General Description The MAX16072/MAX16073/MAX16074 ultra-small, ultralow-power, microprocessor (µP) supervisory circuits feature a precision band-gap reference, comparator, and internally trimmed resistors that set the threshold voltage. Designed to monitor the system supply voltage and assert an output during power-up, power-down, and brownout conditions, these devices provide excellent circuit reliability and low cost by eliminating external components and adjustments when monitoring nominal system voltage from 1.8V to 3.6V. The MAX16072 has a push-pull, active-low reset output, the MAX16073 has a push-pull, active-high reset output, and the MAX16074 has an open-drain active-low reset output. The devices are designed to ignore fast transients on VCC. The devices also include a manual reset input (MR). The MAX16072/MAX16073/MAX16074 are available in a 1mm x 1mm, space-saving, 4-bump, chip-scale package (UCSPTM). ### **Applications** Portable/Battery-Powered Equipment Cell Phones **PDAs** MP3 Players Digital Cameras ## **Typical Operating Circuit** ### **Features** - ♦ Ultra-Low, 0.7µA Supply Current - ♦ Ultra-Small (1mm x 1mm), 4-Bump UCSP - ♦ 20µs, 8ms, 34ms, and 140ms Reset Timeout **Options Available** - **♦ Factory-Trimmed Reset Thresholds Available** from 1.58V to 3.08V in Approximately 100mV Increments - **♦** ±2.5% Threshold Accuracy Over Temperature - ♦ Manual Reset Input - ♦ Guaranteed Reset Valid to Vcc = 1.0V - **♦ Immune to Short Vcc Transient** #### **Ordering Information** | PART | RESET OUTPUT TYPE | PIN-
PACKAGE | | |---------------|------------------------|-----------------|--| | MAX16072RSD_+ | Push-Pull, Active-Low | 4 UCSP | | | MAX16073RSD_+ | Push-Pull, Active-High | 4 UCSP | | | MAX16074RSD_+ | Open-Drain, Active-Low | 4 UCSP | | **Note:** All devices are specified over the -40°C to +85°C operating temperature range. Insert the desired suffix numbers (from Table 1) into the blanks "RS_ _D" to indicate the reset trip threshold. Insert the desired suffix number (from Table 2) into the blank "D_+" to indicate the reset timeout. Minimum order quantity may apply. +Denotes a lead(Pb)-free/RoHS-compliant package. UCSP is a trademark of Maxim Integrated Products, Inc. ### **ABSOLUTE MAXIMUM RATINGS** | (Voltages referenced to GND.) | | |--|--| | V _{CC} , MR0.3V to +6V | | | RESET, RESET Push-Pull0.3V to (V _{CC} + 0.3V) | | | RESET Open-Drain0.3V to +6V | | | Output Current (all pins)±20mA | | | Continuous Power Dissipation (T _A = +70°C) | | | 4-Bump UCSP (derate 3mW/°C above +70°C)239mW | | | Operating Temperature Range | 40°C to +85°C | |--------------------------------|----------------| | Storage Temperature Range | 65°C to +150°C | | Junction Temperature | +150°C | | Soldering Temperature (reflow) | +260°C | Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. #### **ELECTRICAL CHARACTERISTICS** $(V_{CC} = 1.5V \text{ to } 2.75V, T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C}, \text{ unless otherwise noted.}$ Typical values are at $T_A = +25^{\circ}\text{C}$ and $V_{CC} = 3.6V.)$ (Note 1) | PARAMETER | SYMBOL | CONDITIONS | | MIN | TYP | MAX | UNITS | | |--|----------------------|---|--|-------------------------|-----------------|------------------|---------------|---| | Operating Voltage Pange | \/oo | $T_A = 0$ °C to +85°C
$T_A = -40$ °C to +85°C | | 1.0 | | 5.5 | V | | | Operating Voltage Range | Vcc | | | 1.2 | | 5.5 | | | | Supply Current | 1 | V _{CC} = 1.8V for V _{TH} ≤ 1.66V | | | 0.7 | 1.2 | | | | Supply Current | Icc | VCC = 3.6V, n | o load | | 1.0 | 1.5 | μΑ | | | Detector Threshold | 1/ | | See Table 1 | VCC falling, TA = +25°C | VTH -
1.5% | V _T H | VTH +
1.5% | V | | Detector miesnola | VTH | See Table 1 | V _{CC} falling, T _A = -40°C to +85°C | VTH -
2.5% | V _{TH} | VTH +
2.5% | v | | | Detector Threshold Hysteresis | VHYST | VCC rising, VT | TH ≤ 1.66V (Note 2) | | 6.3 | | mV | | | Detector Threshold Tempco | ΔV _{TH} /°C | (Note 2) | | | 40 | | ppm/°C | | | MR INPUT | | | | | | | | | | MD I I I I I I I I I | VIH | | | 0.7 x
VCC | | | V | | | MR Input High Voltage | VIL | | | | | 0.7 x
VCC | V | | | MR Pullup Resistance | | | | 25 | 50 | 75 | kΩ | | | RESET/RESET OUTPUT (Note 3 | 3) | | | | | | | | | Output-Voltage Low | VoL | V _{CC} ≥ 1.2V, I _{SINK} = 100µA | | | | 0.4 | V | | | Output-voitage Low | VOL | V _C C ≥ 1.65V, | ISINK = 1mA | | | 0.3 | v | | | Output-Voltage High | Voh | VCC ≥ 1.65V, ISOURCE = 500μA | | 0.8 x
VCC | | | - V | | | Output-voltage Flight | VOH | VCC ≥ 1.2V, ISOURCE = 50μA | | 0.8 x
VCC | | | v | | | Open-Drain RESET Output
Leakage Current | | RESET not asserted (Note 2) | | | | 0.1 | μА | | | TIMING | | | | | | | | | | MR Minimum Pulse Width | tMPW | (Note 2) | | 0.8 | | | μs | | | MR Glitch Rejection | tEGR | (Note 2) | | | 100 | | ns | | | MR to RESET/RESET | toff | MR falling | | | 1 | 2 | μs | | | Propagation Delay | ton | MR rising | | | 200 | 400 | ns | | | V _{CC} to Reset Delay | t _{DL} | V _{CC} = (V _{TH} + 100mV) to (V _{TH} -100mV) | | | 20 | 90 | μs | | ### **ELECTRICAL CHARACTERISTICS (continued)** $(VCC = 1.5V \text{ to } 2.75V, TA = -40^{\circ}C \text{ to } +85^{\circ}C, \text{ unless otherwise noted.}$ Typical values are at TA = +25°C and VCC = 3.6V.) (Note 1) | PARAMETER | SYMBOL | CONDITIONS | | MIN | TYP | MAX | UNITS | |--------------------------------|---|--|---------------|-----|-----|-----|-------| | | | | MAX1607_RSD0+ | 20 | 80 | 120 | μs | | Death Astive Times and Deviced | Reset Active Timeout Period t _{RP} | V _{CC} rising, V _{CC}
= (V _{TH} - 100mV)
to (V _{TH} + 100mV) | MAX1607_RSD1+ | 8 | 13 | 17 | ms | | heset Active Timeout Period | | | MAX1607_RSD2+ | 34 | 52 | 69 | ms | | | | (************************************** | MAX1607_RSD3+ | 140 | 210 | 280 | ms | Note 1: Production testing done at $T_A = +25$ °C only. Overtemperature limits are guaranteed by design and are not production tested Note 2: Guaranteed by design. Note 3: Reset is guaranteed down to VCC = 1.0V. ## _Typical Operating Characteristics $(T_A = +25^{\circ}C, \text{ unless otherwise noted.})$ Typical Operating Characteristics (continued) $(T_A = +25^{\circ}C, \text{ unless otherwise noted.})$ ## **Bump Configuration** ## **Bump Description** | | BUMP | | NANAE | FUNCTION | | |----------|----------|----------|-------|--|--| | MAX16072 | MAX16073 | MAX16074 | NAME | FUNCTION | | | A1 | A1 | A1 | GND | Ground | | | B1 | _ | _ | RESET | Active-Low Push-Pull Reset Output. RESET changes from high to low when V _{CC} drops below the detector threshold (V _{TH}) or MR is pulled low. RESET remains low for the reset timeout period after V _{CC} exceeds V _{TH} and MR is high. When MR is low, RESET is low. | | | _ | B1 | _ | RESET | Active-High Push-Pull Reset Output. RESET changes from low to high when V _{CC} drops below the detector threshold (V _{TH}) or MR is pulled low. RESET remains high for the reset timeout period after V _{CC} exceeds V _{TH} and MR is high. When MR is low, RESET is high. | | | _ | _ | B1 | RESET | Active-Low Open-Drain Reset Output. RESET changes from high-impedance to active-low when VCC drops below the detector threshold (VTH) or MR is pulled low. RESET remains low for the reset timeout period after VCC exceeds the reset threshold and MR is high. When MR is low, RESET is low. | | | A2 | A2 | A2 | Vcc | Supply Voltage and Input for the Reset Threshold Monitor | | | B2 | B2 | B2 | MR | Active-Low Manual-Reset Input. Drive low to force a reset. Reset remains active as long as $\overline{\text{MR}}$ is low and for the reset timeout period (if applicable) after $\overline{\text{MR}}$ is driven high. $\overline{\text{MR}}$ has an internal pullup resistor connected to VCC, and may be left unconnected if not used. | | ### **Functional Diagrams** ### **Detailed Description** The MAX16072/MAX16073/MAX16074 ultra-small, ultra-low-power, μP supervisory circuits feature a precision band-gap reference, comparator, and internally trimmed resistors that set specified trip threshold voltages. Designed to monitor the system supply voltage and an output during power-up, power-down, and brownout conditions, these devices provide excellent circuit reliability and low cost by eliminating external components and adjustments when monitoring nominal system voltage from 1.8V to 3.6V. The MAX16072 has a push-pull active-low reset output, the MAX16073 has a push-pull active-high reset output, and the MAX16074 has an open-drain active-low reset output. The devices are designed to ignore fast transients on VCC. The devices also include a manual reset input (\overline{MR}) . When \overline{MR} is low, reset is asserted. When \overline{MR} is high and VCC is above the detector threshold (V_{TH}), reset is not asserted. #### Supply and Monitored Input (Vcc) The MAX16072/MAX16073/MAX16074 operate with a VCC supply voltage from 1.2V to 2.75V. VCC has a rising threshold of VTH + VHYST and a falling threshold of VTH. When VCC rises above VTH + VHYST and $\overline{\text{MR}}$ is high, RESET goes high (RESET goes low) after the reset time-out period (tRP). See Figure 1. When V_{CC} falls below V_{TH}, RESET goes low (RESET goes high) after a fixed delay (t_{RD}). Figure 1. MAX16072/MAX16073/MAX16074 Timing Diagram #### Manual Reset Input (MR) Many μP -based products require manual-reset capability, allowing the operator, a test technician, or external logic circuit to initiate a reset. A logic-low on \overline{MR} asserts reset. Reset remains asserted while \overline{MR} is low, and for the reset active timeout period (tRP) or delay (tON) after \overline{MR} returns high. This input has an internal 50k Ω pullup resistor, so it can be left unconnected if it is not used. \overline{MR} can be driven with TTL or CMOS logic levels, or with open-drain/collector outputs. For manual operation, connect a normally open momentary switch from \overline{MR} to GND; external debouncing circuitry is not required. If \overline{MR} is driven from long cables or if the device is used in a noisy environment, connect a 0.1 μF capacitor from \overline{MR} to ground to provide additional noise immunity. ### **Applications Information** ## Interfacing to µP with Bidirectional Reset Pins Since \overline{RESET} on the MAX16074 is open-drain, this device interfaces easily with μPs that have bidirectional reset pins. Connecting the μP supervisor's \overline{RESET} output directly to the μP 's \overline{RESET} pin with a single pullup resistor allows either device to assert reset (Figure 2). #### **Negative-Going Vcc Transients** The MAX16072/MAX16073/MAX16074 family of devices is relatively immune to short-duration, negative-going VCC transients (glitches). The *Typical Operating Characteristics* show the Maximum Transient Duration vs. Reset Threshold Overdrive graph, for which reset pulses are not generated. The graph shows the maximum pulse width that a negative-going VCC transient may typically have when issuing a reset signal. As the amplitude of the transient increases, the maximum allowable pulse width decreases. Figure 2. Interfacing to µP with Bidirectional Reset Pins ## Table 1. Factory Trimmed Reset Thresholds | TUDEOUGLD | RESET TRIP THRESHOLD (V) | | | | | |---------------------|--------------------------|-------|------------|--|--| | THRESHOLD
SUFFIX | TA = +25°C TA = -40°C | | C to +85°C | | | | SUFFIX | TYP | MIN | MAX | | | | 15 | 1.58 | 1.54 | 1.61 | | | | 16 | 1.63 | 1.60 | 1.66 | | | | 17 | 1.67 | 1.62 | 1.71 | | | | 18 | 1.80 | 1.76 | 1.85 | | | | 19 | 1.90 | 1.85 | 1.95 | | | | 20 | 2.00 | 1.95 | 2.05 | | | | 21 | 2.10 | 2.05 | 2.15 | | | | 22 | 2.20 | 2.145 | 2.25 | | | | 23 | 2.32 | 2.262 | 2.375 | | | | 24 | 2.40 | 2.34 | 2.46 | | | | 25 | 2.50 | 2.437 | 2.562 | | | | 26 | 2.63 | 2.564 | 2.69 | | | | 27 | 2.70 | 2.633 | 2.768 | | | | 28 | 2.80 | 2.63 | 2.87 | | | | 29 | 2.93 | 2.857 | 3.0 | | | | 30 | 3.00 | 2.925 | 3.075 | | | | 31 | 3.08 | 3.003 | 3.15 | | | **Table 2. Reset Timeout Periods** | RESET TIMEOUT PERIODS | | | | | | |-----------------------|-----|-----|-----|-------|--| | SUFFIX | MIN | TYP | MAX | UNITS | | | 0 | 20 | 80 | 120 | μs | | | 1 | 8 | 13 | 17 | ms | | | 2 | 34 | 52 | 69 | ms | | | 3 | 140 | 210 | 280 | ms | | PROCESS: BICMOS ## μP Supervisory Circuits in 4-Bump (1mm x 1mm) Chip-Scale Package **Chip Information** ### Package Information For the latest package outline information and land patterns, go to www.maxim-ic.com/packages. Note that a "+", "#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status. | PACKAGE TYPE | ACKAGE TYPE PACKAGE CODE | | |--------------|--------------------------|---------| | 4 UCSP | R41C1-1 | 21-0242 | Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.