

AUDIO PROCESSOR LSI WITH SD CARD INTERFACE FOR MOBILE PHONES

DESCRIPTION

NEC

The μ PD99911 is an audio processor LSI with CPU and SD memory card interface. This LSI can perform the functions of an SD audio player without host interactions during playback, which helps the system to achieve low power consumption. This LSI also performs audio streaming playback. It supports not only MP3 but also AAC decoding.

FEATURES

High performance on-chip digital signal processor for the following functions.

Decoder: MP3, WMA, AAC, HE-AAC, Enhanced aacPlus

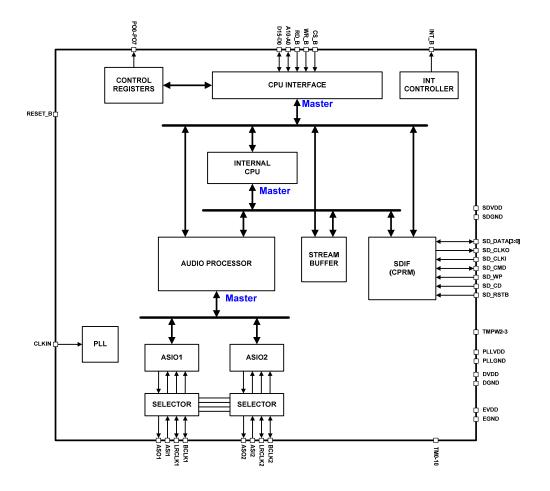
- AGC (Automatic Gain Controller)
- SRC (Sampling Rate Converter)
- 5-band PEQ (Parametric Equalizer)
- SD memory card interface with CPRM function
- 2 sets of audio serial I/O interface (16 bits stereo) provided. The serial data input frequency is variable from 32 fs to 128 fs in the slave mode. I2S is supported.
- 16-bit parallel host interface
- 8 general-purpose on-chip output ports •
- Programmable PLL on-chip for 32.768 kHz input clock, such as an RTC clock.
- Power management system on-chip
 - Operation mode
 - Sleep mode (resume data of memory and register)
 - Transparency mode (direct connection between ASIO1 and ASIO2)
 - Deep sleep mode
- Power supply voltages:

1.7 to 2.0 V
1.16 to 1.24 V
1.16 to 1.24 V
1.7 to 3.0 V

ORDERING INFORMATION

Part number Package μPD99911F1-BAC-A 97-pin plastic FBGA (6 × 6)

Remark A lead-free product.


The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version. Not all products and/or types are available in every country. Please check with an NEC Electronics sales representative for availability and additional information.

The revised points can be easily searched by copying an "<R>" in the PDF file and specifying it in the "Find what:" field.

<R>

© NEC Electronics Corporation 2006 The mark <R> shows major revised points.

BLOCK DIAGRAM AND FUNCTIONS

(1) Audio processor

The LSI contains a high-performance digital signal processor for decoding and encoding audio. For operation, firmware needs to be downloaded in advance from external memory via a host CPU. The firmware provides the following different configurable functions:

- Audio decoder

MP3, WMA, AAC, HE-AAC, Enhanced aacPlus

- Sampling rate converter (SRC)
- Volume controller (including soft volume function)
- Automatic gain controller (AGC)
- 5-band parametric equalizer
- Channel controller
 - Stereo/mono

(2) PLL

Clock input of 32.768 kHz is supported. When a clock with a frequency in this range is input, it is multiplied by the PLL to generate the fixed frequency clock that is required internally. After activation, normal operation begins after at least 2 ms have elapsed.

(3) General-purpose output (PO0 to PO7)

The PO0 to PO7 ports can be controlled by the command register.

(4) Host interface

16-bit parallel interface is supported for the host interface.

(5) Audio serial interface (ASIO1 and ASIO2)

These are two I/O interface lines for external audio serial data communication. The serial data input frequency is variable. The frequency can be selected in 2-bit steps within a range from 32 to 128 bits. The I2S format is available.

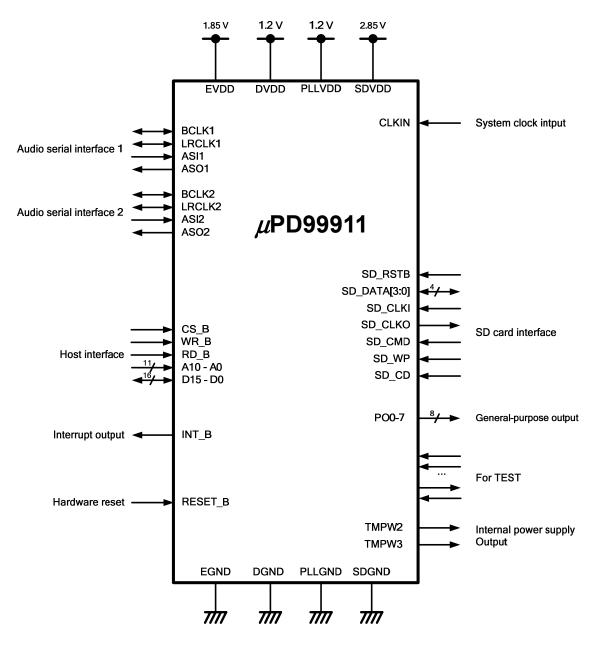
It is possible to make a direct connection of ASIO1 and ASIO2 internally (transparency mode). Very low power consumption can be achieved during the transparency mode.

(6) SD memory card interface

An SD memory card can be directly connected to the LSI.

(7) Power management system

Power management system is included internally, which provides suitable operation modes for low power consumption.

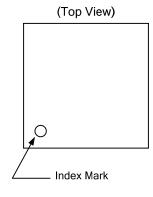

CONTENTS

1. PIN FUNCTIONS	6
1.1 Pin Configuration	6
1.2 Pin Configuration	7
1.3 Pin Functions	8
1.4 Connection of Unused Pins	11
1.5 Initial State of Pins	11
1.6 Pin Protection	12
1.7 Pin Outline Schematics	12
2. INTERNAL POWER AND CLOCK DOMAINS	14
2.1 Power Domains	14
2.1.1 Hardware reset	15
2.1.2 Power/reset control of DVDD2 and DVDD3 domains	16
2.2 Clock Domains	17
2.2.1 CLKIN	17
2.2.2 PLL	17
2.2.3 Divider and domains	17
2.2.4 Standby	17
3. HOST CPU INTERFACE	18
4. AUDIO SERIAL INTERFACE	19
4.1 Format	19
4.2 Synchronous Operation	
4.3 Transparency Mode	21
5. REGISTERS	
5.1 Register Maps	
5.1.1 Register map for chip control	
5.1.2 Register map for DSP control	
5.1.3 Register map for CPU control	
5.1.4 Register map for SD interface control	
5.2 Chip Control Registers	
5.2.1 Power domain control register: PWSW (Address: 000H)	24
5.2.2 Async RESET for power domains register: RSTB (Address: 002H)	24
5.2.3 Standby setting register: STNBY (Address: 004H)	25
5.2.4 Master clock setting register: MCLK (Address: 006H)	26
5.2.5 ASIO control register: ASIOCNT (Address: 00AH)	27
5.2.6 General-purpose output port setting register: POUT (Address: 020H)	29
5.2.7 Interrupt source register: INTSRC (Address: 030H)	29
5.2.8 Timer interrupt clear register: ITIM (Address: 032H)	29
5.2.9 Interrupt mask register: INTM (Address: 034H)	29
5.2.10 PLL activation enable flag register: ENFLG (Address: 040H)	30
5.2.11 Continuous data access control registers: CSTA (Address: 042H), CCLR (Address: 044H)	30
5.3 DSP Registers	31
5.4 CPU Registers	31
5.5 SD Registers	31

6. POWER MANAGEMENT	32
6.1 Acceptable Power Supply Combinations	32
6.2 Standby Modes	
6.2.1 Sleep mode	
6.2.2 Transparency mode	
6.2.3 Deep sleep mode	
7. POWER STARTUP PROCEDURE	34
7.1 Wakeup Sequence	
7.1.1 Basic sequence	34
7.1.2 Wakeup sequence of DVDD2	35
7.1.3 Wakeup sequence of DVDD3 and SDVDD	
7.2 Shut-down Sequence	
7.3 Power Control During Operation	
7.3.1 DVDD2 control	
7.3.2 DVDD3 and SDVDD control	
8. ELECTRICAL SPECIFICATIONS	
8. ELECTRICAL SPECIFICATIONS	
8.1 Absolute Maximum Ratings	40
8.1 Absolute Maximum Ratings 8.2 Recommended Operating Conditions	40 40
8.1 Absolute Maximum Ratings	40 40 40
8.1 Absolute Maximum Ratings 8.2 Recommended Operating Conditions 8.3 Capacitance	
 8.1 Absolute Maximum Ratings 8.2 Recommended Operating Conditions 8.3 Capacitance 8.4 DC Characteristics 	40 40 40 41 42
 8.1 Absolute Maximum Ratings	40 40 40 41 42 42
 8.1 Absolute Maximum Ratings 8.2 Recommended Operating Conditions	40 40 40 41 42 42 42 42
 8.1 Absolute Maximum Ratings	40 40 40 41 42 42 42 42 42
 8.1 Absolute Maximum Ratings	40 40 40 41 42 42 42 42 42 42
 8.1 Absolute Maximum Ratings. 8.2 Recommended Operating Conditions 8.3 Capacitance 8.4 DC Characteristics. 8.5 AC Characteristics. 8.5.1 Clock 8.5.2 Reset (RESET_B and SD_RSTB). 8.5.3 Wakeup wait time of internal power supply. 8.5.4 Host interface 	40 40 40 41 42 42 42 42 42 42 42 42 42 43 43
 8.1 Absolute Maximum Ratings	40 40 40 41 42 42 42 42 42 42 42 42 42 43 43 45

1. PIN FUNCTIONS

1.1 Pin Configuration



1.2 Pin Configuration

<R>

97-pin plastic FBGA (6 x 6) μ PD99911F1-BAC-A

(Bottom View)	_
000000000 0000000000 0000000000 0000000	10 987654321

Pin No.	Pin Name	Pin No.	Pin Name	Pin No.	Pin Name
A1	N.C.	D4	SD_CLKI	K7	EVDD
B1	EVDD	E4	SDGND	A8	EVDD
C1	BCLK1	F4	SD_DATA2	B8	EGND
D1	DGND	G4	DVDD	C8	TM5
E1	SDVDD	H4	EGND	D8	D11
F1	SD_DATA0	J4	PO2	E8	D14
G1	SD_WP	K4	PO3	F8	A9
H1	PLLVDD	A5	D0	G8	A8
J1	PLLGND	B5	ASI2	H8	A1
K1	N.C.	C5	D1	J8	A3
A2	TM10	D5	DGND	K8	A2
B2	EGND	E5	DVDD	A9	TM7
C2	LRCLK2	G5	DVDD	B9	TM8
D2	ASI1	H5	PO4	C9	D8
E2	TMPW3	J5	PO5	D9	D9
F2	SD_DATA1	K5	PO6	E9	D13
G2	SD_CMD	A6	BCLK2	F9	A10
H2	SD_CD	B6	D2	G9	A6
J2	TM4	C6	D3	H9	A5
K2	TM3	D6	DVDD	J9	TM2
A3	WR_B	G6	DGND	K9	TM1
B3	TM6	H6	PO7	A10	N.C.
C3	ASO1	J6	EGND	B10	TM9
D3	LRCLK1	K6	INT_B	C10	D7
E3	SD_RSTB	A7	D5	D10	D10
F3	SD_CLKO	B7	D4	E10	DGND
G3	SD_DATA3	C7	D6	F10	DVDD
H3	CLKIN	D7	D12	G10	A7
J3	PO0	E7	D15	H10	A4
K3	PO1	F7	TMPW2	J10	TM0
A4	RD_B	G7	A0	K10	N.C.
B4	ASO2	H7	EGND		
C4	CS_B	J7	RESET_B		

Caution: Leave the N.C. pins open.

1.3 Pin Functions

(1) Power supply pins

Pin Name	I/O	Function
DVDD	_	Power supply for digital core block
		Be sure to connect a 0.1 μ F capacitor between this pin and DGND.
DGND	_	Ground for digital core block
EVDD	_	Power supply for I/O
		Be sure to connect a 0.1 μ F capacitor between this pin and EGND.
EGND	_	Ground for I/O
PLLVDD	_	Power supply for PLL
		Be sure to connect a 0.1 μ F capacitor between this pin and PLLGND.
PLLGND	_	Ground for PLL block
SDVDD	_	Power supply for SD I/O
		Be sure to connect a 0.1 μ F capacitor between this pin and SDGND.
SDGND	_	Ground for SD I/O block

(2) Clock and system control pins

Pin Name	I/O	Function
CLKIN	Input	Clock input This is the reference clock input that is used to generate the internal master clock.
RESET_B	Input	Hardware reset input signal This resets the LSI. Registers are initialized to their initial values after a reset.

(3) Host interface pins

Pin Name	I/O	Function
A0 to A10	Input	Host interface address signal input
D0 to D15	I/O	Host data bus (D15 to D0). Data I/O is performed when the host CPU accesses this LSI. This bus is set to high impedance when the CS_B signal is inactive (high).
CS_B	Input	Chip select strobe input This is the input pin for the host interface select signal. This pin must be active (low) while the host CPU accesses a host interface register.
WR_B	Input	Host write strobe input This pin must be active (low) while the host CPU writes to a host interface register. Do not set this pin and the RD_B pin as active at the same time.
RD_B	Input	Host read strobe input This pin must be active (low) while the host CPU reads a host interface register. Do not set this pin and the WR_B pin as active at the same time.
INT_B	Output	Interrupt request (Level trigger) This is used to request data transfer or to notify the internal status.

(4) Audio serial interface 1 (option)

Pin Name	I/O	Function		
BCLK1	I/O	Bit synchronization clock I/O for audio serial interface		
		This pin is used to input or output a bit synchronization clock for an audio serial interface.		
		Leave this pin open when not used.		
LRCLK1	I/O	Audio serial frame synchronization clock I/O		
		This pin is used to input or output a frame sync signal for serial transfers.		
		Leave this pin open when not used.		
ASO1	Output	Audio serial data output		
		Leave this pin open when not used.		
ASI1	Input	Audio serial data input		
		Connect this pin to GND when not used.		

(5) Audio serial interface 2 (for DAC)

Pin Name	I/O	Function
BCLK2	I/O	Bit synchronization clock I/O for audio serial interface This pin is used to input or output a bit synchronization clock for an audio serial interface.
LRCLK2	I/O	Audio serial frame synchronization clock I/O This pin is used to input or output a frame sync signal for serial transfers.
ASO2	Output	Audio serial data output
ASI2	Input	Audio serial data input

(6) Internal power supply output pins

Pin Name	I/O	Function
TMPW2	-	Internal DVDD2 output
		Be sure to connect a 0.1 μ F capacitor between this pin and DGND.
TMPW3	-	Internal DVDD3 output
		Be sure to connect a 0.1 μ F capacitor between this pin and DGND.

(7) SD card interface pins

Pin Name	I/O	Function
SD_RSTB	Input	Reset for SD card interface
SD_CLKI	Input	Clock input. Connect to SD_CLKO externally.
SD_CLKO	Output	Clock output
SD_DATA0 to 3	I/O	Bi-directional SD data bus
SD_WP	Input	SD write protection
SD_CMD	I/O	SD command input
SD_CD	Input	SD card detection input

(8) General-purpose output pins

Pin Name	I/O	Function
PO0 to PO7	Output	General-purpose external output pins
		These pins can be used to output control signals to peripheral devices.

(9) Test pins

Pin Name	I/O	Function
ТМО	Input	Device test pin. Connect this pin to GND.
TM1	Input	Device test pin. Connect this pin to GND.
TM2	Input	Device test pin. Connect this pin to GND.
ТМЗ	Input	Device test pin. Connect this pin to GND.
TM4	Input	Device test pin. Connect this pin to GND.
TM5	Input	Device test pin. Connect this pin to GND.
TM6	Input	Device test pin. Connect this pin to GND.
TM7	Input	Device test pin. Connect this pin to GND.
ТМ8	Output	Device test pin. Leave this pin open.
ТМ9	Input	Device test pin. Connect this pin to GND.
TM10	Input	Device test pin. Connect this pin to GND.

(10) Others

Pin Name	I/O	Function
N.C.	_	Reserved pin for compatibility with future products.
		Leave this pin open.

1.4 Connection of Unused Pins

It is recommended to connect the unused pins as shown in the table below.

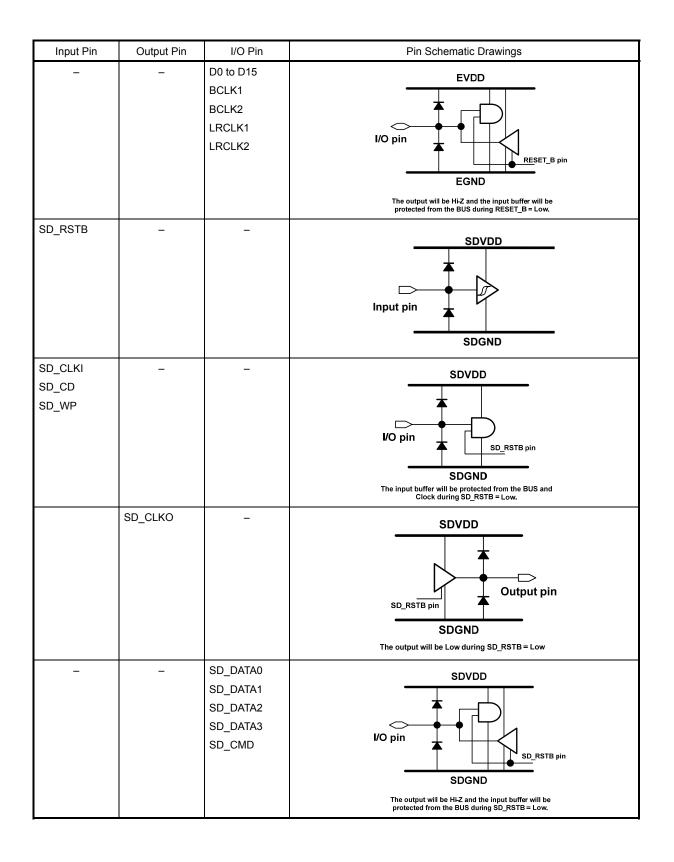
Pin Name	I/O	Recommended Connection
A0	Input	Connect to GND.
ASO1	Output	Leave open.
ASI1	Input	Connect to GND.
ASI2	Input	Connect to GND.
BCLK1	I/O	Leave open.
LRCLK1	I/O	Leave open.
PO0 to PO7	Output	Leave open.
SD_CLKI	Input	Connect to GND.
SD_CLKO	Output	Leave open.
SD_CD	Input	Connect to GND.
SD_CMD	I/O	Connect to GND.
SD_DATA0 to 3	I/O	Connect to GND.
SD_WP	Input	Connect to GND.
TM0 to TM7	Input	Connect to GND.
TM8	Output	Leave open.
TM9, TM10	Input	Connect to GND.

Caution: Leave the N.C. pins open.

1.5 Initial State of Pins

Pin Name	I/O	During Reset	After Reset
INT_B	Output	High-level output	High-level output
ASO1, ASO2	Output	Hi-Z	Output
BCLK1	I/O	Hi-Z	Output
BCLK2	I/O	Hi-Z	Input
LRCLK1	I/O	Hi-Z	Output
LRCLK2	I/O	Hi-Z	Input
D0 to D15	I/O	Hi-Z	Input
PO0 to PO7	Output	Low-level output	Low-level output
SD_CLKO	Output	Low-level output	Low-level output
SD_CMD	I/O	Hi-Z	Input
SD_DATA0 to 3	I/O	Hi-Z	Input

Notes 1. This LSI enters the transparency mode after reset.

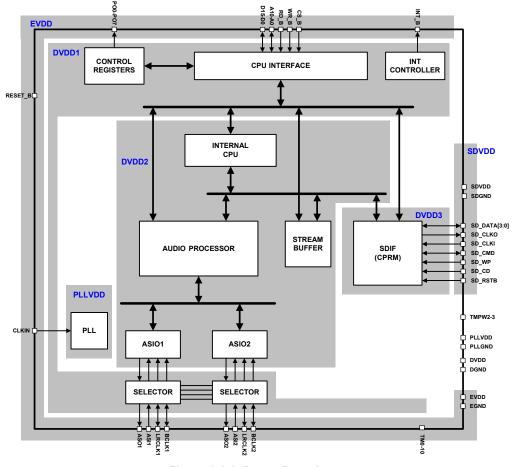

- 2. The pin status in the deep sleep mode is the same as that during reset.
- **3.** The statuses of the ASO1/2, BCLK1/2, and LRCLK1/2 pins can be controlled by the ASMODE register after reset.

1.6 Pin Protection

By setting the RESET_B pin to Low (during reset), pins are protected from the bus and no switching current flows into any of the functional pins even if the bus is activated.

1.7 Pin Outline Schematics

Input Pin	Output Pin	I/O Pin	Pin Schematic Drawings
RESET_B	-	_	EVDD Input pin EGND
CLKIN CS_B WR_B RD_B A0 to A10 ASI1 ASI2	_	_	EVDD Input pin EGND The input buffer will be protected from the BUS and Clock during RESET_B=Low.
-	ASO1 ASO2	_	EVDD Output pin EGND The output will be Hi-Z during RESET_B = Low
-	PO0 to PO7	_	EVDD Output pin EGND The output will be Low state during RESET_B = Low
-	INT_B	_	EVDD Output pin EGND The output will be High during RESET_B = Low


2. INTERNAL POWER AND CLOCK DOMAINS

2.1 Power Domains

This LSI needs four power supplies (EVDD, DVDD, PLLVDD and SDVDD) and there are six power domains internally on this LSI. Internal DVDD1 is supplied while DVDD is supplied. Internal DVDD2 and DVDD3 are generated from DVDD by power switch, so it can cut off its domain internally.

Item	A/D	Voltage Range	Syr	mbol	Blocks				
item	AD	voltage Range	Pin	Internal	DIUCKS				
I/O	Digital	1.7 to 2.0 V	EVDD EGND		Digital I/O buffer				
				DVDD1 DGND	Host interface, pin control Chip control register				
Digital core	Digital	1.16 to 1.24 V	DVDD DGND	DVDD2 DGND	CPU, audio processor, RAM				
				DVDD3 DGND	SD interface block				
PLL	Analog	1.16 to 1.24 V	PLLVDD PLLGND		PLL				
SD I/O	Digital	2.7 to 3.0 V	SDVDD		SD I/O				

Table 2.1 Power Domains

2.1.1 Hardware reset

There are two types of hardware reset on this LSI. One is controlled by a pin and the other is controlled by a command register.

(1) RESET_B (pin)

RESET_B is a hardware reset pin for all internal circuits of this LSI. The LSI enters the reset state when RESET_B set to Low (EGND level). The functions of these pins are as follows.

- Initialization of all registers

All registers will be set to the default value immediately after RESET_B is set to Low. DVDD2 and DVDD3 domains are OFF after RESET_B is set to Low.

- Initialization of all circuits
- Initialization of I/O buffer functions (EVDD domain) for bus protection
- Protection of internal level shifter between internal EVDD and DVDD domains during power switching

(2) RSTBFNC (command register)

RSTBFNC is a hardware reset register for the DVDD2 domain. It can be controlled during RESET_B = High.

- Initialization of internal CPU registers and audio processor registers (DVDD2 domain)
- Initialization of all circuits of DVDD2 domain
- Protection of input between internal DVDD1 and DVDD2 domains during power switching

(3) RSTBSD (command register)

RSTBSD is a hardware reset register for the DVDD3 domain. It can be controlled during RESET_B = High. DVDD3 domain is initialized by RSTBSD after a clock is supplied for the DVDD3 domain.

- Initialization of SD interface registers (DVDD3 domain)
- Initialization of all circuits of DVDD3 domain
- Protection of input between internal DVDD1 and DVDD3 domains during power switching

(4) SD_RSTB (pin)

SD_RSTB is a hardware reset pin exclusively for SD interface I/O (SDIO). SDIO enters the reset state when SD_RSTB is set to Low (SDGND level). The circuits of the DVDD3 domain are not initialized by this pin. The functions of these pins are as follows.

- Initialization of I/O buffer functions (SDVDD domain) for SD Card bus protection
- Protection of internal level shifter between SDVDD and DVDD domains during power switching

2.1.2 Power/reset control of DVDD2 and DVDD3 domains

It is possible to cut-off the internal DVDD2 and DVDD3 domains by command register control while DVDD is supplied, so it is also possible to reduce the standby current of each domain.

The PWFNC register is used for DVDD2 power control. PWFNC is OFF by default, which means the DVDD2 domain is OFF. Therefore, the DVDD2 domain circuits cannot be initialized by the RESET_B pin. The RSTBFNC register is also used to protect the input gates of the DVDD2 domain for security reasons. The DVDD2 domain must therefore be reset by the RSTBFNC register before DVDD2 will be ON.

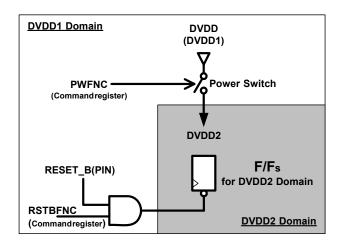


Figure 2.1.2 Power/Reset Control of DVDD2 Domain

The PWSD register is used for DVDD3 power control. PWSD is OFF by default, which means the DVDD3 domain is OFF. Therefore, the DVDD3 domain circuits cannot be initialized by the RESET_B pin. They are initialized by the RSTBSD register after the DVDD3 domain is turned on. RSTBSD is also used to protect input gates of DVDD3 domain for security reasons. The DVDD3 domain must therefore be reset by the RSTBSD register before DVDD3 will be ON.

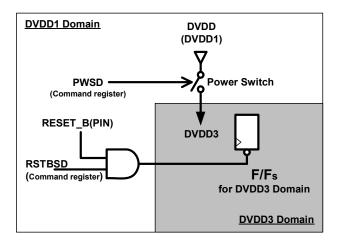


Figure 2.1.3 Power and Reset Control of DVDD3 Domain

The power control sequence is described in section 7.

2.2 Clock Domains

2.2.1 CLKIN

CLKIN is a system clock input pin. It is necessary to supply a 32.768 kHz clock from the RTC.

2.2.2 PLL

The PLL circuit generates an internal master clock from the CLKIN input (32.768 kHz). It is controllable by a command register (PLLOSC).

2.2.3 Divider and domains

This LSI has three clock domains. Dividers make a clock of domain from the PLL output. They are controllable by command registers (DSPCKDIV, CPUCKDIV, and SDCKDIV).

- DSP domain

Audio processor, ASIO1/2

- CPU domain

Internal CPU for stream control, stream buffer

- SD domain

SD interface core

2.2.4 Standby

Standby registers enable internal clocks to be supplied. The standby registers are also used for saving power.

- STPLL

Enables PLL block operation.

- STDSP

Enables clock supply to DSP domain.

- STCPU

Enables clock supply to CPU domain.

- STSD

Enables clock supply to SD domain.

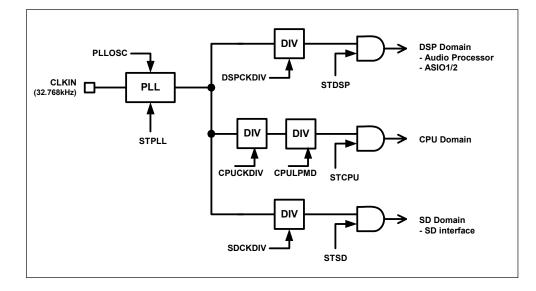


Figure 2.2.1 Clock Domains

3. HOST CPU INTERFACE

This LSI communicates as a slave device, with the host system by using a 16-bit parallel interface. This LSI detects the address and data at a low level period of the CS_B pin and takes into the data at a low level width and a rising edge of the WR_B pin.

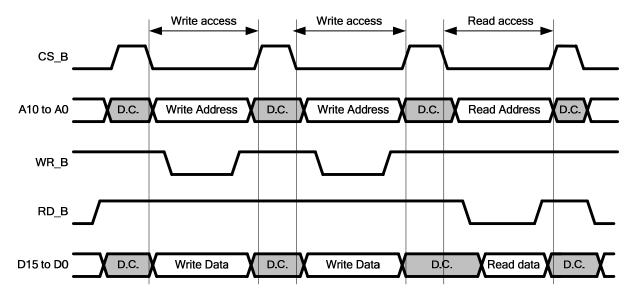


Figure 3.1 Parallel Interface Format

- Caution: 1. Be sure to observe the timing requirements of the parallel interface.
 - 2. Be sure to fix the RD_B pin to high during the write cycle (WR_B = Low). Be sure also to fix the WR_B pin to high level during the read cycle (RD_B = Low).

Remark: D.C.: Don't care.

4. AUDIO SERIAL INTERFACE

The audio serial interface (ASIO) is used for transmitting and receiving 16-bit PCM data serially. This LSI has two ASIOs, so it is easy to perform signal processing between the host and audio front-end device.

The available functions on each ASIO are as follows. These functions can be enabled by setting command registers.

- The I²S format is available.
- Master operation and slave operation are supported.

Master operation: The signal received as a slave is used for the master.

ASIO1	ASIO2	Comments
Slave	Slave	Prohibited
Slave	Master	Available. ASIO1 and ASIO2 must be used under the same conditions and operated synchronously. ASIO2 can not be operated alone.
Master	Slave	Available. ASIO1 and ASIO2 must be used under the same conditions and operated synchronously. ASIO1 cannot be operated alone.
Master	Master	Prohibited

- Serial data clock (the number of data bits per sample) can be varied.

32 to 128 fs, by 2 fs steps

- Transparency mode (direct connection between ASIO1 and ASIO2) is supported. (This mode is set by default.)

4.1 Format

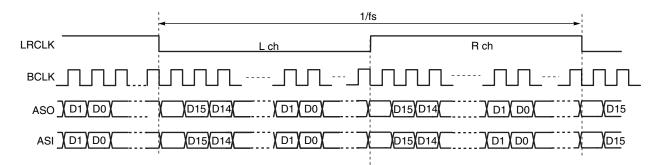


Figure 4.1 I²S Format

4.2 Synchronous Operation

Synchronous operation is available when placing this LSI between a master device and a slave device on a serial PCM bus. This LSI outputs a serial clock (BCLK) and a word sync signal (LRCLK) to a slave device, as a master operation. These clocks are the same as those received from a master device. ASIO1 and ASIO2 therefore operate with the same format and setting.

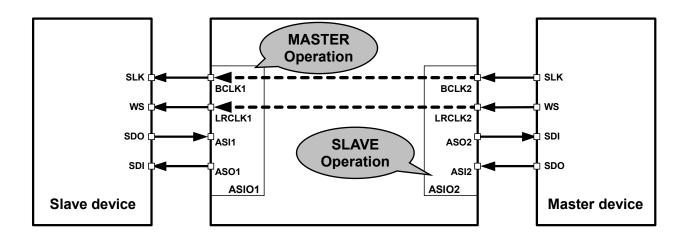
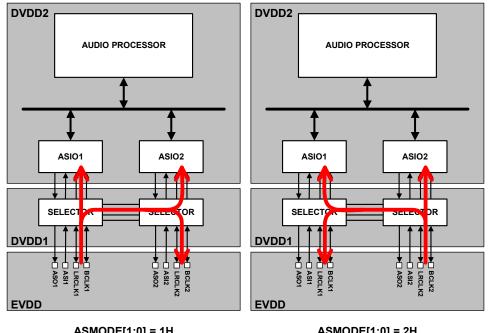



Figure 4.2 Synchronous Operation

ASMODE[1:0] = 1H

ASMODE[1:0] = 2H

Figure 4.3 Relation Between Master and Slave

4.3 Transparency Mode

ASIO1 and ASIO2 can be directly connected internally (transparency mode). There are two types of the transparency modes.

- Connection of ASIO1 and ASIO2 ASI1 \rightarrow ASO2, ASI2 \rightarrow ASO1
- Connection inside ASIO1 or ASIO2) ASI1 \rightarrow ASO1, ASI2 \rightarrow ASO2

The connection type can be specified by using a control register. These pins are assigned in the DVDD1 domain. The other DVDD domains can be cut off during this mode, so the power consumption can be reduced.

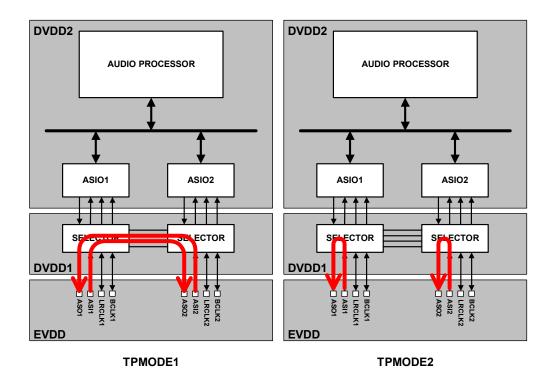


Figure 4.4 Transparency Mode

5. REGISTERS

5.1 Register Maps

ync/Async Power domain
A DVDD1
DVDD1
DVDD2
DVDD2
DVDD3
DVDD3
DVDD2
DVDD2

5.1.1 Register map for chip control

								0.1		·		~p .v		p						
Address	W/R	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0	Default	Contents	Register Name
000H	W/R	0	0	0	0	0	0	0	0	0	0	0	PWSD	0	0	0	PWFNC	0000H	Power domains	PWSW
002H	W/R	0	0	0	0	0	0	0	0	0	0	0	RSTBS	0	0	0	RSTBFNC	0000H	Async RESET for Power domains	RSTB
004H	W/R	0	0	0	0	0	0	0	STSD	0	0	STCPU	STDSP	0	0	0	STPLL	0000H	Standby setting	STNBYB
006H	W/R	0	0	SDCKD	0IV[1:0]	CPUCK	DIV[1:0]	DSPCK	DIV[1:0]	CPULPI	MD[1:0]			PLLOS	SC[5:0]			0827H	Master clock setting	MCLK
00AH	w	0	0	0	0	0	0	TPMO	DE[1:0]	0	0	ASMO	DE[1:0]	ASI1EN	ASO1EN	ASI2EN	ASO2EN	012FH	ASIO control	ASIOCNT
020H	W/R	0	0	0	0	0	0	0	0	POUT7	POUT6	POUT5	POUT4	POUT3	POUT2	POUT1	POUT0	0000H	General purpose port output setting	POUT
030H	R	0	0	0	0	0	0	0	0	INTSRC7	INTSRC6	INTSRC5	INTSRC4	INTSRC3	INTSRC2	INTSRC1	INTSRC0	0000H	Interrupt source register	INTSRC
032H	W/R	0	0	0	0	0	0	0	0	0	0	0	0	0	ITIM2	ITIM1	ITIM0	0000H	Interrupt clear for Timer	ITIM
034H	W/R	0	0	0	0	0	0	0	0	INTM7	INTM6	INTM5	INTM4	INTM3	INTM2	INTM1	INTM0	0000H	Mask for INT controllor input	INTM
040H	W/R	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	ENFLG	0000H	Enable flag for device access	ENFLG
042H	R	0	0	0	0	0	0	0	0	0	0	0	0	0	0	CSTCPU	CSTDSP	0000H	Status of continuous access	CSTA
044H	w	0	0	0	0	0	0	0	0	0	0	0	0	0	0	CCLRCPU	CCLRDSP	0000H	Release of continuous access	CCLR
070H	R	0	0	0	0	0	0	0	0		PVEF	R[3:0]			MVE	R[3:0]		004*H	Product discernment and LSI Version	VER

Table 5.1.1 Register Map for Chip Control

Note: Addresses 030H, 032H and 034H can be read or written after PLL is activated.

Caution: Register accesses except for the above addresses are prohibited.

5.1.2 Register map for DSP control

Table 5.1.2 Register Map for DSP Control

Address	W/R	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0	Default	Contents	Register Name
200H : 2FEH	W/R							Regist	ers for t	the DSF	block									

Note: This register area can be accessed after PLL is activated and STDSP is set to 1.

Caution: Register accesses except for the above addresses are prohibited.

5.1.3 Register map for CPU control

	Table 5.1.3 Register Map for CPU Control																			
Address	W/R	D15	15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 Default Contents														Register Name			
300H : 3FEH	W/R						Re	gisters	for the i	nternal	CPU blo	ock								

Note: This register area can be accessed after PLL is activated and STCPU is set to 1.

Caution: Register accesses except for the above addresses are the prohibited.

5.1.4 Register map for SD interface control

	Table 5.1.4 Register Map for SD Interface Control																			
Address	W/R	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0	Default	Contents	Register Name
400H : 5FEH			Registers for SD intreface																	

Note: This register area can be accessed after PLL is activated and STSD is set to 1.

Caution: Register accesses except for the above addresses are the prohibited.

5.2 Chip Control Registers

5.2.1 Power domain control register: PWSW (Address: 000H)

(1) **PWFNC**

This is a bit that controls inside the DVDD2 domain.

PWFNC = 1 enables power supply to the DVDD2 domain.

The values of DSP registers, RAM and DSP will not be kept during PWFNC = 0. After setting PWFNC to 1, a hardware reset must be applied (RSTBFNC register) to DVDD2 domain.

PWFNC

Data	Mode	Initial Value	Description
0	OFF	0	Internal power supply to DVDD2 domain is cut off.
1	ON		Normal operation

(2) PWSD

This is a bit that controls inside the DVDD3 domain.

PWSD = 1 enables power supply to the DVDD3 domain.

The values of SD registers and SD interface core will not be kept during PWSD = 0. After setting PWSD to 1, a hardware reset must be applied (RSTBSD register) to the DVDD3 domain.

PWSD

Data	Mode	Initial Value	Description
0	OFF	0	Internal power supply to DVDD3 domain is cut off.
1	ON		Normal operation

5.2.2 Async RESET for power domains register: RSTB (Address: 002H)

The RSTB register initializes the internal states of the DVDD2 and DVDD3 domains. This register must be asserted after power-on for each domain.

(1) RSTBFNC

This is a hardware reset bit for the DVDD2 domain. This bit must be set to 0, if PWFNC is changed.

RSTBFNC

Data	Mode	Initial Value	Description
0	Reset	0	Hardware async reset for DVDD2 domain
1	Active		Normal operation

(2) RSTBSD

This is a hardware reset bit for the DVDD3 domain. This bit must be set to 0, if PWSD is changed.

RSTBSD

Data	Mode	Initial Value	Description
0	Reset	0	Hardware async reset for DVDD3 domain
1	Active		Normal operation

5.2.3 Standby setting register: STNBY (Address: 004H)

This is a register that controls internal functional blocks and controls clock supply to the specific block. The register does not initialize each block.

(1) STPLL

This is a bit that controls PLL standby. This controls PLL on/off.

STPLL

Data	Mode	Initial Value	Description
0	Standby	0	Sets PLL block to standby
1	ON		Normal operation

Remark: The PLL output clock is stopped during PLL standby mode (power down).

Note: Since the clock is not supplied to internal blocks during PLL standby, the block does not operate even if the STxx bit is set to 1.

(2) STDSP

This is a bit that controls an audio processor standby. The audio processor block enters the standby when this bit is set to 0. The DSP registers cannot be accessed because no clock is supplied. The DSP block is not initialized by setting this bit, but by hardware reset using RESET_B, RSTBFNC, or a DSP command.

STDSP

Data	Mode	Initial Value	Description
0	Standby	0	Sets DSP block to standby
1	ON		Normal operation

(3) STCPU

This is a bit that controls internal CPU standby. The internal CPU block enters the standby when this bit is set to 0. The CPU registers cannot be accessed because no clock is supplied. The CPU block is not initialized by setting this bit, but by hardware reset using RESET B, RSTBFNC, or a CPU command.

STCPU

Data	Mode	Initial Value	Description
0	Standby	0	Sets CPU block to standby
1	ON		Normal operation

(4) STSD

This is a bit that controls the SD interface core standby. The SD interface core block enters the standby when this bit is set to 0. The SD register cannot be accessed because no clock is supplied. The SD interface core block. The block is not initialized by setting this bit, but by hardware reset using RESET B or RSTBSD.

STSD

Data	Mode	Initial Value	Description
0	Standby	0	Sets SD block to standby
1	ON		Normal operation

5.2.4 Master clock setting register: MCLK (Address: 006H)

The MCLK register controls the master clock on the LSI side.

(1) PLLOSC

These are PLL output control register bits.

PLLOSC[5:0]

PLLOSC[5:0]	Initial Value	Oscillation Frequency [MHz]
1DH	27H	122.880
1EH		126.976
1FH		131.072
20H		135.168
21H		139.264
22H		143.360
23H		147.456
24H		151.552
25H		155.648
26H		159.744
27H		163.840

Caution: 00 to 1C and 28H to 3F are invalid. These setting are prohibited.

(2) DSPCKDIV

This is a register that sets the division ratio of the clock supplied to the DSP domain.

DSPCKDIV[1:0]

DSPCKDIV[1:0]	Initial Value	Division Ratio
ОН	0H	1/2
1H		1/3
2H		1/4

Caution: 3H is invalid and is prohibited.

(3) CPUCKDIV

This is a register that sets the division ratio of the clock supplied to the CPU domain.

CPUCKDIV[1:0]

CPUCKDIV[1:0]	Initial Value	Division Ratio
ОH	2H	1/2
1H		1/3
2H		1/4

Caution: 3H is invalid and prohibited.

(4) SDCKDIV

NEC

This is a register that sets the division ratio of the clock supplied to the SD domain.

SDCKDIV[1:0]

SDCKDIV[1:0]	Initial Value	Division Ratio
ОН	ОH	1/2
1H		1/3
2H		1/4

Caution: 3H is invalid and prohibited.

(5) CPULPMD

This is a register that sets the division ratio of the clock supplied to the CPU domain.

CPULPMD[1:0]

CPULPMD[1:0]	Initial Value	Division Ratio
0H	0H	1/1
1H		1/2
2H		1/4

Caution:

3H is invalid and prohibited.

These registers must be changed when STCPU = 0 or STPLL = 0.

5.2.5 ASIO control register: ASIOCNT (Address: 00AH)

(1) ASI1EN, ASI2EN, ASO1EN, ASO2EN

These bits control the ASI1, ASI2, ASO1 and ASO2 pin statuses.

ASI1EN

Data	Mode	Initial Value	Description
0	OFF	1	Disables ASI1
1	ON		Enables ASI1

ASI2EN

Data	Mode	Initial Value	Description
0	OFF	1	Disables ASI2
1	ON		Enables ASI2

ASO1EN

Data	Mode	Initial Value	Description
0	OFF	1	Disables ASO1 (ASO1 will be Hi-Z when ASO1EN = 0.)
1	ON		Enables ASO1

ASO2EN

Data	Mode	Initial Value	Description
0	OFF	1	Disables ASO2 (ASO2 will be Hi-Z when ASO2EN = 0.)
1	ON		Enables ASO2

Note: 1. When ASI1EN = ASO1EN = 0, both LRCLK1 and BCLK1 pins become Hi-Z.

When ASI2EN = ASO2EN = 0, both LRCLK2 and BCLK2 pins become Hi-Z.

- ASO1 will be Hi-Z when ASO1EN = 0.
 ASO2 will be Hi-Z when ASO2EN = 0.
- **3.** ASI1 and ASI2 must be low or high after reset regardless of ASI1EN/ASI2EN. Unexpected current may flow if ASI1 or ASI2 is in the Hi-Z state.

(2) ASMODE

These bits control synchronous operation. They control the master/slave operation for the ASIO1 and ASIO2 blocks. The LRCLK and BCLK inputs of the slave mode ASIO will be output to ones of the master mode ASIO, so the LSI cannot be the original master.

ASMODE[1:0]

Data	Initial Value	ASIO1	ASIO2	Description
0H	2H	Slave	Slave	Setting prohibited
1H		Slave	Master	The LRCLK and BCLK of ASIO2 are the same as those of ASIO1.
2H		Master	Slave	The LRCLK and BCLK of ASIO1 are the same as those of ASIO2.
3H		Master	Master	Setting prohibited

Pin directions

Data	LRCLK1	BCLK1	LRCLK2	BCLK2
1H	IN	IN	OUT	OUT
2H	OUT	OUT	IN	IN

(3) TPMODE

These are register bits that control the transparency mode. Other than TPMODE = 0H, ASI1/ASI2 and ASO1/ASO2 are disconnected from internal circuits, and connected directly to each other in the DVDD1 domain.

TPMODE[1:0]

Data	Mode	Initial Value	Description
ОН	Normal	1H	Connects ASI1/ASI2 and ASO1/ASO2 to internal circuits
1H	TPMODE2		Connects ASO1 to ASI2 and ASO2 to ASI1.
2H	TPMODE2		Connects ASO1to ASI1, and ASO2 to ASI2.
ЗH	_		Setting prohibited

5.2.6 General-purpose output port setting register: POUT (Address: 020H)

The PO0 to PO7 pins output the POUT register value written from the host.

This register is placed into the DVDD1 domain. This is therefore not related to the ON/OFF state of the DVDD2 domain and can control the PO0 to PO7 pins while the DVDD2 domain is OFF.

POUT[7:0]

Data	Mode	Initial Value	Description
0	Low	0	Low-level output from corresponding pins to PO0 to PO7
1	High		High-level output from corresponding pins to PO0 to PO7

Note: The PO0 to 07 pins output 0 (low) during RESET_B = Low, and POUT values after reset.

5.2.7 Interrupt source register: INTSRC (Address: 030H)

This register is used to distinguish sources of interrupts generated by some function blocks. This register is set to 1 when an internal function block requests interruption.

INTSRC[7:0]

Data	Mode	Initial Value	Description
15 to 8	R	0	Reserved
7 to 0	R		0: No interrupt request
			1: Interrupt request

Note: This register is controlled by the API software on the host.

5.2.8 Timer interrupt clear register: ITIM (Address: 032H)

This register clears the timer interrupts. When this register is set to 1, the interrupt request is cleared. When this register is set to 0, the interrupt state is held.

ITIM[2:0]

Data	Mode	Initial Value	Description
0	Keep	0	Holds interrupt request state
1	Clear		Clears interrupt requests

Note: This register is controlled by the API software on the host...

5.2.9 Interrupt mask register: INTM (Address: 034H)

This register masks interrupt requests issued by function blocks.

INTM[7:0]

Data	Mode	Initial Value	Description				
15 to 8	R	0	Reserved				
7 to 0	R/W		Mask of interrupt request input				
		0: Masks interrupt requests					
			1: Does not mask interrupt requests				

Note: This register is controlled by the API software on the host.

5.2.10 PLL activation enable flag register: ENFLG (Address: 040H)

This register indicates whether the PLL operation is active. This register is set to 1 after PLL is stabilized.

ENFLG

Data	Mode	Initial Value	Description				
0	Inactive	0	The PLL operation is active.				
1	Active		The PLL operation is inactive.				

5.2.11 Continuous data access control registers: CSTA (Address: 042H), CCLR (Address: 044H)

(1) CSTDSP

This register indicates that the host accesses data in the continuous mode for the DSP. This register holds 1 during the continuous data access mode.

This register is reset to 0 when the data access is complete correctly.

This register is reset to 0 when the CCLRDSP register is set to 1.

CSTDSP

Data	Mode	Initial Value	Description			
0	Normal	0	Normal			
1	Continuous		Keeps continuous mode.			

(2) CSTCPU

This register indicates that the host accesses data in the continuous mode for the CPU. This register holds 1 during the continuous data access mode.

This register is reset to 0 when the data access is complete correctly.

This register is reset to 0 when the CCLRCPU register is set to 1.

CSTCPU

Data	Mode	Initial Value	Description
0	Normal	0	Normal
1	Continuous		Keeps continuous mode.

(3) CCLRDSP

This register forcedly releases the DSP continuous access mode.

While the host accesses data in the continuous mode (CSTDSP indicates 1), the host can release the continuous access mode by writing 1 to CCLRDSP.

The host must write 0 to this register after writing 1. This register is write-only.

CCLRDSP

Data	Mode	Initial Value	Description				
0	_	0	_				
1	Clear		Clears continuous mode.				

(4) CCLRCPU

This register forcedly releases the CPU continuous access mode. While the host accesses data in the continuous mode (CSTCUP indicates 1), the host can release the continuous access mode by writing 1 to CCLRCPU.

The host must write 0 to this register after writing 1. This register is write-only.

CCLRCPU

Data	Mode	Initial Value	Description				
0	_	0	_				
1	Clear		Clears continuous mode.				

5.3 DSP Registers

DSP registers are used to control the audio processor (DSP). These registers can be accessed after PLL is activated and the standby mode is released. Furthermore, these registers are initialized by the RESET_B pin or the RSTBFNC bit of the RSTB register.

The setting values of this area and related information are provided with the firmware.

5.4 CPU Registers

CPU registers are used to control the internal CPU (CPU). These registers can be accessed after PLL is activated and the standby mode is released. Furthermore, these registers are initialized by the RESET_B pin or the RSTBFNC bit of the RSTB register.

The setting values of this area and related information are provided with the firmware.

5.5 SD Registers

SD registers are used to control the SD interface (SD). These registers can be accessed after PLL is activated and standby mode is released. Furthermore, these registers are initialized by the RESET_B pin or the RSTBSD bit of the RSTB register.

6. POWER MANAGEMENT

6.1 Acceptable Power Supply Combinations

There are six power domains on this LSI. Acceptable combinations thereof are described below. (See Table 6.1).

	1							wer Supp	iy oomon			
No.	Power Supply						Function/Mode					Comment/Restriction
	EVDD		DVDD		PLLVDD	SDVDD	Deep	Sleep	Transparency	Audio	SD	
		DVDD1	DVDD2	DVDD3			Sleep			Decode	Access	
1	_	_	-	_	_	_	I	-	-	-	-	Fully OFF
2	ON	-	_	_	_	-	Available	-	-	-	_	RESET_B = Low level
3	ON	ON	_	_	ON	-	_	Available	Available	-	_	RSTBFNC = RSTBSD = 0
4	ON	ON	ON	-	ON	-	-	Available	Available	Available	_	RSTBSD = 0
5	ON	ON	_	ON	ON	ON	_	Available	Available	-	Available	RSTBFNC = 0
6	ON	ON	ON	ON	ON	ON	-	Available	Available	Available	Available	
7	ON	ON	_	_	ON	ON	_	Available	Available	-	_	SD_RSTB = Low level
8	ON	ON	ON	_	ON	ON	-	Available	Available	Available	_	SD_RSTB = Low level
9	ON	-	-	-	-	ON	Available	-	-	-	-	RESET_B = Low level,
												SD_RSTB = Low level
10	-	_	-	_	_	ON	Available	-	-	-	_	SD_RSTB = Low level

 Table 6.1 Acceptable Power Supply Combinations

Note: DVDD2 and DVDD3 are internal power domains. They are controllable by the command registers (PWFNC, PWSD).

Caution: DVDD and PLLVDD must be supplied from the same source.

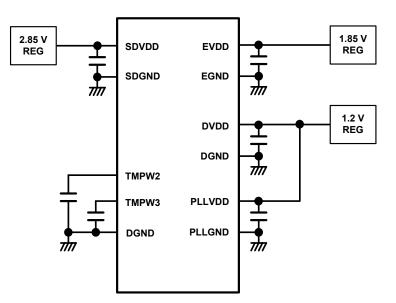


Figure 6.1 Power Supply Connection

Note: 1. It is recommended to minimize common impedance between pins DVDD and PLLVDD.

- 2. Connect capacitors as close as possible to the pins.
- 3. The capacitors of TMPW2 and TMPW3 are decoupling capacitors for pins DVDD2 and DVDD3.

6.2 Standby Modes

6.2.1 Sleep mode

This mode is used to reduce the time to return from the standby mode while power is being supplied. Data values of command registers and memory are kept during this mode, so it is not necessary to rewrite command registers or to re-download firmware.

The internal clock must be stopped by the command register during this mode, and power supply to the internal power domains must be kept on during this mode.

Caution: Data will be lost if the power domain is turned off.

6.2.2 Transparency mode

In this mode, ASIO1 and ASIO2 are connected directly each other.

This mode is controlled by the command register.

Since this mode does not require DVDD2 and DVDD3 activation, power consumption can be kept low.

Note that data in all registers will be lost, except for the DVDD1 domain data, when DVDD2 is turned off.

Be sure to rewrite data after turning on the DVDD2 domain. The same applies to DVDD3.

General-purpose output ports (PO0 to PO7) may be used during this mode.

6.2.3 Deep sleep mode

Power supplies (DVDD, PLLVDD and SDVDD) except EVDD can be cut off in this mode. This mode is used to provide the lowest power consumption. EVDD must be kept on for protecting CPU bus communication.

Note that all data written to registers and memory will be lost, so be sure to rewrite data after the operation returns to normal mode).

Follow the steps described below when setting hardware power saving.

- <1> Turn off DVDD, PLLVDD and SDVDD with the RESET_B pin set to Low.
- <2> Continue supplying EVDD since it is used to protect the CPU bus line.
- <3> Be sure to fix the RESET_B and SD_RSTB pins to Low during a deep sleep mode operation.

Follow the steps described below to return to normal operation.

- <1> Turn on DVDD and PLLVDD with the RESET_B and SD_RSTB pins set to Low.
- <2> Set the RESET_B and SD_RSTB pins to High.

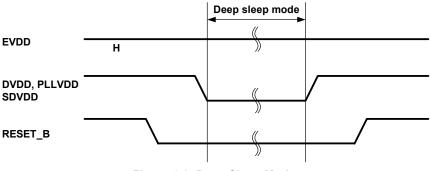


Figure 6.2 Deep Sleep Mode

Caution: All pins, including the data bus pins, may output invalid data if the RESET_B pin level is High during the deep sleep mode, so a bus conflict may occur.

Unexpected sink current may flow to all pins including the data bus pins if the EVDD is turned off during the deep sleep mode. So a bus conflict may occur.

7. POWER STARTUP PROCEDURE

From the power supply point of view, it is important to control the RESET_B pin, the SD_RSTB pin, and the hardware reset register for the DVDD2 domain (RSTBFNC) and the DVDD3 domain (RSTBSD). They are used to control different power domains. They must therefore be set to Low (0) whenever the power supply is switched.

7.1 Wakeup Sequence

7.1.1 Basic sequence

The power-on control must be performed when the RESET_B pin is set to Low. After the power supply voltage has reached the recommended value, the internal DVDD1 domain can operate when the RESET_B pin is set to High. It is recommended to turn on EVDD first when the RESET_B pin is set to Low.

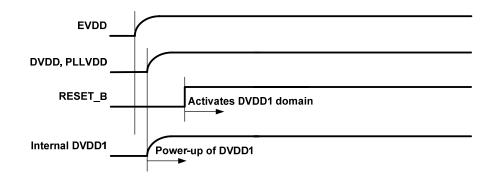


Figure 7.1.1 Wakeup Sequence

Setting sequence

- (1) Set the RESET_B pin to Low (EGND).
- (2) Supply EVDD.
- (3) Supply DVDD and PLLVDD.
- (4) After (3), internal DVDD1 is supplied automatically.
- (5) Wait until all power supplies become stable.
- (6) Set the RESET_B pin to High (EVDD level).
- (7) Start operating the DVDD1 domain

Note: Supplying EVDD before DVDD is recommended.

Caution: 1. Unexpected power supply current may flow if DVDD is supplied before EVDD.

- 2. Unexpected power supply current may flow during switching at all power supplies if the RESET_B pin is not set to Low.
- 3. All pins, including the host bus pins, become undefined if all the power supplies are turned on and the RESET_B pin level is High, so a bus conflict may occur.

7.1.2 Wakeup sequence of DVDD2

The wakeup of DVDD2 is performed by command register PWFNC. The control sequence is as follows.

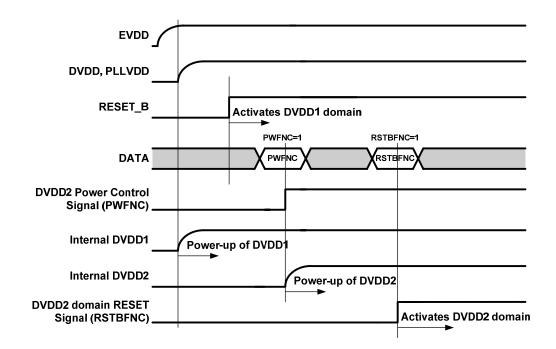


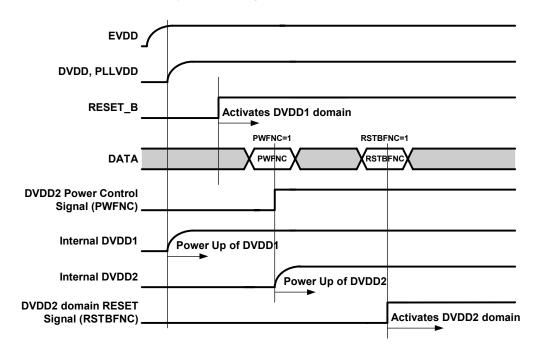
Figure 7.1.2 Wakeup Sequence of DVDD2

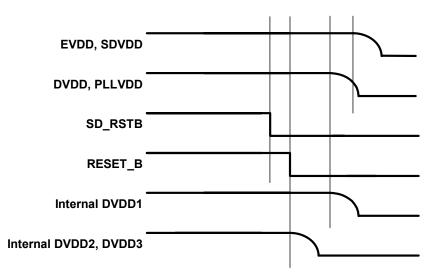
Setting sequence

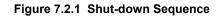
- (1) The DVDD1 domain operates after setting of the basic sequence.
- (2) Set the PWFNC register to 1.DVDD2 is turned on by writing 1 to the PWFNC register.
- (3) Wait until DVDD2 becomes stable. (Wait 1 ms)
- (4) Set the RSTBFNC register to 1.Hardware reset for the DVDD2 domain is released by writing 1 to the RSTBFNC register.
- (5) Start operating the DVDD2 domain.
- Caution: The DVDD2 domain cannot be initialized by RESET_B pin while DVDD2 is off. The domain must therefore be reset with hardware reset by the RSTBFNC register after DVDD2 has reached the recommended value.

7.1.3 Wakeup sequence of DVDD3 and SDVDD

The wakeup of DVDD3 is performed by command register PWSD. The control sequence is as follows.




Figure 7.1.3 Wakeup Sequence of DVDD3


Setting sequence

- (1) Set the RESET_B and SD_RSTB pins to Low.
- (2) Supply EVDD.
- (3) Supply DVDD and PLLVDD.
- (4) After (3), internal DVDD1 is supplied automatically.
- (5) Wait until all power supplies become stable.
- (6) Set the RESET_B pin to High (EVDD level). Start operating the DVDD1 domain.
- (7) Supply SDVDD.
- (8) Set the PWSD register to 1. DVDD3 is turned to on by writing 1 to the PWSD register.
- (9) Wait until DVDD3 becomes stable. (Wait 1ms)
- (10) Set the RSTBSD register to 1. Hardware reset is released by writing 1 to the RSTBSD register.
- (11) Set the SD_RSTB pin to High (SDVDD level).
- (12) Start operating the DVDD3 domain.
- Caution: 1. DVDD3 domain cannot be initialized by the RESET_B pin when DVDD3 is off. The domain must therefore be reset with hardware reset by the RSTBSD register after DVDD3 has reached the recommended value.
 - 2. SD_RSTB is used to protect pin conditions for the SD Card interface. It cannot be controlled when SDVDD is OFF. The SD_RSTB pin must therefore be set to Low before SDVDD becomes ON.
 - 3. RSTBSD is also used to protect the input gates of the DVDD3 domain.

7.2 Shut-down Sequence

Shut-down of this LSI is performed in the following sequence.

Setting sequence

- (1) Set the SD_RSTB pin to Low (SDGND).
- (2) Set the RESET_B pin to Low (EGND).
- (3) Shut down DVDD and PLLVDD.
- (4) Shut down EVDD and SDVDD.
- Caution: 1. EVDD and SDVDD must be shut down after DVDD shuts down.
 - 2. The states of all pins become undefined after power shutdown, so a bus conflict may occur if the data bus is active during shutdown.

7.3 Power Control During Operation

7.3.1 DVDD2 control

The internal DVDD2 domain may be turned ON/OFF by the PWFNC register while DVDD is supplied, to save power. The control sequence is as follows.

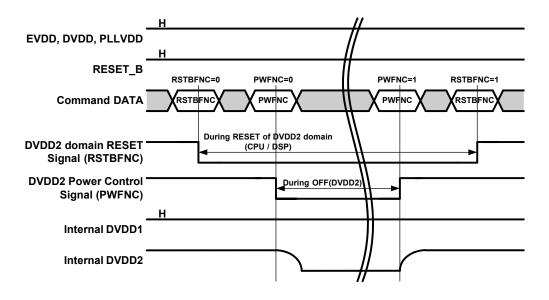


Figure 7.3.1 DVDD2 Control

Setting sequence

Shutdown

- (1) Set the RSTBFNC register to 0.
- (2) Set the PWFNC register to 0.

DVDD2 is turned off by writing 0 to the PWFNC register.

Power up

- (1) Set the PWFNC register to 1.
 - DVDD2 is turned on by writing 1 to the PWFNC register.
- (2) Wait until DVDD2 becomes stable.
- (3) Set the RSTBFNC register to 1.
 Hardware reset of the DVDD2 domain is released by writing 1 to RSTBFNC register.
- (4) Start operating the DVDD2 domain

Caution: Set the RSTBFNC register to 0 while DVDD2 is off. Otherwise, an unexpected current may flow through the DVDD1 domain.

7.3.2 DVDD3 and SDVDD control

SDVDD and the internal DVDD3 domain may be turned ON/OFF by the PWSD register while DVDD is supplied, to save power. The control sequence is as follows.

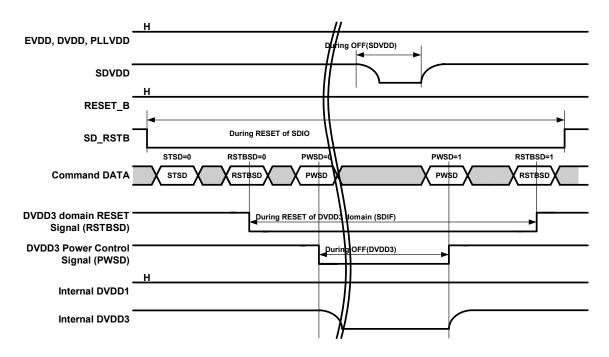


Figure 7.3.2 Control of DVDD3 and SDVDD

Setting sequence

Shutdown

- (1) Set the SD_RSTB pin to Low. (SDGND)
- (2) Set the STSD register to 0.
- (3) Set the RSTBSD register to 0.
- (4) Set the PWSD register to 0. DVDD3 is turned off by writing 0 to the PWSD register.
- (5) Turn off SDVDD.

Power up

- (1) Turn on SDVDD
- (2) Set the PWSD register to 1. DVDD3 is turned on by writing 1 to the PWSD register.
- (3) Wait until DVDD3 becomes stable.
- (4) Set the RSTBSD register to 1.
 - Hardware reset of DVDD3 domain is released by writing 1 to the RSTBSD register.
- (5) Set the SD_RSTB pin to High.
- (6) Start operating DVDD3 domain
- Caution: 1. Set the RSTBSD register to 0 while DVDD3 is off. Otherwise, an unexpected current may flow through the DVDD1 domain.
 - 2. For SD Card protection, SD_RSTB must be set to Low until DVDD3 reaches the recommended value. Internal DVDD3 must be turned off when SDVDD is off.

8. ELECTRICAL SPECIFICATIONS

8.1 Absolute Maximum Ratings

Parameter	Symbol	Conditions	Rating	Unit
Supply voltage	DVDD	For digital blocks -0.5 to +1.6		V
	EVDD	For I/O blocks	-0.5 to +4.0	V
	SDVDD	For SD blocks	-0.5 to +4.0	V
	PLLVDD	For PLL blocks	-0.5 to +1.6	V
Input voltage	VI	Vi/Vo < EVDD + 0.5 V	-0.5 to +4.0	V
Output voltage	Vo		-0.5 to +4.0	V
Power dissipation	Pd		300	mW
Storage temperature	Tstg		-50 to +125	°C

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

8.2 Recommended Operating Conditions

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Operating voltage	DVDD	For digital blocks	1.16	1.2	1.24	V
	EVDD	For I/O blocks	1.70	1.85	2.00	V
	SDVDD	For SD I/O blocks	1.70	1.85	3.00	V
	PLLVDD	For PLL blocks	1.16	1.2	1.24	V
Input voltage	VI		0		EVDD	V
Operating ambient temperature	ΤΑ		-20		+85	°C

8.3 Capacitance

 $(T_A = +25^{\circ}C, DVDD = 0 V, EVDD = 0 V)$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Input capacitance	CI	f = 1 MHz, pins other than those tested:			6	pF
Output capacitance	СО	0 V			6	pF
I/O capacitance	CIO				6	pF

Note: This condition applies to all pins.

8.4 DC Characteristics

 $(T_A = -20 \text{ to } +85^{\circ}\text{C}, \text{ with DVDD} \text{ and EVDD within the recommended operating condition range})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Input voltage, high	VIHN		0.7EVDD		EVDD	V
Input voltage, low	VILN		0		0.3EVDD	V
Input voltage, high (SDIO)	VIHNSD	For SD_RSTB, SD_CLKI, SD_CMD, SD_WP, SD_CD, SD_DATA0 to SD_DATA3 pins	0.7SDVDD		SDVDD	V
Input voltage, low (SDIO)	VILNSD	For SD_RSTB, SD_CLKI, SD_CMD, SD_WP, SD_CD, SD_DATA0 to SD_DATA3 pins	0		0.3SDVDD	V
Output voltage, high	Vон	Іон = –3 mA	0.7EVDD		EVDD	V
Output voltage, low	Vol3	lo∟ = +3 mA	0		0.3EVDD	V
Output voltage, high (SDIO)	Vohsd	$I_{OH} = -3 \text{ mA for SD_CLKO, SD_CMD,}$ SD_DATA0 to SD_DATA3 pins	0.7SDVDD		SDVDD	V
Output voltage, low (SDIO)	Voljsd	Io∟ = +3 mA for SD_CLKO, SD_CMD, SD_DATA0 to SD_DATA3 pins	0		0.3SDVDD	V
Input leakage current, high	Ilhn	Vi = EVDD	0		20	μA
Input leakage current, low	Illn	V1 = 0 V	-20		0	μA
High-impedance leakage current	Izı	$0 \ V \leq V_{I} \leq EVDD$	-20		+20	μA
Input leakage current, high (SDIO)	I _{LHNSD}	VI = SDVDD For SD_RSTB, SD_CLKI, SD_WP, SD_CD pins	0		20	μΑ
Input leakage current, low (SDIO)	I _{LLNSD}	VI = 0 V For SD_RSTB, SD_CLKI, SD_WP, SD_CD pins	-20		0	μA
High-impedance leakage current (SDIO)	I _{ZISD}	$0 V \le VI \le SDVDD$ For SD_CMD, SD_DATA0 to SD_DATA3 pins	-20		+20	μA

8.5 AC Characteristics

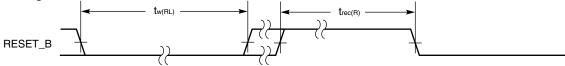
(Unless otherwise specified, $T_A = -20$ to $+85^{\circ}$ C, with DVDD and EVDD being within the recommended operating condition range)

8.5.1 Clock

Timing requirements

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
CLKIN input frequency	fclkin			32.768		kHz
Input rise and fall time	Trtf	20 to 80% level			30	ns
Frequency tolerance	Ftol		-1000		1000	ppm
Cycle-to-cycle jitter	Jctc		-30		30	ns
Duty ratio	Dr		30		70	%

Notes 1. The maximum input level for CLKIN should not exceed the power supply (EVDD) potential.


2. After PLL activation, normal operation begins after at least 2 ms have elapsed.

8.5.2 Reset (RESET_B and SD_RSTB)

Timing requirements

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Low-level width	tw(RL)		150			ns
Recovery time	trec(R)		150			ns

Reset timing

8.5.3 Wakeup wait time of internal power supply

Timing requirements

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
DVDD2 wakeup wait time	tupDVDD2	From writing PWFNC register	1			ms
DVDD3 wakeup wait time	tupDVDD3	From writing PWSD register	1			ms

8.5.4 Host interface

(1) Parallel I/F mode for internal CPU (Stand-alone playback mode)

Timing requirements

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
RD_B width	twRD		5T + 30			ns
WR_B width	twwR		3T			ns
RD_B recovery time	trcRD		2T			ns
WR_B recovery time	trcWR		3T			ns
Data setup time	t suDI	WR_B↑	20			ns
Data hold time	t hDI	WR_B↑	0			ns
A, CS_B setup time	tsuAW	WR_B↓	0			ns
A, CS_B hold time	thAW	WR_B↑	0			ns
A, CS_B setup time	tsuAR	RD_B↓	0			ns
A, CS_B hold time	t hAR	RD_B↑	0			ns

Switching characteristics

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Data access time	taccDO	$RD_B\downarrow$, $I_{sink} = 3 mA$			5T + 30	ns
Data hold time	tdDO	RD_B↑, Isink = 3 mA	0		30	ns

Remark "T" is one period of the CPU block master clock.

(2) Parallel I/F mode for audio processor (DSP firmware download and settings)

Timing requirements

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
RD_B width	twRD		5T + 30			ns
WR_B width	twwr		3T			ns
RD_B recovery time	trcRD		2T			ns
WR_B recovery time	trcwR		4T			ns
Data setup time	tsuDI	WR_B↑	20			ns
Data hold time	t hDI	WR_B↑	0			ns
A, CS_B setup time	tsuAW	WR_B↓	0			ns
A, CS_B hold time	thAW	WR_B↑	0			ns
A, CS_B setup time	tsuAR	RD_B↓	0			ns
A, CS_B hold time	t hAR	RD_B↑	0			ns

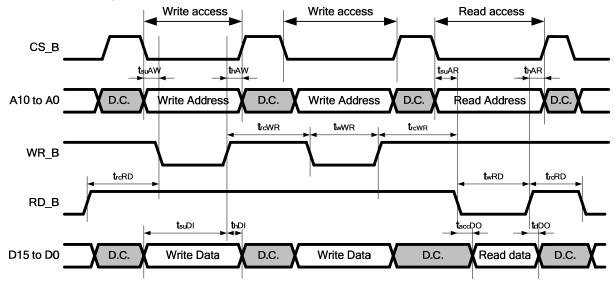
Switching characteristics

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Data access time	taccDO	$RD_B\downarrow$, $I_{sink} = 3 mA$			5T + 30	ns
Data hold time	tdDO	RD_B↑, I _{sink} = 3 mA	0		30	ns

Remark "T" is one period of the DSP block master clock.

(3) Parallel I/F for SD Function mode (SD Direct mode)

Timing requirements


Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
RD_B width	twRD		8T + 30			ns
WR_B width	t wWR		3Т			ns
RD_B recovery time	trcRD		2T			ns
WR_B recovery time	trcWR		4T			ns
Data setup time	t suDI	WR_B↑	20			ns
Data hold time	t hDI	WR_B↑	0			ns
CS_B setup time	tsuAW	WR_B↓	0			ns
CS_B hold time	t hAW	WR_B↑	0			ns
CS_B setup time	t suAR	RD_B↓	0			ns
CS_B hold time	t hAR	RD_B↑	0			ns

Switching characteristics

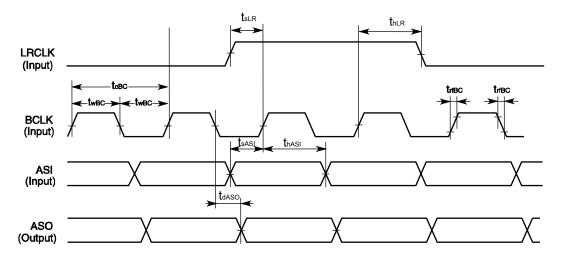
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Data access time	taccDO	$RD_B\downarrow$, $I_{sink} = 3mA$			8T + 30	ns
Data hold time	tdDO	RD_B↑, I _{sink} = 3mA	0		30	ns

Remark "T" is one period of the SD block master clock.

Host interface timing

8.5.5 Audio serial interface

(1) Slave mode timing

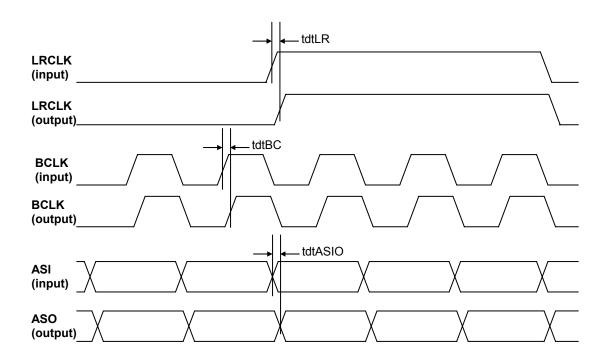

Timing requirements

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
LRCLK cycle time	tcLR			1/fs		ns
BCLK cycle time	tcBC	When set to 64 bits per fs		$1/(fs \times 64)$		ns
BCLK high-/low-level width	twBC			t _{cBC} /2		ns
BCLK rise/fall time	trfBC				20	ns
LRCLK input setup time	tsLR	BCLK↑	50			ns
LRCLK input hold time	thLR	BCLK↑	50			ns
ASI input setup time	tsASI	BCLK↑	50			ns
ASI input hold time	thASI	BCLK↑	50			ns

Switching characteristics

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
ASO output delay time	tdASO	BCLK↓	-50		+50	ns

Audio serial I/O timing (slave mode)



(2) Synchronous and transparency mode timing

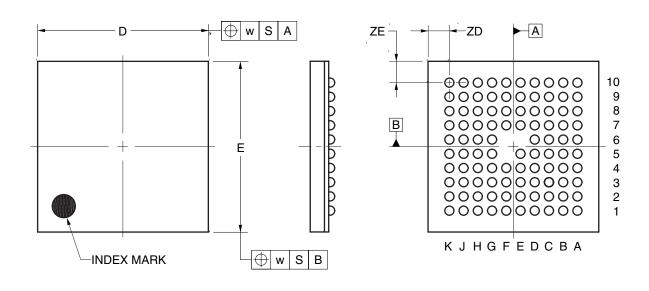
Switching characteristics

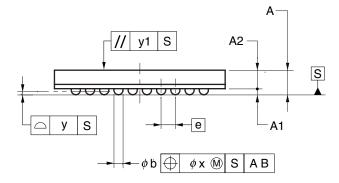
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
LRCLK through delay time	tdtLR	LRCLK (input) \rightarrow LRCLK (output)			20	ns
BCLK through delay time	tdtBC	BCLK (input) \rightarrow BCLK (output)			20	ns
ASIO through delay time	tdtASIO	ASI (input) \rightarrow ASO (output)			20	ns

Audio serial I/O timing (synchronous and transparency modes)

9. CURRENT CONSUMPTION

Unless otherwise specified, the following conditions must be met.


CLKIN = 32.768 kHz Ambient temperature: $T_A = 25^{\circ}C$ Power supply voltage DVDD = PLLVDD = 1.2 V, EVDD = 1.85 V, SDVDD = 2.85 V


Parameter	Symbol	Conditions	Power Supply Pin	MIN.	TYP.	MAX.	Unit
Operation mode	IDD1	DSP test function	DVDD		16	20	mA
		DSP 52.1 MHz	PLLVDD		0.3	0.5	mA
			SDVDD ^{Note 1}		-	1	mA
			EVDD ^{Note 1}		-	1	mA
Command sleep mode	IDD2	PWSW = 0011h, STNBY = 0000h,	DVDD		0.5	1	mA
		RSTB = 0000h	PLLVDD		0.005	0.01	mA
			SDVDD ^{Note 1}		0.005	0.01	mA
			EVDD ^{Note 1}		0.005	0.01	mA
Transparency mode	IDD3	PWSW = 0000h, STNBY = 0000h,	DVDD		0.1	0.2	mA
		RSTB = 0000h	PLLVDD		0.005	0.01	mA
			SDVDD		0.005	0.01	mA
			EVDD ^{Note 1}		0.005	0.01	mA
Deep sleep mode	IDD4	EVDD = ON; PLLVDD, DVDD, SDVDD = OFF	EVDD ^{Note 2}		0.005	0.01	mA
		RESET_B = SD_RSTB = Low					

- **Notes 1.** The SDVDD and EVDD pin currents are measured when there is no load. During actual operation, the SDVDD and EVDD pin currents differ depending on the external environment such as the clock rate, load capacitance, and load.
 - 2. Input pins: Low or High, Output pins: No load.

<R> 10. PACKAGE DRAWING

97-PIN PLASTIC FBGA (6x6)

	(UNIT:mm)
ITEM	DIMENSIONS
D	6.00±0.10
E	6.00±0.10
w	0.20
Α	0.86±0.10
A1	0.21±0.05
A2	0.65
е	0.50
b	$0.32{\pm}0.05$
х	0.05
у	0.08
y1	0.20
ZD	0.75
ZE	0.75
	P97F1-50-BAC

© NEC Electronics Corporation 2007

NEC

<R>

11. RECOMMENDED SOLDERING CONDITIONS

The μ PD99911 should be soldered and mounted under the following recommended conditions.

For soldering methods and conditions other than those recommended below, contact an NEC Electronics sales representative.

For technical information, see the following website.

Semiconductor Device Mount Manual (http://www.necel.com/pkg/en/mount/index.html)

• µPD99911F1-BAC-A: 97-pin plastic FBGA (6 × 6)

Soldering Method	Soldering Conditions	Recommended Condition Symbol
Infrared reflow	Package peak temperature: 260°C, Time: 60 sec. max. (at 220°C or higher), Count: Two times or less, Exposure limit: 7 days ^{Note} (after that prebaking is necessary at 125°C for 10 to 72 hours) Flux: Rosin flux with low chlorine (0.2 Wt% or below) recommended. <caution> Products packed in a medium other than a heat-resistance tray (such as a magazine, taping, and non-heat-resistance tray) cannot be baked.</caution>	IR60-107-2

Note After opening the dry pack, store it at 25°C or less and 65% RH or less for the allowable storage period.

Remark A lead-free product.

[MEMO]

NOTES FOR CMOS DEVICES -

1 VOLTAGE APPLICATION WAVEFORM AT INPUT PIN

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between V_{IL} (MAX) and V_{IH} (MIN) due to noise, etc., the device may malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed, and also in the transition period when the input level passes through the area between V_{IL} (MAX) and V_{IH} (MIN).

(2) HANDLING OF UNUSED INPUT PINS

Unconnected CMOS device inputs can be cause of malfunction. If an input pin is unconnected, it is possible that an internal input level may be generated due to noise, etc., causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND via a resistor if there is a possibility that it will be an output pin. All handling related to unused pins must be judged separately for each device and according to related specifications governing the device.

③ PRECAUTION AGAINST ESD

A strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it when it has occurred. Environmental control must be adequate. When it is dry, a humidifier should be used. It is recommended to avoid using insulators that easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work benches and floors should be grounded. The operator should be grounded using a wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with mounted semiconductor devices.

④ STATUS BEFORE INITIALIZATION

Power-on does not necessarily define the initial status of a MOS device. Immediately after the power source is turned ON, devices with reset functions have not yet been initialized. Hence, power-on does not guarantee output pin levels, I/O settings or contents of registers. A device is not initialized until the reset signal is received. A reset operation must be executed immediately after power-on for devices with reset functions.

5 POWER ON/OFF SEQUENCE

In the case of a device that uses different power supplies for the internal operation and external interface, as a rule, switch on the external power supply after switching on the internal power supply. When switching the power supply off, as a rule, switch off the external power supply and then the internal power supply. Use of the reverse power on/off sequences may result in the application of an overvoltage to the internal elements of the device, causing malfunction and degradation of internal elements due to the passage of an abnormal current.

The correct power on/off sequence must be judged separately for each device and according to related specifications governing the device.

6 INPUT OF SIGNAL DURING POWER OFF STATE

Do not input signals or an I/O pull-up power supply while the device is not powered. The current injection that results from input of such a signal or I/O pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal elements. Input of signals during the power off state must be judged separately for each device and according to related specifications governing the device.

- The information in this document is current as of September, 2007. The information is subject to change without notice. For actual design-in, refer to the latest publications of NEC Electronics data sheets or data books, etc., for the most up-to-date specifications of NEC Electronics products. Not all products and/or types are available in every country. Please check with an NEC Electronics sales representative for availability and additional information.
- No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Electronics. NEC Electronics assumes no responsibility for any errors that may appear in this document.
- NEC Electronics does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from the use of NEC Electronics products listed in this document or any other liability arising from the use of such products. No license, express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Electronics or others.
- Descriptions of circuits, software and other related information in this document are provided for illustrative purposes in semiconductor product operation and application examples. The incorporation of these circuits, software and information in the design of a customer's equipment shall be done under the full responsibility of the customer. NEC Electronics assumes no responsibility for any losses incurred by customers or third parties arising from the use of these circuits, software and information.
- While NEC Electronics endeavors to enhance the quality, reliability and safety of NEC Electronics products, customers agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize risks of damage to property or injury (including death) to persons arising from defects in NEC Electronics products, customers must incorporate sufficient safety measures in their design, such as redundancy, fire-containment and anti-failure features.
- NEC Electronics products are classified into the following three quality grades: "Standard", "Special" and "Specific".

The "Specific" quality grade applies only to NEC Electronics products developed based on a customerdesignated "quality assurance program" for a specific application. The recommended applications of an NEC Electronics product depend on its quality grade, as indicated below. Customers must check the quality grade of each NEC Electronics product before using it in a particular application.

- "Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots.
- "Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support).
- "Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems and medical equipment for life support, etc.

The quality grade of NEC Electronics products is "Standard" unless otherwise expressly specified in NEC Electronics data sheets or data books, etc. If customers wish to use NEC Electronics products in applications not intended by NEC Electronics, they must contact an NEC Electronics sales representative in advance to determine NEC Electronics' willingness to support a given application.

(Note)

- (1) "NEC Electronics" as used in this statement means NEC Electronics Corporation and also includes its majority-owned subsidiaries.
- (2) "NEC Electronics products" means any product developed or manufactured by or for NEC Electronics (as defined above).