

CX4VSM CRYSTAL

30 kHz to 200 kHz Ultra-Miniature Low Profile Surface Mount Quartz Crystal

DESCRIPTION

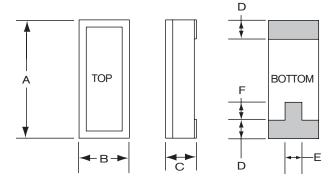
STATEK's ultra-miniature CX4VSM quartz crystals are hermetically sealed in surface mount ceramic packages and custom laser-tuned to frequencies ranging from 30 kHz to 200 kHz. This high quality tuning fork resonator is intended for use in Pierce (single inverter) oscillators with a maximum process temperature not to exceed 260°C.

FEATURES

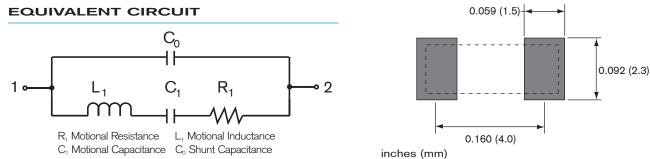
- Ultra-miniature, surface mount design
- Available with glass or ceramic lid
- Hermetically sealed ceramic package
- Quartz crystal tuning fork design
- High shock and vibration survival
- Excellent aging characteristics
- Designed for low power applications
- Full military testing available
- Designed and manufactured in the USA

APPLICATIONS

- Medical Implantable and Non-Implantable Devices
- Military Devices
- Smart Card
- Transponder / Animal Migration
- Space Limited Devices
- Handheld Battery Operated Devices
- Down Hole / Industrial Instrumentation
- Computer / Computer Peripherals



side view


Glass Lid Shown

PACKAGE DIMENSIONS

	TYP.		MAX.	
DIM	inches	mm	inches	mm
А	0.197	5.00	0.210	5.33
В	0.072	1.83	0.085	2.16
С	-	-	see b	elow
D	0.036	0.91	0.046	1.16
Е	0.020	0.51	-	-
F	0.025	0.64	-	-
DIM "C"	GLASS LID		CERAMIC	LID
MAX	inches	mm	inches	mm
SM1	0.045	1.14	0.050	1.27
SM2	0.046	1.17	0.051	1.30
SM3	0.048	1.22	0.053	1.35

SUGGESTED LAND PATTERN

10103 - Rev C

SPECIFICATIONS

Quality Factor Q (k)

Turning Point (°C)*

Shunt Capacitance C_0 (pF)

Load Capacitance (pF)*

Specifications are subject to change without notice.					
Parameters		Fundar	Overtone		
	Frequency, (kHz)	32.768	100	200	
	Motional Resistance $R_1(k\Omega)$	50	18	2.4	
	Motional Capacitance C ₁ (fF)	2.3	1.07	2.2	

40

1.1

9

25

85

0.7

8

10

140

1.2

5

29

Specifications are typical at 25°C unless otherwise noted.

Standard Calibration Tolerance**

Glass Lid:	± 30 ppm	[±] 100 ppm	[±] 1000 ppm
	(0.003%)	(0.01%)	(0.1%)
Ceramic Lid:	[±] 100 ppm	± 1000 ppm	± 10000 ppm
	(0.01%)	(0.1%)	(1.0%)

Drive Level

0.5 µW MAX

Temperature Coefficient (k) -0.035 ppm/°C² Note: Frequency f at temperature T is related to frequency f₀ at turning point temperature T_0 by: $f_0 = k(T_0 - T_0)^2$

	$\frac{1}{f_0} = K(1,10)$		
Aging, first year	5 ppm		
Shock, survival	5,000 g peak, 0.3 ms, 1/2 sine		
Vibration, survival	20 g RMS, 10-2,000 Hz random		
Operating Temp. Range	-10°C to +70°C (Commercial) -40°C to +85°C (Industrial) -55°C to +125°C (Military)		
Storage Temp. Range	-55°C to +125°C		
Max Process Temperature	260°C for 20 sec.		

* Other values available

** Tighter tolerances available

TERMINATIONS

<u>Designation</u> SM1 SM2	<u>Termination</u> Gold Plated Solder Plated
SM3	Solder Dipped
PACKAG	SING OPTIONS
CX4VSM	- Tray Pack
	- 16mm tape, 7" or 13" reels (Reference tape and reel data sheet 10109)
ноw то	O ORDER CX4VSM CRYSTALS
CX4V S	<u>CSM1</u> <u>32.768K</u> , <u>100</u> / <u>I</u>
	C = Ceramic LidFrequencyCalibrationOperating Temp. Range:Blank = Glass Lid $K = kHz$ Tolerance $C = -10^{\circ}C$ to $+70^{\circ}C$
"S" if special or custom design. Blank if standard	SM1 = Gold Plated@25°CI = -40°C to +85°CSM2 = Solder Plated(in ppm)M = -55°C to +125°CSM3 = Solder DippedS = Customer Specified

TYPICAL APPLICATION FOR A PIERCE OSCILLATOR

The CX4 family of surface mount crystals are ideal for small, high density, battery operated portable products. The CX4 crystal designed in a Pierce oscillator (single inverter) circuit provides very low current consumption and high stability. A conventional CMOS Pierce oscillator circuit is shown below. The crystal is effectively inductive and in a PInetwork circuit with C_D and C_G provides the additional phase shift necessary to sustain oscillation. The oscillation frequency (f_0) is 50 to 150 ppm above the crystal's series resonant frequency (f_s) .

Drive Level

R_A is used to limit the crystal's drive level by forming a voltage divider between R_A and C_D. R_A also stabilizes the oscillator against changes in the amplifiers output resistance (R₀). R_A should be increased for higher voltage operation.

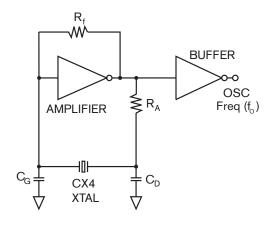
Load Capacitance

The CX4 crystal calibration tolerance is influenced by the effective circuit capacitances, specified as the load capacitance (C_L). C_L is approximately equal to:

$$C_{L} = \frac{C_{D} \times C_{G}}{C_{D} + C_{G}} + C_{S}$$
(1)

NOTE: C_D and C_G include stray layout to ground and C_S is the stray shunt capacitance between the crystal terminal. In practice, the effective value of $C_{\rm L}$ will be less than that calculated from C_D , C_G and C_S values because of the effect of the amplifier output resistance. C_S should be minimized.

The oscillation frequency (f_0) is approximately equal to:


$$f_0 = f_S \left[1 + \frac{C_1}{2(C_0 + C_L)} \right] \quad (2)$$

Where f_{S} = Series resonant frequency of the crystal

C₁ = Motional Capacitance

 C_0 = Shunt Capacitance

CONVENTIONAL CMOS PIERCE OSCILLATOR CIRCUIT

10103 - Rev C

