QPM-XXX
QPSK Modulator

BOWEI INTEGRATED CIRCUITS CO.,LTD.

Features

- Low conversion loss
-Frequency range: $5 \sim 1000 \mathrm{MHz}$
- High carrier rejection
- Low VSWR, 50 ohm impedance
- Hermetic DIP-22D package available
- Operating temperature range:- $55^{\circ} \mathrm{C} \sim+85^{\circ} \mathrm{C}$

Specifications(measured in a 50Ω system, $\mathrm{T}_{\mathrm{A}}=: 25^{\circ} \mathrm{C}$)

Model	Carrier Frequency $($ Max $)$	IL Max (dB)	Amplitude Imbalance Max (dB)	Phase Imbalance Max (deg)	Gain 1dB Compression Inputpower Min (dBm)	VSWR Max
QPM-01	$9.5 \sim 11$	9.0	1.0	± 3.0	+2	1.50
QPM-02	$19.5 \sim 21.5$	9.0	1.0	± 4.5	+2	1.50
QPM-03	$20 \sim 40$	8.0	0.8	± 3.0	+2	1.50
QPM-04	$35 \sim 50$	8.0	0.8	± 3.0	+2	1.50
QPM-05	$40 \sim 75$	7.5	0.5	± 3.0	+2	1.50
QPM-06	$90 \sim 150$	7.5	0.5	± 3.0	+2	1.50
QPM-07	$190 \sim 210$	8.0	0.8	± 3.0	+2	1.50
QPM-08	$285 \sim 315$	8.0	0.8	± 3.0	+2	1.50
QPM-09	$869 \sim 894$	8.0	0.8	± 3.0	+2	1.50

Notes

1.Generally this series is packaged in hermetic DIP-22D
2.Modulator with internal TTL driver is available within other package

Application Notes:

1.Functional schematic shown as right
2.External driver and current limiting resistor (180~220 Ω) are required to provide control current $\pm 20 \mathrm{~mA}$ Logic1: +20mA(Typ)
Logic0: $-20 \mathrm{~mA}($ Typ)

DIP-22D Bottom View

Pin connection: Truth Tabel and Phase
Pin1:RFout Pin2, 7:control Pin5: Rfin Others:GND

Control	0,0	0° (ref.)
	0,1	-90
	1,1	-180
	1,0	-270

QPM-06 Typical Performance
Amplitude balance vs. Frequency

90° Phase balance vs. Frequency

270° Phase balance vs. Frequency

