28 VOLT INPUT – 30 WATT

FEATURES

- –55° to +125°C operation
- · 16 to 40 VDC input
- · Fully isolated
- Magnetic feedback
- · Fixed frequency 600 kHz typical
- · Topology Single Ended Forward
- · 50 V for up to 50 ms transient protection
- · Inhibit and synchronization functions
- · Indefinite short circuit protection
- Up to 30 watts output power
- · Trim and remote sense on single output models
- Up to 84% efficiency

MODELS					
V	DC OUTPU	Т			
SINGLE	DUAL	TRIPLE			
3.3	±5	+5 & ±12			
5	±12	+5 & ±15			
12	±15				
15					
18					

DESCRIPTION

The MTR Series[™] of DC/DC converters offers up to 30 watts of output power from single, dual, or triple output configurations. They operate over the full military temperature range with up to 84% efficiency. MTR converters are packaged in hermetically sealed metal cases, making them ideal for use in military, aerospace and other high reliability applications.

CONVERTER DESIGN

The MTR converters are constant frequency, pulse-width modulated switching regulators which use a quasi-square wave, single ended, forward converter design. Tight load regulation is maintained via wide bandwidth magnetic feedback and, on single output models, through use of remote sense. On dual output models, the positive output is independently regulated and the negative output is cross regulated through the use of tightly coupled magnetics and shunt regulators. The MTR Series triple output DC/DC converter's design includes individual regulators on the auxiliary outputs which provide for no cross regulation error when a minimum 500 mA load is maintained on the main (+5) output.

Indefinite short circuit protection and overload protection are provided by a constant current-limit feature. This protective system senses current in the converter's secondary stage and limits it to approximately 115% of the maximum rated output current.

MTR converters are provided with internal filtering capacitors that help reduce the need for external components in normal operation. For systems that require compliance with MIL-STD-461C's CE03 standard, Interpoint offers filter/transient suppression modules (including the FMC-461, FMD-461 and FM-704A series filters) which will result in compliance. Contact your Interpoint representative for further details.

SYNCHRONIZATION

Synchronizing the converter with the system clock allows the designer to confine switching noise to clock transitions, minimizing interference and reducing the need for filtering. In sync mode, the converter will run at any frequency between 500 kHz and 675 kHz. The sync control operates with a quasi-TTL signal at any duty cycle between 40% and 60%. The sync pin must be connected to input common pin when not in use.

Crane Aerospace & Electronics Electronics Group (Interpoint Brand) PO Box 97005 • Redmond WA 98073-9705 425.882.3100 • electronics@craneae.com www.craneae.com Page 1 of 19 Rev G - 20060505

28 VOLT INPUT – 30 WATT

OPERATING CONDITIONS AND CHARACTERISTICS

Input Voltage

16 to 40 VDC continuous50 V for 50 msec transient

Output Power

- 25 to 30 watts depending on model Lead Soldering Temperature (10 sec per pin)
- 300°C

Storage Temperature Range (Case) • -65°C to +135°C

Case Operating Temperature (Tc)

- –55°C to +125°C full power
- -55°C to +135°C absolute

Derating Output Power/Current

Linearly from 100% at 125°C to 0% at 135°C

Output Voltage Temperature Coefficient

- 100 ppm/°C typical single and dual outputs
- 200 ppm/°C main typical, 300 ppm/°C aux

triple output typical

Input to Output Capacitance

• 50 pF typ (100 pF typical triple outputs) Current Limit

• 115% of full load typical

Isolation

• 100 megohm minimum at 500 V

Audio Rejection

40 dB typ (50 dB typical triple output)

Conversion Frequency

- Free run 550 min, 600 typical, 650 max kHz duals and singles Free run 525 min, 600 typical, 650 max kHz triples
- External sync 500 to 675 kHz singles and duals External sync 500 to 700 kHz triples

SYNC AND INHIBIT

Sync (500 to 675 kHz) • Duty cycle 40% min, 60% max

- Logic low 0.8 V max
- Logic high 4.5 V min, 5 V max
- Referenced to input common
- If not used, connect to input common

Inhibit TTL Open Collector (referenced to input common)

- Logic low (output disabled), ≤0.8 V
 - Inhibit pin current
 - 8.0 mA max for singles & duals,
 - 6.0 mA for triples
- Logic high (output enabled)
 - Input pin voltage, unit enabled, 9 to 11 V

MECHANICAL AND ENVIRONMENTAL

Size (maximum)

Weight (maximum)	
Triple output	2.720 x 1.350 x 0.405 inches (69.09 x 34.29 x 10.29 mm) See case J1 for dimensions.
Flanged Single and dual output	2.910 x 1.125 x 0.400 inches (73.91 x 28.58 x 10.16 mm) See case K3 for dimensions. MTR Dual with standard or ES screening, ht. 0.417", (10.59 mm) See case K5 for dimensions.
Triple output	1.950 x 1.350 x 0.405 inches (49.53 x 34.29 x 10.29 mm) See case F1 for dimensions.
Non-flanged Single and dual output	2.125 x 1.125 x 0.400 inches (53.98 x 28.58 x 10.16 mm) See case H2 for dimensions. MTR Dual with standard or ES screening, ht 0.417", (10.59 mm) See Case H4 for dimensions.

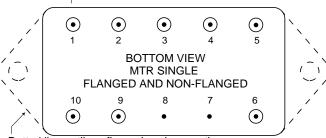
Single and dual non-flanged 50 grams, flanged 52 grams Triple non-flanged 58 grams, flanged 62 grams

Screening

W

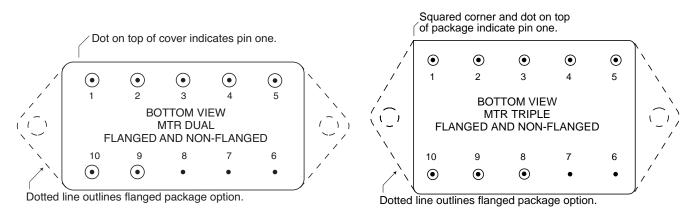
Standard, ES, or /883 (Class H, QML). See "883, Class H, QML Products – Element Evaluation" and "883, Class H, QML Products – Environmental Screening" for more information.

28 VOLT INPUT - 30 WATT


PIN OUT

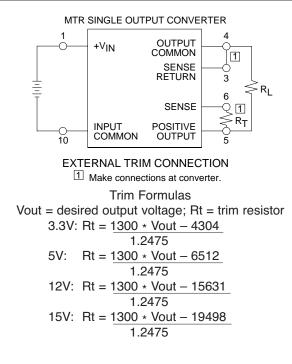
Pin	Single Output	Dual Output	Triple Output
1	Positive Input	Positive Input	Positive Input
2	Inhibit	Inhibit	Main (+5) Output
3	Sense Return	Positive Output	Output Common
4	Output Common	Output Common	Neg. Aux. Output
5	Positive Output	Negative Output	Pos. Aux. Output
6	Positive Sense	Case Ground	Case Ground
7	Case Ground	Case Ground	Case Ground
8	Case Ground	Case Ground	Inhibit
9	Sync	Sync	Sync
10	Input Common	Input Common	Input Common

PINS NOT IN USE


Inhibit	Leave unconnected
Sync In	Connect to input common
Sense Lines	Must be connected to appropriate outputs

/ Dot on top of cover indicates pin one.

Dotted line outlines flanged package option. See cases H2, H4, K3 and K5 for dimensions.



See cases H2, H4, K3 and K5 for dimensions.

FIGURE 2: PIN OUT DUAL OUTPUT MODELS

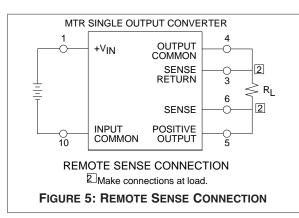

See cases F1 and J1 for dimensions.

FIGURE 3: PIN OUT TRIPLE OUTPUT MODELS

28 VOLT INPUT – 30 WATT

Notes for Remote Sense and Trim

- 1. When trimming output voltage and/or remote sensing, the total output voltage increase must be less than 0.6 volts at the converters pins to maintain specified performance.
- If neither voltage trim nor remote sense will be used, connect pin 3 to pin 4 and pin 5 to pin 6 or the output voltage will increase by 1.2 volts.
- 3. CAUTION: The converter will be permanently damaged if the positive remote sense (pin 6) is shorted to ground. Damage may also result if the output common or positive output is disconnected from the load with the remote sense leads connected to the load.

28 VOLT INPUT – 30 WATT

MODEL NUMBERING KEY
MTR 28 512 T F / 883 Input Voltage
Case Option ("F" indicates flanged option, non-flanged case has no designator in this position)
Screening (Standard screening has no designator in this position.)

SMD NUMBERS					
STANDARD MICROCIRCUIT	MTR SERIES				
DRAWING (SMD)	SIMILAR PART				
5962-0150101HXC	MTR283R3S/883				
5962-9306801HXC	MTR2805S/883				
5962-9306901HXC	MTR2812S/883				
5962-9307001HXC	MTR2815S/883				
5962-9320201HXC	MTR2818S/883				
5962-9320501HXC	MTR2805D/883				
5962-9307101HXC	MTR2812D/883				
5962-9307201HXC	MTR2815D/883				
5962-9307301HXC	MTR28512T/883				
5962-9307401HXC	MTR28515T/883				
number. The SMD number show					

MTR28							
Base model Vout	t value ni	umber of outputs	case option	screening			
Choose one from each	of the followi	ng rows					
Vout value	for singles or	duals: 5, 12, or 15	for triples*: 512 or 515				
Number of outputs	S (single)	D (dual)	or T (triple)				
Case option	non-flanged	case option, leave blank	F (flanged case o	otion)			
Screening	standard scre	eening, leave blank	/ES (ES screening), /883 (Class H, QML)				

28 VOLT INPUT – 30 WATT

Electrical Characteristics: 25°C Tc, 28 VDC Vin, 100% load, free run, unless otherwise specified.

SINGLE OUTPUT MO	DELS	MTR283R3S		M	TR280	5S	MTR2812S			MTR2815S			MTR2818S				
PARAMETER	CONDITION	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
OUTPUT VOLTAGE		3.27	3.30	3.34	4.95	5.00	5.05	11.88	12.00	12.12	14.85	15.00	15.15	17.82	18.00	18.18	VDC
OUTPUT CURRENT ²	V _{IN} = 16 to 40 VDC	0		6.06	0	_	5.0	0	_	2.5	0	_	2.0	0	_	1.67	A
OUTPUT POWER ²	$V_{IN} = 16$ to 40 VDC	0	_	20	0	_	25	0	-	30	0	_	30	0	_	30	W
OUTPUT RIPPLE	10 kHz – 2 MHz	-	15	40	_	35	50	-	25	40	-	25	40	-	_	40	
VOLTAGE	Tc = -55°C TO +125°C	-	_	50	_	50	90	-	40	90	-	40	90	_	_	90	mV p-p
LINE REGULATION ³	Vin = 16 to 40 VDC	_	5	10	_	10	50	_	10	50	_	10	50	_	_	50	
	Tc = -55°C TO +125°C	-	_	10	_	15	50	-	15	50	-	15	50	-	_	50	mV
LOAD REGULATION	NO LOAD TO FULL	-	2	10	_	5	50	-	5	50	-	5	50	-	_	50	
	$Tc = -55^{\circ}C TO + 125^{\circ}C$	_	_	10	_	15	50	_	15	50	-	15	50	—	_	50	mV
INPUT VOLTAGE ²	CONTINUOUS	16	28	40	16	28	40	16	28	40	16	28	40	16	28	40	VDC
NO LOAD TO FULL	TRANSIENT 50 ms	-	_	50	-	—	50	-	—	50	-	—	50	-	—	50	V
INPUT CURRENT ²	NO LOAD	_	30	75	_	35	75	_	35	75	-	35	75	-	_	75	mA
	INHIBITED	-	7	8	_	3	8	-	3	8	-	3	8	-	_	8	mA
INPUT RIPPLE	10 kHz – 10 MHz																
CURRENT	Tc = -55°C TO +125°C	-	25	50	-	20	50	_	20	50	_	20	50	-	_	50	mA p-p
EFFICIENCY		74	76	_	76	78	_	80	83	_	81	84	_	81	84	_	%
LOAD FAULT ⁴	SHORT CIRCUIT																
	POWER DISSIPATION	-	10	_	_	10	_	-	10	-	-	10	_	-	10	W	
	RECOVERY ^{1, 2, 5}	-	1.4	6	-	1.4	5	-	1.4	5	-	1.4	5	-	1.4	5	ms
STEP LOAD RESP.	50% - 100% - 50%																
	TRANSIENT	—	±125	±250	_	±200	±300	_	±250	±400	-	±350	±500	—	_	±600	mV pk
	RECOVERY ^{1, 4}	-	_	200	_	60	200	-	60	200	-	60	200	-	60	_	μs
STEP LINE RESP. ¹	16 - 40 - 16 VDC																
	TRANSIENT ⁶	-	-	±300	_	±200	±300	-	±400	±500	-	±500	±600	-	±500	-	mV pk
	RECOVERY ⁵	-	-	300	-	-	300	-	_	300	-	-	300	-	300	-	μs
START-UP ^{2, 7}	DELAY	-	1.4	5	-	1.4	5	_	1.4	5	_	1.4	5	-	_	5	ms
	OVERSHOOT																
	FULL LOAD ¹	—	0	50	_	0	50	_	0	120	-	0	150	—	0	—	
	NO LOAD ¹	-	33	150	_	50	250	-	120	600	-	150	750	-	_	_	mV pk
CAPACITIVE LOAD ¹	NO EFFECT ON DC																
	PERFORMANCE	-	_	300	-	_	300	_	-	3000	_	-	3000	-	-	2000	μF

Notes

1. Guaranteed, not tested.

2. Tc = -55° C to $+125^{\circ}$ C

3. Operation is limited below 16V (see Figure 22).

4. Indefinite short circuit protection not guaranteed above 125°C case.

5. Recovery time is measured from application of the transient to point at which Vout is within 1% of final value.

6. Transition time \geq 10 μ s.

7. Tested on release from inhibit.

28 VOLT INPUT – 30 WATT

DUAL OUTPUT MODELS	S		MTR2805D			MTR2812D			MTR2815D				
PARAMETER	CONDITIONS		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNITS	
OUTPUT VOLTAGE	-	+V _{OUT}	4.95	5.00	5.05	11.88	12.00	12.12	14.85	15.00	15.15	VDC	
		-V _{OUT}	4.92	5.00	5.08	11.82	12.00	12.18	14.77	15.00	15.23	VDO	
OUTPUT CURRENT ^{2, 3}	V _{IN} = 16 TO 40 VI		0	2.5	4.5	0	1.25	2.25	0	1.0	1.8	А	
OUTPUT POWER ^{2, 3}	V _{IN} = 16 TO 40 VI	DC	0	_	25	0	_	30	0	_	30	W	
OUTPUT RIPPLE	10 kHz - 2 MHz	:	_	20	40	-	30	80	-	25	80		
VOLTAGE +/- V _{OUT}	Tc = -55°C TO +12	5°C	_	40	90	-	40	120	-	40	120	mV p-p	
LINE REGULATION ⁴	-	+V _{OUT}	_	10	50	-	10	50	-	10	50		
V _{IN} = 16 TO 40 VDC	-	-V _{OUT}	_	50	100	-	50	150	-	50	180	mV	
	Tc = -55°C -	+V _{OUT}	_	10	50	—	10	50	-	10	50	IIIV	
	TO +125°C -	-V _{OUT}	_	50	100	-	50	150	-	50	180		
LOAD REGULATION	-	+V _{OUT}	_	5	50	-	15	50	-	15	50		
NO LOAD TO FULL	-	-V _{OUT}	—	25	100	—	30	150	-	30	180	mV	
	Tc = -55°C -	+V _{OUT}	_	5	50	-	15	50	-	15	50	IIIV	
		-V _{OUT}	-	25	100	—	30	150	-	30	180		
CROSS REGULATION ¹	SEE NOTE 5		—	7	12	—	4	8.3	-	3	8	%	
EFFECT ON -V _{OUT}	SEE NOTE 6		—	4	6	—	4	6	-	4	6	/0	
INPUT VOLTAGE ²	CONTINUOUS		16	28	40	16	28	40	16	28	40	VDC	
NO LOAD TO FULL	TRANSIENT 50 ms		0	_	50	0	_	50	0	_	50	V	
INPUT CURRENT	NO LOAD		_	35	75	-	50	75	-	50	75	mA	
INPUT RIPPLE	INHIBITED		_	3	8	_	3	8	-	3	8	mA	
CURRENT ²	10 kHz - 10 MH:	7	_	15	50	_	20	50	_	20	50	mA p-p	
EFFICIENCY		2	76	78		78	81		80	83		%	
LOAD FAULT ⁷	POWER DISSIPATION		10	10			01		00	00		/0	
	SHORT CIRCUIT	Г ²	_	10	_	_	10	_	_	10	_	W	
	RECOVERY ¹		—	1.4	5.0	—	1.4	5.0	-	1.4	5.0	ms	
STEP LOAD	50 – 100 – 50% BAL	ANCED											
RESPONSE $\pm V_{OUT}$	TRANSIENT		-	±200	±300	-	±150	±300	-	±200	±400	mV pk	
1	RECOVERY ^{1,8}		_	100	200	—	100	200	-	100	200	μs	
STEP LINE ¹	16 – 40 – 16 V _{II} TRANSIENT ⁹	N		. 000	. 100		. 000	. 100		. 100	. 500		
$RESPONSE \pm V_OUT$			_	±200	±400	_	±200	±400	-	±400	±500	mV pk	
START-UP ^{2, 10}	RECOVERY ⁸		_		300	—		300	-		300	μs	
START-UP2, 10	DELAY			1.4	5	-	1.4	5	-	1.4	5	ms	
	OVERSHOOT												
	FULL LOAD ¹		_	0	50	_	0	120	-	0	150	mV pk	
	NO LOAD ¹		-	50	250	-	120	600	-	150	750		
CAPACITIVE LOAD ¹	NO EFFECT ON DC										l		
	PERFORMANCE		-	-	500	-	-	500	-	-	500	μF	

Electrical Characteristics: 25°C Tc, 28 VDC Vin, 100% load, free run, unless otherwise specified.

Notes

1. Guaranteed, not tested.

 Up to 90% of the total output current/power is available from either output providing the positive output is carrying at least 10% of the total output power.

4. Operation is limited below 16 V (see Figure 22).

5. Effect on negative Vout from 50%/50% loads to 80%/20% or 20%/80% loads.

6. Effect on negative Vout from 50%/50% loads to 90%/10% or 10%/90% loads.

7. Indefinite short circuit protection not guaranteed above 125°C case.

8. Recovery time is measured from application of the transient to point at which Vout is within 1% of final value.

9. Transition time \geq 10 μ s.

10. Tested on release from inhibit.

www.craneae.com

Page 7 of 19 Rev G - 20060505

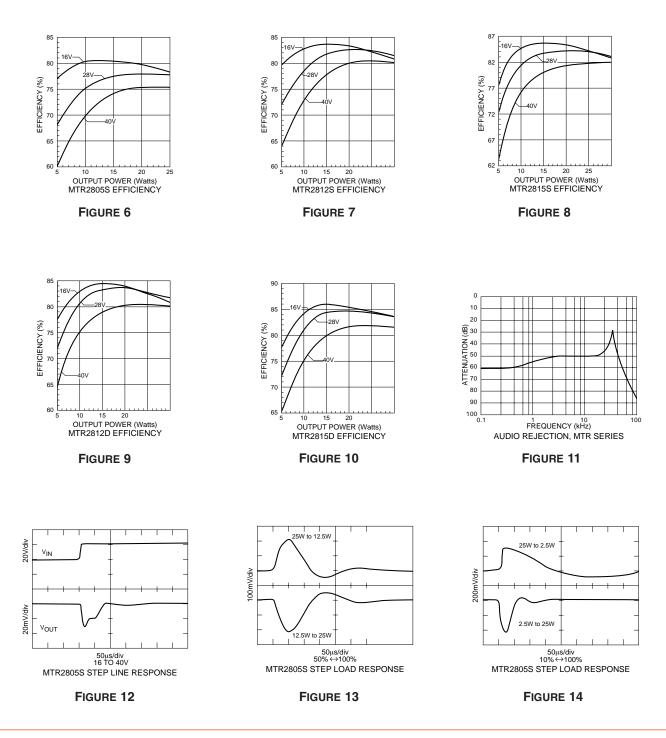
^{2.} Tc = -55° C to $+125^{\circ}$ C.

28 VOLT INPUT – 30 WATT

Electrical Characteristics: 25°C Tc, 28 VDC Vin, 100% load, free run, unless otherwise specified.

TRIPLE OUTPUT MODELS				MTR2851	2Т					
PARAMETER	CONDI	TION	MIN	ТҮР	MAX	MIN	TYP	MAX	UNITS	
OUTPUT VOLTAGE	MA	IN	4.95	5.0	5.05	4.95	5.0	5.05		
	+ AUXII	IARY	11.82	12.0	12.18	14.77	15.0	15.23	VDC	
	– AUXII	IARY	11.82	12.0	12.18	14.77	15.0	15.23	1	
OUTPUT CURRENT ²	MA	IN	0.3	_	4.0	0.3	_	4.0		
V _{IN} = 16 TO 40	+ AUXII	LIARY	_	0.416	0.750	-	0.333	0.600	A	
	– AUXII	IARY	_	0.416	0.750	-	0.333	0.600	1	
OUTPUT POWER ²	MA	IN	_	20	20	-	20	20		
V _{IN} = 16 TO 40	+ AUXII	IARY	_	5	9	-	5	9	w	
	– AUXII	IARY	_	5	9	-	5	9		
	TOT	AL	_	_	30	-	_	30	1	
OUTPUT RIPPLE		MAIN	_	50	125	_	50	125		
VOLTAGE	10 kHz to 2 MF	± AUXILIARY	_	20	60	-	20	60	mV p-p	
LINE REGULATION	MA	IN	_	10	20	-	10	20		
V _{IN} = 16 TO 40	±AUXILIARY		_	25	75	-	30	75	_ mV	
		IN	_	10	50	_	10	50		
	± AUXII	_	30	75	_	30	75	mV		
INPUT VOLTAGE	CONTIN	UOUS	16	28	40	16	28	40		
	TRANSIEN	_	_	50	_	_	50	- VDC		
INPUT CURRENT	NO LO		_	70	100	_	70	120	mA	
	INHIBI		_	3.0	6	_	3.0	6	mA	
INPUT RIPPLE CURRENT	10 kHz TO		_	20	45	_	20	45	mA p-r	
EFFICIENCY			72	75	_	73	75	_	%	
LOAD FAULT ⁵	POWER DIS	SIPATION							, -	
	SHORT C									
	ALL OUTPUTS S		_	14	_	_	14	_	w	
	RECOVERY EA		_	4	6.0	_	4	6.0	ms	
STEP LOAD RESPONSE		MAIN	_	150	250	_	150	250		
STEP LOAD RESPONSE	TRANSIENT ⁶	± AUXILIARY	_	500	800	_	500	800	mV pł	
	-	MAIN	_	0.05	0.10	_	0.05	0.10	1	
	RECOVERY ⁷	± AUXILIARY	_	3	4	_	2	4	ms	
STEP LINE RESPONSE ¹	TRANSIENT	MAIN	—	150	250	-	150	250	m\/ n	
V _{IN} = 16 TO 40	TRANSIENT	± AUXILIARY	_	100	250	-	100	250	mV pl	
START-UP ⁸	DEL	AY	—	4	6.0	-	4	6.0	ms	
	OVERSHOOT	MAIN ¹	_	0	500		0	500	mV	
		± AUXILIARY ¹	_	0	1500	-	0	1500		

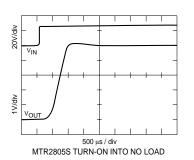
Notes


1. Guaranteed, not tested.

- 2. The sum of the two aux outputs is not to exceed 10 watts. The maximum load per aux output is 9 watts.
- 3. To maintain regulation when operating the \pm Aux at full load, a minimum load of 300 mA is required on the main.
- 4. Measured on each output one at a time with the other outputs at full load.
- 5. Indefinite short circuit protection not guaranteed above 125°C (case).
- 6. Response of each output as all outputs are simultaneously transitioned. Main: 50% 100% 50% of main full load
- Auxiliaries: 25% 50% 25% each, of total auxiliary full load
- 7. Recovery time is measured from application of the transient to point at which Vout is within 1% of regulation.
- 8. Tested on release from inhibit.

www.craneae.com

28 VOLT INPUT – 30 WATT


Typical Performance Curves: 25°C Tc, 28 VDC Vin, 100% load, free run, unless otherwise specified.

Page 9 of 19 Rev G - 20060505

28 VOLT INPUT – 30 WATT

Typical Performance Curves: 25°C Tc, 28 VDC Vin, 100% load, free run, unless otherwise specified.

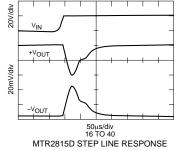


FIGURE 16

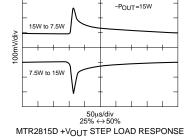
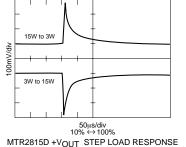
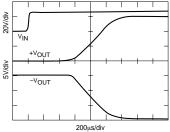
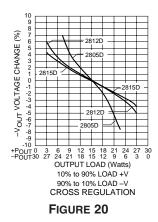
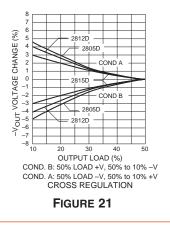
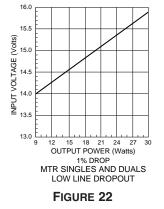
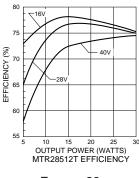




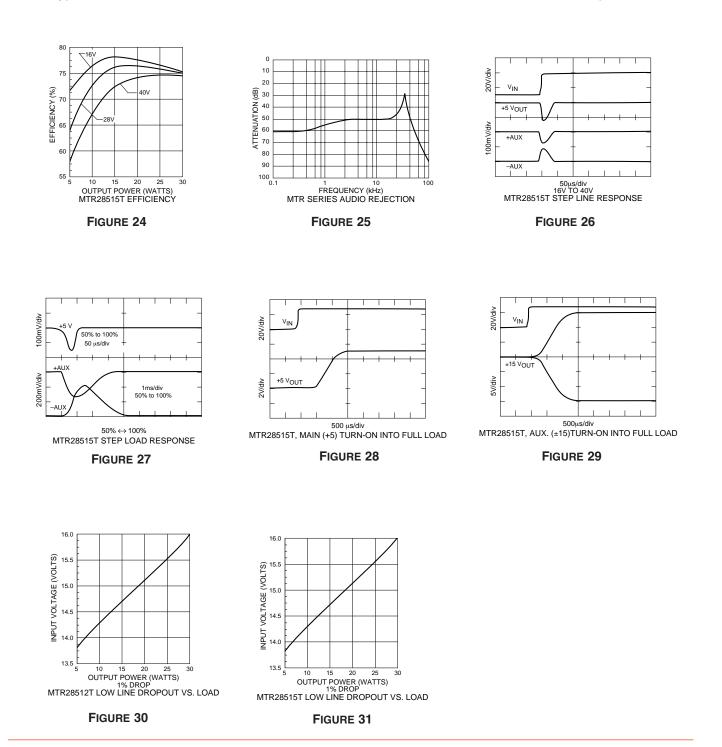
FIGURE 17


TRZ015D +VOUT STEP LOAD RESPON


FIGURE 18


MTR2815D TURN-ON INTO NO LOAD

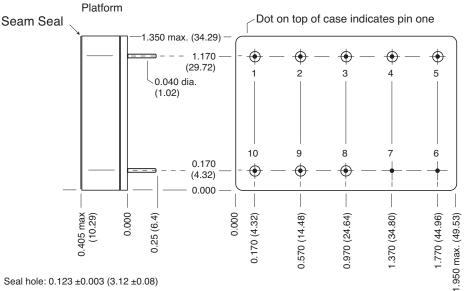

FIGURE 19



Page 10 of 19 Rev G - 20060505

28 VOLT INPUT - 30 WATT

Typical Performance Curves: 25°C Tc, 28 VDC Vin, 100% load, free run, unless otherwise specified.


Page 11 of 19

Rev G - 20060505

www.craneae.com

28 VOLT INPUT - 30 WATT

BOTTOM VIEW CASE F1

Seal hole: 0.123 ±0.003 (3.12 ±0.08)

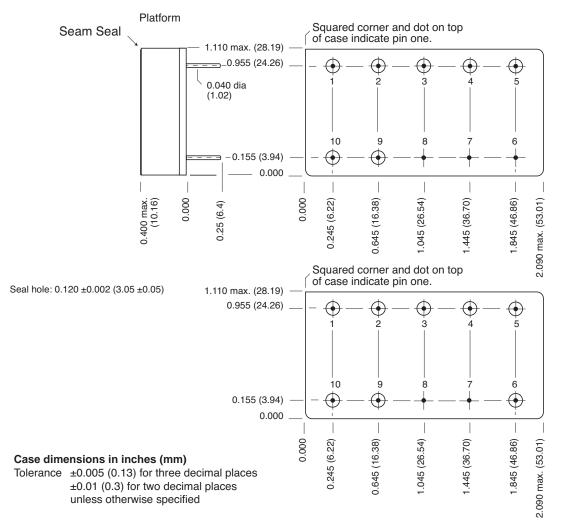
Case dimensions in inches (mm)

Tolerance ±0.005 (0.13) for three decimal places ±0.01 (0.3) for two decimal places unless otherwise specified

CAUTION

Heat from reflow or wave soldering may damage the device. Solder pins individually with heat application not exceeding 300°C for 10 seconds per pin.

Materials


Header Cold Rolled Steel/Nickel/Gold Cover Kovar/Nickel Pins #52 alloy/Gold ceramic seal

Case F1, Rev C, 20051216

Please refer to the numerical dimensions for accuracy. All information is believed to be accurate, but no responsibility is assumed for errors or omissions. Interpoint reserves the right to make changes in products or specifications without notice. Copyright © 1999-2006 Interpoint Corp. All rights reserved.

FIGURE 32: CASE F1 - TRIPLE MODELS

28 VOLT INPUT – 30 WATT

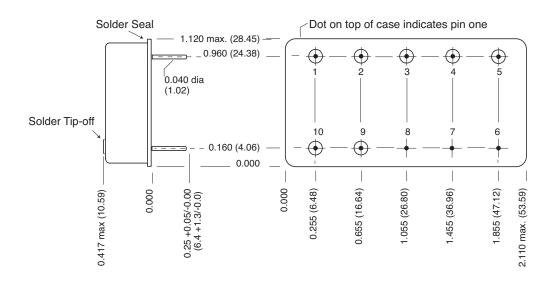
BOTTOM VIEW CASE H2

CAUTION

Heat from reflow or wave soldering may damage the device. Solder pins individually with heat application not exceeding 300°C for 10 seconds per pin.

Materials

Header	Cold Rolled Steel/Nickel/Gold
Cover	Kovar/Nickel
Pins	#52 alloy/Gold ceramic seal


Case H2, Rev C - 20060109

Please refer to the numerical dimensions for accuracy. All information is believed to be accurate, but no responsibility is assumed for errors or omissions. Interpoint reserves the right to make changes in products or specifications without notice. Copyright © 1999-2006 Interpoint Corp. All rights reserved.

FIGURE 33: CASE H2 - DUAL MODELS

28 VOLT INPUT – 30 WATT

BOTTOM VIEW CASE H4

Seal hole: 0.091 ±0.005 (2.31 ±0.13)

Case dimensions in inches (mm)

Tolerance ± 0.005 (0.13) for three decimal places ± 0.01 (0.3) for two decimal places unless otherwise specified

CAUTION

Heat from reflow or wave soldering may damage the device. Solder pins individually with heat application not exceeding 300°C for 10 seconds per pin.

Materials

Header	Cold Rolled Steel/Nickel/Tin
Cover	Cold Rolled Steel/Nickel/Tin
Pins	#52 alloy compression glass seal

Case H4, Rev C - 20060110

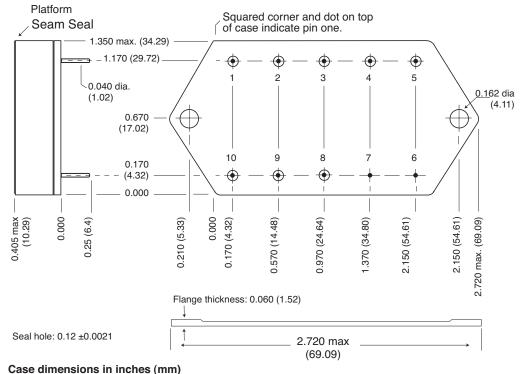

Please refer to the numerical dimensions for accuracy. All information is believed to be accurate, but no responsibility is assumed for errors or omissions. Interpoint reserves the right to make changes in products or specifications without notice. Copyright © 1999-2006 Interpoint Corp. All rights reserved.

FIGURE 34: CASE H4 - DUAL MODELS

28 VOLT INPUT – 30 WATT

BOTTOM VIEW CASE J1

Flanged cases: Designator "F" required in Case Option position of model number.

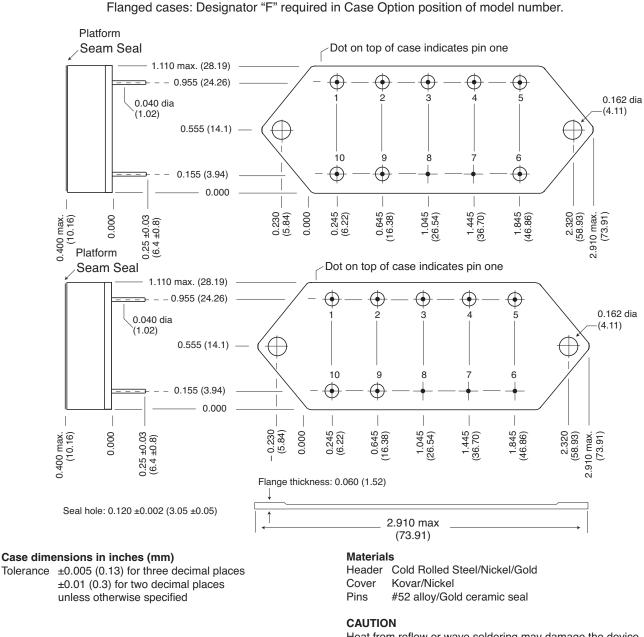
Tolerance ±0.005 (0.13) for three decimal places ±0.01 (0.3) for two decimal places unless otherwise specified

CAUTION

Heat from reflow or wave soldering may damage the device. Solder pins individually with heat application not exceeding 300°C for 10 seconds per pin.

Materials

HeaderCold Rolled Steel/Nickel/GoldCoverKovar/NickelPins#52 alloy/Gold ceramic seal


Case J1, Rev C, 20060109 MHV only.

Please refer to the numerical dimensions for accuracy. All information is believed to be accurate, but no responsibility is assumed for errors or omissions. Interpoint reserves the right to make changes in products or specifications without notice. Copyright © 1999-2006 Interpoint Corp. All rights reserved.

FIGURE 35: CASE J1 – TRIPLE MODELS

28 VOLT INPUT – 30 WATT

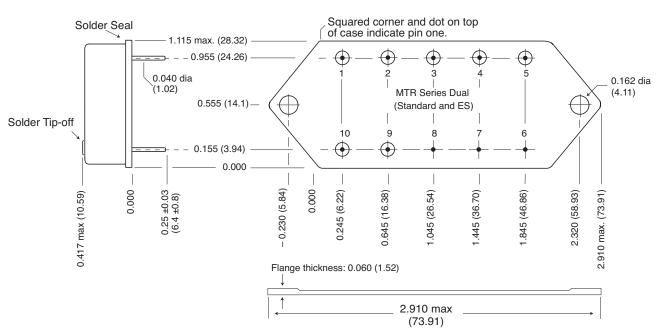
BOTTOM VIEW CASE K3

Heat from reflow or wave soldering may damage the device. Solder pins individually with heat application not exceeding 300°C for 10 seconds per pin.

Case K3, Rev C, 20060110

Please refer to the numerical dimensions for accuracy.

All information is believed to be accurate, but no responsibility is assumed for errors or omissions.


Interpoint reserves the right to make changes in products or specifications without notice.

Copyright © 1999-2006 Interpoint Corp. All rights reserved.

FIGURE 36: CASE K3 – SINGLE MODELS

Page 16 of 19 Rev G - 20060505

28 VOLT INPUT – 30 WATT

BOTTOM VIEW CASE K5 Flanged cases: Designator "F" required in Case Option position of model number.

Seal hole: 0.091 ±0.001 (2.31 ±0.03)

Case dimensions in inches (mm)

Tolerance ± 0.005 (0.13) for three decimal places ± 0.01 (0.3) for two decimal places unless otherwise specified

CAUTION

Heat from reflow or wave soldering may damage the device. Solder pins individually with heat application not exceeding 300°C for 10 seconds per pin.

Materials

HeaderCold Rolled Steel/Nickel/TinCoverCold Rolled Steel/Nickel/TinPins#52 alloy compression glass seal

Case K3, Rev C, 20060109

Please refer to the numerical dimensions for accuracy. All information is believed to be accurate, but no responsibility is assumed for errors or omissions. Interpoint reserves the right to make changes in products or specifications without notice. Copyright © 1999-2006 Interpoint Corp. All rights reserved.

FIGURE 37: CASE K5 - SINGLE MODELS

28 VOLT INPUT – 30 WATT

883, CLASS H, QML PRODUCTS – ELEMENT EVALUATION

ELEMENT EVALUATION				
TEST PERFORMED (COMPONENT LEVEL)	Standard (non-QML) ¹ M/S ² P ³		CLASS H, QML M/S ² P ³	
Element Electrical (probe)	yes	no	yes	yes
Element Visual	no	no	yes	yes
Internal Visual	no	no	yes	no
Final Electrical	no	no	yes	yes
Wire Bond Evaluation ⁴	no	no	yes	yes
SLAM™/C-SAM: Input Capacitors only (Add'l test, not req. by H or K)	no	no	no	yes

Definitions:

Element Evaluation: Component testing/screening per MIL-STD-883 as determined by MIL-PRF-38534 SLAM™: Scanning Laser Acoustic Microscopy

C-SAM: C - Mode Scanning Acoustic Microscopy

Notes:

- 1. Non-QML products do no meet all of the requirements of MIL-PRF-38534
- 2. M/S = Active components (Microcircuit and Semiconductor Die)

- 3. P = Passive components
- 4. Not applicable to EMI filters that have no wire bonds

28 VOLT INPUT – 30 WATT

883, CLASS H, QML PRODUCTS – ENVIRONMENTAL SCREENING

TEST	125°C STANDARD non-QML	125°C /ES non-QML	Class H /883 QML
Pre-cap Inspection			
Method 2017, 2032	yes	yes	yes
Temperature Cycle (10 times)			
Method 1010, Cond. C, -65°C to 150°C, ambient	no	no	yes
Method 1010, Cond. B, -55°C to 125°C, ambient	no	yes	no
Constant Acceleration			
Method 2001, 3000 g	no	no	yes
Method 2001, 500g	no	yes	no
Burn-In			
Method 1015, 160 hours at 125°C case, typical	no	no	yes
96 hours at 125°C case, typical	no	yes	no
Final Electrical Test MIL-PRF-38534, Group A			
Subgroups 1 through 6: -55°C, +25°C, +125°C case	no	no	yes
Subgroups 1 and 4: +25°C case	yes	yes	no
Hermeticity Test			
Fine Leak, Method 1014, Cond. A	no	yes	yes
Gross Leak, Method 1014, Cond. C	no	yes	yes
Gross Leak, Dip (1 x 10 ⁻³)	yes	no	no
Final Visual Inspection Method 2009	ves	yes	yes

Test methods are referenced to MIL-STD-883 as determined by MIL-PRF-38534.

MTR Single, Dual and Triple. Rev G - 20060505. This revision supercedes all previous releases. All technical information is believed to be accurate, but no responsibility is assumed for errors or omissions. Interpoint reserves the right to make changes in products or specifications without notice. MTR Series is a trademark of Interpoint. Copyright © 1994 - 2006 Interpoint Corporation. All rights reserved. www.craneae.com

