plastic			

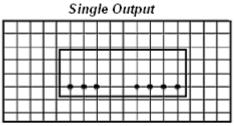
OUTPUT VOLTAGE / CURRENT RATING CHART


Model Number	Input Voltage	Output Output Output Current Input Current		Current	Reflected Ripple	Efficiency	Max Capacitive		
wouer Number	input voitage	Voltage	Min	Max	No Load	Max Load	Current	(Тур)	Load
LANEUW2433R		3.3 VDC	125 mA	500 mA		97 mA		71%	2200µF
LANEUW2405R		5 VDC	100 mA	400 mA		110 mA		76%	1000µF
LANEUW2412R		12 VDC	42 mA	167 mA		106 mA		79%	170µF
LANEUW2415R	24 VDC (9 – 36 VDC)	15 VDC	33 mA	134 mA	20 mA	105 mA	300 mA (Typ)	80%	110µF
LANEUW2405RD	()	±5 VDC	±50 mA	±200 mA		114 mA		73%	470µF
LANEUW2412RD		±12 VDC	±21 mA	±83 mA		108 mA		77%	100µF
LANEUW2415RD		±15 VDC	±17 mA	±67 mA		106 mA		79%	47µF
LANEUW4833R		3.3 VDC	125 mA	500 mA	15 mA	49 mA		70%	2200µF
LANEUW4805R		5 VDC	100 mA	400 mA		58 mA		72%	1000µF
LANEUW4812R	48 VDC	12 VDC	42 mA	167 mA		54 mA		78%	170µF
LANEUW4815R	(18 – 75 VDC)	15 VDC	33 mA	134 mA		54 mA	600 mA (Typ)	78%	110µF
LANEUW4805RD		±5 VDC	±50 mA	±200 mA		60 mA		70%	470µF
LANEUW4812RD		±12 VDC	±21 mA	±83 mA		55 mA		76%	100µF
LANEUW4815RD		±15 VDC	±17 mA	±67 mA		55 mA		76%	47µF


NOTES

- 1. Specifications typical at +25°C, resistive load, nominal input voltage, rated output current unless otherwise noted.
- 2. Transient Recovery Time is measured to within 1% error band for a step change in output of 75% to 100%.
- 3. Ripple and noise measured at 20MHz bandwidth.
- 4. The LANEUW Series requires a minimum load on the output to maintain specified regulation. Operation under no-load conditions will not damage these devices, however they may not meet all listed specifications.
- 5. All DC/DC converters should be externally fused on the front end for protection.
- 6. Other input and output voltages may be available, please contact factory.
- 7. Specifications subject to change without notice.


BLOCK DIAGRAMS

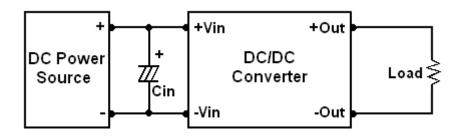

MECHANICAL DRAWING

PIN CONNECTIONS								
Pin	Single Output	Dual Output						
1	-Vin	-Vin						
2	+Vin	+Vin						
3	Remote On/Off	Remote On/Off						
6	+Vout	+Vout						
7	NC	Common						
8	NC	NC						
9	-Vout	-Vout						

Connecting Pin Patterns

Top View (2.54mm/0.1 inch grids)

				Ľ)ua	al	0	ıtp	ut						
\square															
\vdash	Н	\square										H			\square
\vdash	H	\vdash								_		Н			
	\vdash	-	Н	H	H	-		H	Η	Η	H	Н	-	-	-
\vdash			-	-	-	-	-	-	-	=	=	F	-	-	
\vdash				-	-	-		-	-	-	-	-	-	-	

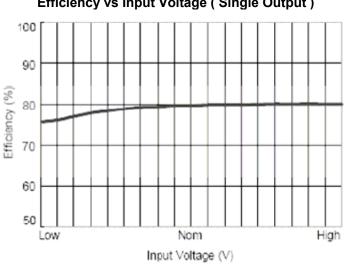

DESIGN & FEATURE CONSIDERATIONS

Input Source Impedance

The power module should be connected to a low ac-impedance input source. Highly inductive source impedances can affect the stability of the power module.

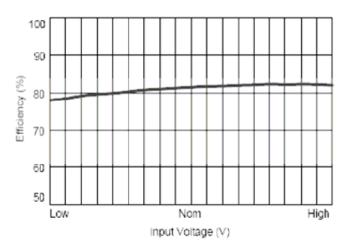
In applications where power is supplied over long lines and output loading is high, it may be necessary to use a capacitor at the input to ensure startup.

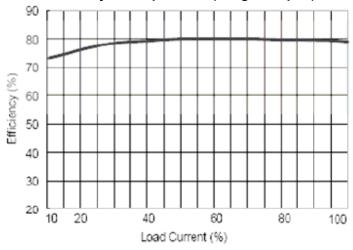
Capacitor mounted close to the power module helps ensure stability of the unit, it is recommended to use a good quality low Equivalent Series Resistance (ESR < 1.0Ω at 100 KHz) capacitor of a 1.5uF for the 24V and 48V input devices.


Maximum Capacitive Load

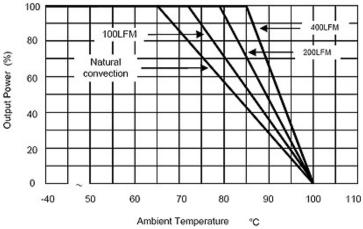
The LANEUW Series has a limitation of maximum connected capacitance on the output. The power module may be operated in current limiting mode during start-up, affecting the ramp-up and the startup time. The maximum capacitance can be found in the "Output Voltage / Current Rating Chart."

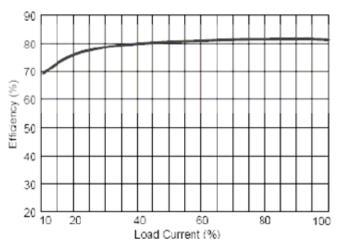
Over Current Protection


To provide protection in a fault (output overload) condition, the unit is equipped with internal current limiting circuitry and can endure current limiting for an unlimited duration. At the point of current-limit inception, the unit shifts from voltage control to current control. The unit operates normally once the output current is brought back into its specified range.

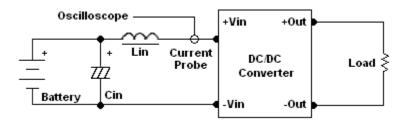


Efficiency vs Input Voltage (Single Output)


Efficiency vs Input Voltage (Dual Output)


Efficiency vs Output Load (Single Output)

Efficiency vs Output Load (Dual Output)


TEST CONFIGURATIONS

Input Reflected-Ripple Current Test Setup

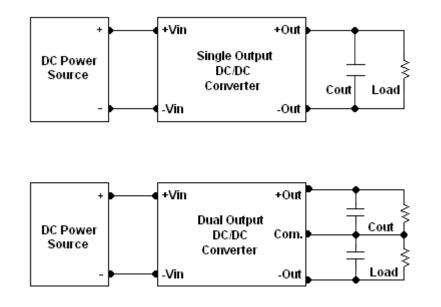
Input reflected-ripple current is measured with an inductor Lin (4.7uH) and Cin (220uF, ESR < 1.0Ω at 100 KHz) to simulate source impedance.

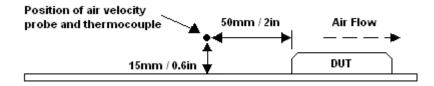
Capacitor Cin offsets possible battery impedance.

Current ripple is measured at the input terminals of the module. Measurement bandwidth is 0-500 KHz.

Peak-to-Peak Output Noise Measurement Test

Use a Cout 0.47uF ceramic capacitor.


Scope measurement should be made by using a BNC socket, measurement bandwidth is 0-20MHz. Position the load between 50mm and 75mm from the DC/DC Converter.


Output Ripple Reduction

A good quality low ESR capacitor placed as close as possible across the load will give the best ripple and noise performance. To reduce output ripple, it is recommended to use 3.3uF capacitors at the output.

Thermal Considerations

Many conditions affect the thermal performance of the power module, such as orientation, airflow over the module, and board spacing. To avoid exceeding the maximum temperature rating of the components inside the power module, the case temperature must be kept below 90°C. The derating curves are determined from measurements obtained in an experimental apparatus.

COMPANY INFORMATION:

Wall Industries, Inc. has created custom and modified units for over 40 years. Our in-house research and development engineers will provide a solution that exceeds your performance requirements on time and on budget. Our ISO9001-2000 certification is just one example of our commitment to producing a high quality, well documented product for our customers.

Our past projects demonstrate our commitment to you, our customer. Wall Industries, Inc. has a reputation for working closely with its customers to ensure each solution meets or exceeds form, fit and function requirements. We will continue to provide ongoing support for your project above and beyond the design and production phases. Give us a call today to discuss your future projects.

Contact Wall Industries for further information:

<u>Phone:</u>	☎ (603)778-2300
Toll Free:	(888)587-9255
<u>Fax:</u>	🕿 (603)778-9797
<u>E-mail:</u>	sales@wallindustries.com
<u>Web:</u>	www.wallindustries.com
<u>Address:</u>	5 Watson Brook Rd.
	Exeter, NH 03833