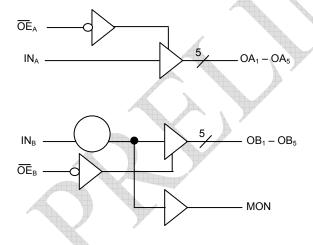
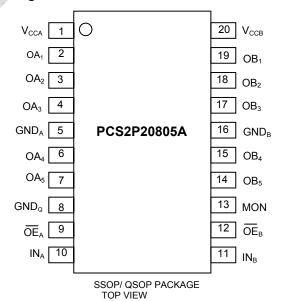


2.5V CMOS Dual 1-To-5 Clock Driver


Features

- Advanced CMOS Technology
- Guaranteed low skew < 200pS (max.)
- Very low propagation delay < 2.5nS (max)
- Very low duty cycle distortion < 270pS (max)
- Very low CMOS power levels
- Operating frequency up to 166MHz
- TTL compatible inputs and outputs
- Two independent output banks with 3-state control
- 1:5 fanout per bank
- "Heartbeat" monitor output
- $V_{CC} = 2.5V \pm 0.2V$
- Available in SSOP and QSOP packages


Functional Description

The PCS2P20805A is a 2.5V Clock driver built using advanced CMOS technology. The device consists of two banks of drivers, each with a 1:5 fanout and its own output enable control. The device has a "heartbeat" monitor for diagnostics and PLL driving. The MON output is identical to all other outputs and complies with the output specifications in this document. The PCS2P20805A offers low capacitance inputs. The PCS2P20805A is designed for high speed clock distribution where signal quality and skew are critical. The PCS2P20805A also allows single point-to-point transmission line driving in applications such as address distribution, where one signal must be distributed to multiple receivers with low skew and high signal quality.

Block Diagram

Pin Diagram

Pin Description

Pin#	Pin Names	Description
9,12	ŌĒ _A , ŌĒ _B	3-State Output Enable Inputs (Active LOW)
10,11	IN _A , IN _B	Clock Inputs
2,3,4,6,7	OA ₁ -OA ₅	Clock Outputs
19,18,17,15,14	OB ₁ -OB ₅	Clock Outputs
1	V _{CCA}	Power supply for Bank A
20	V _{CCB}	Power supply for Bank B
5	GND_A	Ground for Bank A
16	GND_B	Ground for Bank B
8	GND_Q	Ground
13	MON	Monitor Output

Function Table

Inputs		Outputs		
ŌĒA, ŌĒB	IN _A , IN _B	OA _n , OB _n	MON	
L	L	Г	L	
L	Н	H	Н	
Н	L	Z	L	
Н	Н	Z	Н	
Note: H = HIGH; L = LOW; Z = High-Impedance				

Capacitance (T_A = +25°C, f = 1.0MHz)

Symbol	Parameter*	Conditions	Тур	Max	Unit		
C _{IN}	Input Capacitance	V _{IN} = 0V	3	4	pF		
Соит	Output Capacitance	$V_{OUT} = 0V$		6	pF		
*This parameter is measured	*This parameter is measured at characterization but not tested.						

Absolute Maximum Ratings

Symbol	Description	Max	Unit
V _{CC}	Input Power Supply Voltage	-0.5 to +4.6	V
Vı	Input Voltage	-0.5 to +5.5	V
Vo	Output Voltage	-0.5 to V _{CC} +0.5	V
TJ	Junction Temperature	150	°C
Ts	Max. Soldering Temperature (10 sec)	260	°C
T _{STG}	Storage Temperature	-65 to +165	° C
T_DV	Static Discharge Voltage	2	KV
. DV	(As per JEDEC STD22- A114-B)	_	

Note: These are stress ratings only and are not implied for functional use. Exposure to absolute maximum ratings for prolonged periods of time may affect device reliability.

DC Electrical Characteristics over Operating Range

Following Conditions Apply Unless Otherwise Specified Industrial: T_A = -40°C to +85°C, V_{CC} = 2.5V ± 0.2V

Symbol	Parameter	Test Condit	ions ¹	Min	Typ ²	Max	Unit
V _{IH}	Input HIGH Level			1.7		5.5	V
V _{IL}	Input LOW Level		1	-0.5		0.7	V
I _{IH}	Input HIGH Current	V _{CC} = Max.	V _I = 5.5V			±1	
I₁∟	Input LOW Current	V _{CC} = Max.	V _I = GND			±1	
I _{OZH}	High Impedance Output Current	V _{CC} = Max.	V _O = V _{CC}			±1	μA
I _{OZL}	(3-State Outputs Pins)	V _{CC} - IVIAX.	V _O = GND			±1	
V _{IK}	Clamp Diode Voltage	V _{CC} = Min., I _{IN} = -18mA			-0.7	-1.2	V
I _{ODH}	Output HIGH Current	V_{CC} = 2.5V, V_{IN} = V_{IH} or V_{IN}	V_{CC} = 2.5V, V_{IN} = V_{IH} or V_{IL} , V_{O} = 1.25 $V^{3,4}$		-35	-90	mA
I _{ODL}	Output LOW Current	V _{CC} = 2.5V, V _{IN} = V _{IH} or V	$I_{\rm IL}$, $V_{\rm O} = 1.25 V^{3,4}$	25	55	100	mA
los	Short Circuit Current	V_{CC} = Max., V_{O} = GND ^{3,4}		-30	-50	-120	mA
V	Output HIGH Voltage	V _{CC} = Min.	I _{OH} = -8mA	1.7 ⁵			V
V _{OH}	Output Filot i Voltage	$V_{IN} = V_{IH} \text{ or } V_{IL}$	I _{OH} = -100μA	V _{CC} - 0.2			V
.,	O the st I O M / V = It = = =	V _{CC} = Min.	I _{OL} = 8mA		0.2	0.4	
V _{OL}	Output LOW Voltage	$V_{IN} = V_{IH} \text{ or } V_{IL}$	I _{OL} = 100μA			0.2	V

Notes

- 1. For conditions shown as Max. or Min., use appropriate value specified under Electrical Characteristics for the applicable device type.
- 2. Typical values are at V_{CC} = 2.5V, 25°C ambient.
- 3. Not more than one output should be shorted at one time. Duration of the test should not exceed one second.
- 4. This parameter is guaranteed but not tested.
- 5. $V_{OH} = V_{CC}$ -0.6V at rated current.

Power Supply Characteristics

Symbol	Parameter	Test Co	nditions ¹	Min	Typ ²	Max	Unit
I _{ССL} I _{ССН} I _{ССZ}	Quiescent Power Supply Current	V _{CC} = Max. V _{IN}	V_{CC} = Max. V_{IN} = GND or V_{CC}		0.1	20	μΑ
Δl _{CC}	Power Supply Current per Input HIGH		: Max. _{CC} –0.6V		35	250	μΑ
I _{CCD}	Dynamic Power Supply Current per Output ³	V _{CC} = Max. C _L = 15pF All Outputs Toggling	V _{IN} = V _{CC} V _{IN} = GND		65	100	μΑ/MHz
		V _{CC} = Max. C _L = 15pF	$V_{IN} = V_{CC}$ $V_{IN} = GND$		140	160	
	Total Power Supply	All Outputs Toggling f _i = 133MHz	$V_{IN} = V_{CC} - 0.6V$ $V_{IN} = GND$		140	160	
l _C	Current ⁴	V _{cc} = Max. C _L = 15pF	$V_{IN} = V_{CC}$ $V_{IN} = GND$	M	170	200	mA
		All Outputs Toggling f _i = 166MHz	$V_{IN} = V_{CC} - 0.6V$ $V_{IN} = GND$		170	200	

^{1.} For conditions shown as Max. or Min., use appropriate value specified under Electrical Characteristics for the applicable device type.

^{2.} Typical values are at V_{CC} = 2.5V, +25°C ambient.

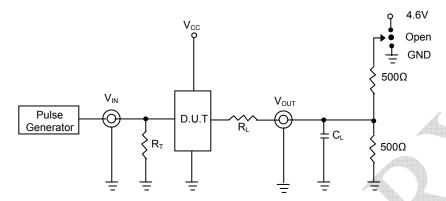
^{3.} This parameter is not directly testable, but is derived for use in Total Power Supply calculations. 4. I_C = IQUIESCENT + IINPUTS + IDYNAMIC

 $I_C = I_{CC} + \Delta I_{CC} D_H N_T + I_{CCD} (f_O N_O)$

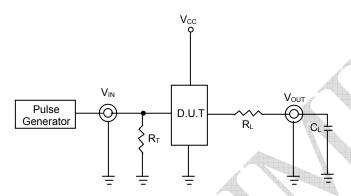
 $[\]begin{array}{l} I_{C} = I_{CC} + \Delta I_{CC} \ D_H N_T + I_{CCD} \ (f_O N_O) \\ I_{CC} = \ Quiescent \ Current \ (I_{CCL}, I_{CCH} \ and \ I_{CCZ}) \\ \Delta I_{CC} = \ Power \ Supply \ Current \ for \ a \ TTL \ High \ Input \ (V_{IN} = V_{CC} - 0.6V) \\ D_H = \ Duty \ Cycle \ for \ TTL \ Inputs \ High \\ N_T = \ Number \ of \ TTL \ Inputs \ at \ D_H \\ I_{CCD} = \ Dynamic \ Current \ Caused \ by \ an \ Input \ Transition \ Pair \ (HLH \ or \ LHL) \\ f_O = \ Output \ Frequency \\ NO = \ Number \ of \ Outputs \ at \ f_O \\ \end{array}$

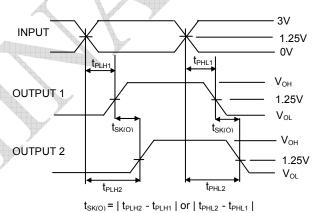
rev 0.3

Switching Characteristics Over Operating Range^{3,4}


Symbol	Parameter	Conditions ¹	Min ²	Max	Unit
t _{PLH} t _{PHL}	Propagation Delay IN _A to OA _n , IN _B to OB _n		1	3	nS
t _R	Output Rise Time (Measured from 0.8V to 2V)			1.5	nS
t_{F}	Output Fall Time (Measured from 2V to 0.8V)			1.5	nS
$t_{\text{SK}(\text{O})}$	Same device output pin to pin skew ⁵			270	pS
t _{SK(P)}	Pulse skew ^{6,9}	C _L = 15pF f ≤133MHz		270	pS
t _{SK(PP)}	Part to part skew ⁷			550	pS
t _{PZL} t _{PZH}	Output Enable Time \overline{OE}_A to OA_n , \overline{OE}_B to OB_n	4		5.2	nS
t _{PLZ} t _{PHZ}	Output Disable Time OE _A to OA _n , OE _B to OB _n			5.2	nS
f _{MAX}	Input Frequency			133	MHz
t _{PLH} t _{PHL}	Propagation Delay IN _A to OA _n , INB to OB _n		0.5	2.5	nS
t _R	Output Rise Time (Measured from 0.7V to 1.7V)			1.25	nS
t _F	Output Fall Time (Measured from 1.7V to 0.7V)	7		1.25	nS
$t_{\text{SK}(O)}$	Same device output pin to pin skew ⁵	Y		200	pS
$t_{SK(P)}$	Pulse skew ^{6,9}	C _L = 15pF 133MHz ≤ f ≤166MHz		270	pS
t _{SK(PP)}	Part to part skew ⁷			550	pS
t _{PZL} t _{PZH}	Output Enable Time OE _A to OA _n , OE _B to OB _n			5.2	nS
t_{PLZ}	Output Disable Time OE _A to OA _n , OE _B to OB _n			5.2	nS
f _{MAX}	Input Frequency			166	MHz

Notes:


- 1. See test circuits and waveforms.
 2. Minimum limits are guaranteed but not tested on Propagation Delays.
 3. t_{PLH} and t_{PHL} are production tested. All other parameters guaranteed but not production tested.
 4. Propagation delay range indicated by Min. and Max. limit is due to V_{CC}, operating temperature and process parameters. These propagation delay limits do not imply about.
- Skew measured between all outputs under identical transitions and load conditions.
- 6. Skew measured is difference between propagation delay times t_{PHL} and t_{PLH} of same outputs under identical load conditions.
- 7. Part to part skew for all outputs given identical transitions and load conditions at identical V_{CC} levels and temperature.
- 8. Airflow of 1m/s is recommended for frequencies above 133MHz.
- 9. This parameter is measured using f = 1MHz.


Test Circuits and Waveforms

Enable and Disable Time Circuit

C_L = 15pF Test Circuit

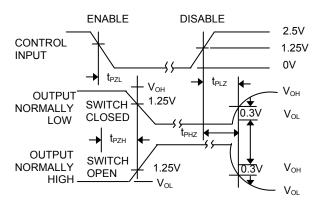
Output Skew - tsk(o)

Switch Position

Test	Switch
Disable Low Enable Low	4.6V
Disable High Enable High	GND

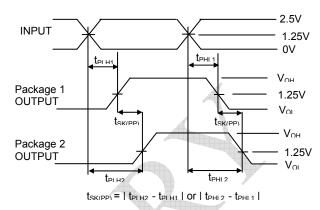
Test Conditions

Symbol	$V_{CC} = 2.5V \pm 0.2V$	Unit
CL	15	pF
R⊤	Z _{OUT} of pulse generator	Ω
R_L	33	Ω
t _R / t _F	1 (0V to 2.5V or 2.5V to 0V)	nS

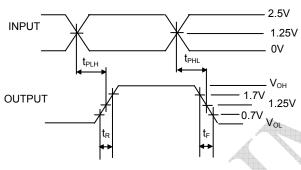

C_L = Load capacitance: includes jig and probe capacitance.

 R_{T} = Termination resistance: should be equal to Z_{OUT} of the Pulse

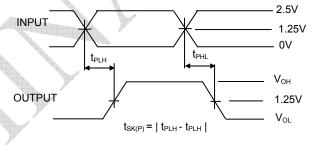
 $t_{\rm R}$ / $t_{\rm F}$ = Rise/Fall time of the input stimulus from the Pulse Generator.



Test Circuits and Waveforms


Enable and Disable Times

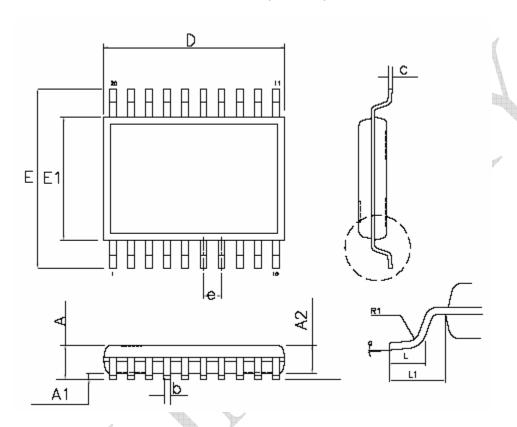
Note: 1. Diagram shown for input Control Enable-LOW and input Control Disable-HIGH



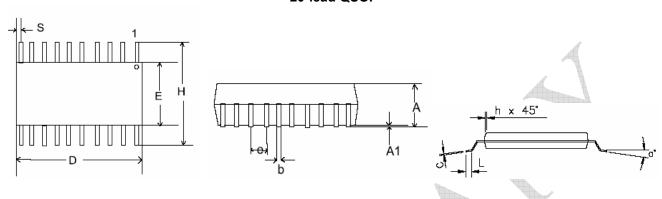
Part-to- Part Skew

Note: Part-to- Part Skew is for package and speed grade.

Propagation Delay



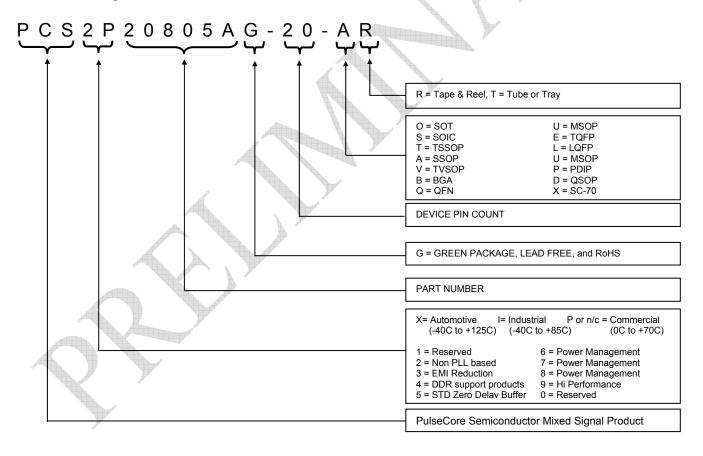
Pulse Skew


Package Information

20-lead SSOP (209 mil)

		Dimensions					
Symbol	Inch	es	Millimeters				
	Min	Max	Min	Max			
Α	0.053	0.069	1.346	1.753			
A1	0.004	0.010	0.102	0.254			
A2		0.059		1.499			
D	0.337	0.344	8.560	8.738			
С	0.007	0.011	0.178	0.274			
Е	0.228	0.244	5.791	6.198			
E1	0.150	0.157	3.810	3.988			
L	0.016	0.035	0.406	0.890			
L1	0.010 BASIC		0.254 E	BASIC			
b	0.008	0.014	0.203	0.356			
R1	0.003		0.08				
а	0°	8°	0°	8°			
е	0.025 E	BASIC	0.635 E	BASIC			

20-lead QSOP


	Dimensions					
Symbol	Inch	Inches Millimeters		eters		
	Min	Max	Min	Max		
Α	0.060	0.068	1.52	1.73		
A1	0.004	0.008	0.10	0.20		
b	0.009	0.012	0.23	0.30		
С	0.007	0.010	0.18	0.25		
D	0.337	0.344	8.56	8.74		
E	0.150	0.157	3.81	3.99		
е	0.025 BSC		0.64	BSC		
H	0.230	0.244	5.84	6.20		
h	0.010	0.016	0.25	0.41		
L	0.016	0.035	0.41	0.89		
S	0.056	0.060	1.42	1.52		
а	0°	8°	0°	8°		

Ordering Information

Part Number	Marking	Package Type	Temperature
PCS2P20805AG-20-AR	2P20805AG	20-Pin SSOP, TAPE & REEL , Green	Commercial
PCS2P20805AG-20-AT	2P20805AG	20-Pin SSOP, TUBE, Green	Commercial
PCS2P20805AG-20-DR	2P20805AG	20-Pin QSOP, TAPE & REEL, Green	Commercial
PCS2P20805AG-20-DT	2P20805AG	20-Pin QSOP, TUBE, Green	Commercial
PCS2I20805AG-20-AR	2120805AG	20-Pin SSOP, TAPE & REEL, Green	Industrial
PCS2I20805AG-20-AT	2I20805AG	20-Pin SSOP, TUBE, Green	Industrial
PCS2I20805AG-20-DR	2I20805AG	20-Pin QSOP, TAPE & REEL, Green	Industrial
PCS2I20805AG-20-DT	2I20805AG	20-Pin QSOP, TUBE, Green	Industrial

Device Ordering Information

Licensed under US patent #5,488,627, #6,646,463 and #5,631,920.

PulseCore Semiconductor Corporation 1715 S. Bascom Ave Suite 200 Campbell, CA 95008 Tel: 408-879-9077

Fax: 408-879-9018 www.pulsecoresemi.com Copyright © PulseCore Semiconductor All Rights Reserved Preliminary Information Part Number: PCS2P20805A Document Version: 0.3

Note: This product utilizes US Patent # 6,646,463 Impedance Emulator Patent issued to PulseCore Semiconductor, dated 11-11-2003

© Copyright 2006 PulseCore Semiconductor Corporation. All rights reserved. Our logo and name are trademarks or registered trademarks of PulseCore Semiconductor. All other brand and product names may be the trademarks of their respective companies. PulseCore reserves the right to make changes to this document and its products at any time without notice. PulseCore assumes no responsibility for any errors that may appear in this document. The data contained herein represents PulseCore's best data and/or estimates at the time of issuance. PulseCore reserves the right to change or correct this data at any time, without notice. If the product described herein is under development, significant changes to these specifications are possible. The information in this product data sheet is intended to be general descriptive information for potential customers and users, and is not intended to operate as, or provide, any guarantee or warrantee to any user or customer. PulseCore does not assume any responsibility or liability arising out of the application or use of any product described herein, and disclaims any express or implied warranties related to the sale and/or use of PulseCore products including liability or warranties related to fitness for a particular purpose, merchantability, or infringement of any intellectual property rights, except as express agreed to in PulseCore's Terms and Conditions of Sale (which are available from PulseCore). All sales of PulseCore products are made exclusively according to PulseCore's Terms and Conditions of Sale. The purchase of products from PulseCore does not convey a license under any patent rights, copyrights; mask works rights, trademarks, or any other intellectual property rights of PulseCore or third parties. PulseCore does not authorize its products for use as critical components in life-supporting systems where a malfunction or failure may reasonably be expected to result in significant injury to the user, and the inclusion of PulseCore products in such life-supporting systems implies that the manufacturer assumes all risk of such use and agrees to indemnify PulseCore against all claims arising from such use.