

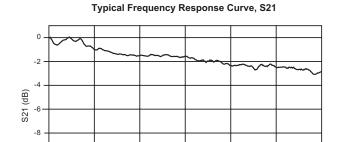
2.5 Gb/s Bias-Free Modulator with Integral Attenuator

Key Features

- Bias-free operation for fast transmitter development and manufacturing
- Built-in 20 dB variable optical attenuator
- Single package for less splicing, lower overall insertion loss and more usable board space
- 1535 to 1565 nm operation; L-band versions available
- Low drive voltage; compatible with commercial drivers
- Low chirp for maximum transmission distance (>1000 km)
- Voltage-controlled lithium niobate attenuator provides proven high reliability

Applications

- Medium- and long-haul DWDM transmission requiring dynamic optical power leveling
- Transmitters with limite component space


The 2.5 Gb/s bias-free modulator with integral attenuator combines a modulator and a 20 dB variable attenuator within one small-outline package, simplifying component count and fiber splicing. The bias point of the interferometer is set to operate at about the half-intensity point (quadrature). A bias control circuit is not required. The attenuator is based on proven integrated optical waveguide technology, making it highly reliable. The modulator provides superior signal quality over a wide range of wavelengths in the C and L bands, and can be used to modulate tunable lasers. These devices are used for 2.5 Gb/s modulation and dynamic power leveling in dense wavelength division multiplexing (DWDM) systems.

-10

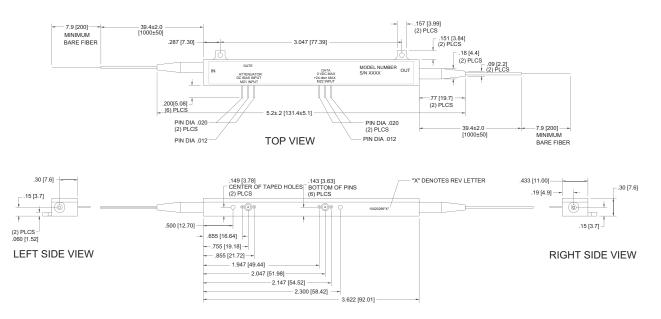
-12 -

0.0

Typical Performance Characteristics

1.5

Frequency (GHz)


1.0

Typical Return Loss Curve, S11

-2.50
-5.00
-7.50
-10.00
-17.50
-15.00
-17.50
-10.00
-17.50
-15.00
-17.50
-18.00
-17.50
-18.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-19.00
-

Dimensions Diagram

(Specifications in inches [mm] unless otherwise noted.)

FRONT VIEW

Specifications

Specification Material Lithium niobate Crystal orientation x-cut, y-propagating Waveguide process APE/titanium-indiffused Operating wavelength Insertion loss, no connectors (note²) ≤6.5 dB On/off extinction ratio, low frequency ≥20 dB Optical return loss ≥50 dB Electrical February RF port 3.6 V typical Vπ at 100 kHz (note²) ≤3.7 V S21 electro-optic bandwidth (-3 dBe) (note¹-3) ≥2.5 GHz S11 return loss 0.03 to 2.5 GHz (note²) ≤-9.5 dB RF input power ≤24 dBm Chirp, alpha parameter α <0.2 Attenuator port Vπ at DC ≤5.0 V	The state of the s	
MaterialLithium niobateCrystal orientationx-cut, y-propagatingWaveguide processAPE/titanium-indiffusedOpticalOperating wavelength1535 to 1565 nmInsertion loss, no connectors (note²)≤6.5 dBOn/off extinction ratio, low frequency≥20 dBOptical return loss≥50 dBElectricalRF portDrive voltage, V peak-to-peak, at 2.5 Gb/s PRBS (note³)3.6 V typicalVπ at 100 kHz (note³)≤3.7 VS21 electro-optic bandwidth (-3 dBe) (note¹-3)≥2.5 GHzS11 return loss0.03 to 2.5 GHz (note³)≤-9.5 dBRF input power≤24 dBmChirp, alpha parameter α <0.2Attenuator port√π at DC≤5.0 V	Parameter	Specification
$ \begin{array}{ c c c } \hline Crystal \ orientation & x-cut, y-propagating \\ \hline Waveguide \ process & APE/titanium-indiffused \\ \hline \textbf{Optical} & & & & \\ \hline \textbf{Operating wavelength} & 1535 \ to 1565 \ nm \\ \hline \textbf{Insertion loss, no connectors (note²)} & \leq 6.5 \ dB \\ \hline \textbf{On/off extinction ratio, low frequency} & \geq 20 \ dB \\ \hline \textbf{Optical return loss} & \geq 50 \ dB \\ \hline \textbf{Electrical} & & & \\ \hline \textbf{RF port} & & & \\ \hline \textbf{Drive voltage, V peak-to-peak, at 2.5 Gb/s PRBS (note³)} & 3.6 \ V \ typical \\ \hline \textbf{Vπ at 100 kHz (note³)} & \leq 3.7 \ V \\ \hline \textbf{S21 electro-optic bandwidth (-3 dBe) (note¹-3)} & \geq 2.5 \ GHz \\ \hline \textbf{S11 return loss} & & \\ \hline \textbf{0.03 to 2.5 GHz (note³)} & \leq -9.5 \ dB \\ \hline \textbf{RF input power} & \leq 24 \ dBm \\ \hline \textbf{Chirp, alpha parameter} & \alpha < 0.2 \\ \hline \textbf{Attenuator port} & & \\ \hline \textbf{Vπ at DC} & \leq 5.0 \ V \\ \hline \end{array} $	General	
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	Material	Lithium niobate
		x-cut, y-propagating
$ \begin{array}{ c c c c } \hline Operating wavelength & 1535 to 1565 nm \\ \hline Insertion loss, no connectors (note²) & \leq 6.5 dB \\ \hline On/off extinction ratio, low frequency & \geq 20 dB \\ \hline Optical return loss & \geq 50 dB \\ \hline \hline Electrical & & \\ \hline RF port & & \\ \hline Drive voltage, V peak-to-peak, at 2.5 Gb/s PRBS (note³) & 3.6 V typical \\ \hline V_{\pi} at 100 kHz (note³) & \leq 3.7 V \\ \hline S21 electro-optic bandwidth (-3 dBe) (note¹,³) & \geq 2.5 GHz \\ \hline S11 return loss & & \\ \hline 0.03 to 2.5 GHz (note³) & \leq -9.5 dB \\ \hline RF input power & \leq 24 dBm \\ \hline Chirp, alpha parameter & \alpha < 0.2 \\ \hline Attenuator port & \\ \hline V_{\pi} at DC & \leq 5.0 V \\ \hline \end{array} $	Waveguide process	APE/titanium-indiffused
Insertion loss, no connectors (note²)≤6.5 dBOn/off extinction ratio, low frequency≥20 dBOptical return loss≥50 dBElectricalRF portDrive voltage, V peak-to-peak, at 2.5 Gb/s PRBS (note³)3.6 V typical V_{π} at 100 kHz (note³)≤3.7 VS21 electro-optic bandwidth (-3 dBe) (note¹,³)≥2.5 GHzS11 return loss≤-9.5 dB0.03 to 2.5 GHz (note³)≤-9.5 dBRF input power≤24 dBmChirp, alpha parameter α <0.2		
$ \begin{array}{c c} \hline On/off \ extinction \ ratio, low \ frequency \\ \hline Optical \ return \ loss \\ \hline \hline SElectrical \\ \hline \hline RF \ port \\ \hline \hline Drive \ voltage, V \ peak-to-peak, at 2.5 \ Gb/s \ PRBS \ (note^3) \\ \hline V_{\pi} \ at \ 100 \ kHz \ (note^3) \\ \hline S21 \ electro-optic \ bandwidth \ (-3 \ dBe) \ (note^{1,3}) \\ \hline S21 \ return \ loss \\ \hline 0.03 \ to \ 2.5 \ GHz \ (note^3) \\ \hline RF \ input \ power \\ \hline Chirp, \ alpha \ parameter \\ \hline V_{\pi} \ at \ DC \\ \hline \hline \\ Attenuator \ port \\ \hline \hline \\ V_{\pi} \ at \ DC \\ \hline \end{array} $		1535 to 1565 nm
$ \begin{array}{ c c c }\hline \text{Optical return loss} & \geq 50 \text{ dB} \\ \hline \textbf{Electrical} \\ \hline \textbf{RF port} \\ \hline & Drive voltage, V peak-to-peak, at 2.5 Gb/s PRBS (note³) & 3.6 V typical \\ \hline & V_{\pi} \text{ at } 100 \text{ kHz (note³)} & \leq 3.7 \text{ V} \\ \hline & S21 \text{ electro-optic bandwidth (-3 dBe) (note¹,³)} & \geq 2.5 \text{ GHz} \\ \hline & S11 \text{ return loss} & \\ \hline & 0.03 \text{ to } 2.5 \text{ GHz (note³)} & \leq -9.5 \text{ dB} \\ \hline & RF \text{ input power} & \leq 24 \text{ dBm} \\ \hline & Chirp, alpha parameter & \alpha < 0.2 \\ \hline & \\ \hline & \\ \hline & Attenuator port & \\ \hline & V_{\pi} \text{ at DC} & \leq 5.0 \text{ V} \\ \hline \end{array} $	Insertion loss, no connectors (note ²)	≤6.5 dB
	On/off extinction ratio, low frequency	≥20 dB
RF portDrive voltage, V peak-to-peak, at 2.5 Gb/s PRBS (note³)3.6 V typical V_{π} at 100 kHz (note³) $\leq 3.7 \text{ V}$ S21 electro-optic bandwidth (-3 dBe) (note¹,³) $\geq 2.5 \text{ GHz}$ S11 return loss0.03 to 2.5 GHz (note³) $\leq -9.5 \text{ dB}$ RF input power $\leq 24 \text{ dBm}$ Chirp, alpha parameter $ \alpha < 0.2$ Attenuator port V_{π} at DC $\leq 5.0 \text{ V}$	Optical return loss	≥50 dB
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Electrical	
$\begin{array}{c c} V_{\pi} \text{ at } 100 \text{ kHz (note}^3) & \leq 3.7 \text{ V} \\ \hline S21 \text{ electro-optic bandwidth (-3 dBe) (note}^{1.3}) & \geq 2.5 \text{ GHz} \\ \hline S11 \text{ return loss} & \\ \hline 0.03 \text{ to } 2.5 \text{ GHz (note}^3) & \leq -9.5 \text{ dB} \\ \hline RF \text{ input power} & \leq 24 \text{ dBm} \\ \hline Chirp, alpha parameter} & \alpha < 0.2 \\ \hline \hline Attenuator port & \\ \hline V_{\pi} \text{ at DC} & \leq 5.0 \text{ V} \\ \hline \end{array}$		
$\begin{array}{c c} S21 \ electro-optic \ bandwidth \ (-3 \ dBe) \ (note^{1,3}) & \geq 2.5 \ GHz \\ \hline S11 \ return \ loss & \\ \hline 0.03 \ to \ 2.5 \ GHz \ (note^3) & \leq -9.5 \ dB \\ \hline RF \ input \ power & \leq 24 \ dBm \\ \hline Chirp, \ alpha \ parameter & \alpha < 0.2 \\ \hline Attenuator \ port & \\ \hline V_{\pi} \ at \ DC & \leq 5.0 \ V \end{array}$		3.6 V typical
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		≤3.7 V
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	S21 electro-optic bandwidth (-3 dBe) (note ^{1,3})	≥2.5 GHz
$ \begin{array}{c c} RF \ input \ power & \leq 24 \ dBm \\ \hline Chirp, \ alpha \ parameter & \alpha < 0.2 \\ \hline Attenuator \ port & \\ \hline V_{\pi} \ at \ DC & \leq 5.0 \ V \\ \end{array} $	S11 return loss	
		≤-9.5 dB
$\frac{\text{Attenuator port}}{V_{\pi} \text{ at DC}} \leq 5.0 \text{ V}$		≤24 dBm
V_{π} at DC \leq 5.0 V		$ \alpha $ <0.2
	Attenuator port	
X 1		
	Impedance	≥1 MΩ
Mechanical	Mechanical	
Input Fujikura SM-15-P-8/125-UV/UV-400	1	,
Output (note ⁴) SMF-28		SMF-28
RF connection Pins	RF connection	Pins
Bias connection Pins		Pins
Environmental	Environmental	
Operating temperature 0 to 65 °C		1 11 11 1
Storage temperature -40 to 85 °C	Storage temperature	-40 to 85 °C

^{1.} Relative to 30 MHz.

^{2.} Insertion loss is measured at the maximum of the modulator's transfer function and does not include the 3 dB loss incurred when operating at quadrature.

 $^{{\}it 3. \, Variances \, with \, temperature \, and \, wavelength \, included.}$

^{4.} PM output fiber also available.

Ordering Information	

For more information on this or other products and their availability, please contact your local JDSU account manager or JDSU directly at 1-800-498-JDSU (5378) in North America and +800-5378-JDSU worldwide or via e-mail at customer.service@jdsu.com.

Sample: 10021970

Product Code	Description
10021970	2.5 Gb/s modulator with integral attenuator and no optical connectors
10021971	2.5 Gb/s modulator with integral attenuator and FC/SPC optical connectors

Note: Other connectors available upon special request. Call JDSU for more information.

SMF-28 and Fujikura SM-15-P-8/125-UV-400 are registered trademarks of Corning Incorporated.

All statements, technical information and recommendations related to the products herein are based upon information believed to be reliable or accurate. However, the accuracy or completeness thereof is not guaranteed, and no responsibility is assumed for any inaccuracies. The user assumes all risks and liability whatsoever in connection with the use of a product or its application. JDSU reserves the right to change at any time without notice the design, specifications, function, fit or form of its products described herein, including withdrawal at any time of a product offered for sale herein. JDSU makes no representations that the products herein are free from any intellectual property claims of others. Please contact JDSU for more information. JDSU and the JDSU logo are trademarks of JDS Uniphase Corporation. Other trademarks are the property of their respective holders. ©2006 JDS Uniphase Corporation. All rights reserved. 10116236 Rev. 001 05/06 25GBFMVOA.DS.CC.AE

NORTH AMERICA: 800 498-JDSU (5378) WORLDWIDE: +800 5378-JDSU WEBSITE: www.jdsu.com