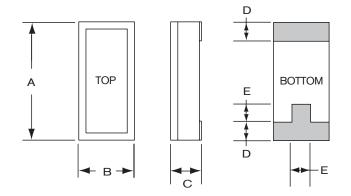

CX3SM CRYSTAL

800 kHz to 1.35 MHz

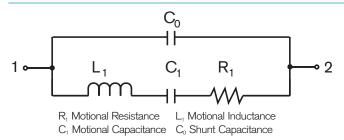
Low Profile Miniature Surface Mount Quartz Crystal

DESCRIPTION

The CX3SM quartz crystals are leadless devices designed for surface mounting on printed circuit boards or hybrid substrates. They are hermetically sealed in a rugged, miniature ceramic packages and are designed specifically for manufacturing temperatures up to 260°C.

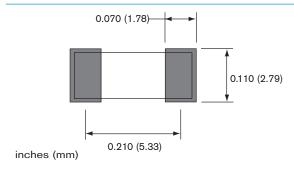

actual size

side view


PACKAGE DIMENSIONS

FEATURES

- Extensional mode
- Ideal for use with microprocessors
- Designed for low power applications
- Compatible with hybrid or PC board packaging
- Low aging
- Full military testing available
- Ideal for battery operated applications
- Designed and manufactured in the USA


EQUIVALENT CIRCUIT

	TYP.		MAX.		
DIM	inches	mm	inches	mm	
А	0.263	6.68	0.270	6.86	
В	0.097	2.46	0.104	2.64	
С	-	-	see below		
D	0.052	1.32	0.058	1.47	
E	0.030	0.76	0.035	0.89	

DIM "C""	GLASS LID		CERAMIC LID		
MAX	inches	mm	inches	mm	
SM1	0.053	1.35	0.067	1.70	
SM2	0.055	1.40	0.069	1.75	
SM3	0.058	1.47	0.072	1.83	

SUGGESTED LAND PATTERN

10123 - Rev B

SPECIFICATIONS

Specifications are typical at 25°C unless otherwise noted. Specifications are subject to change without notice.

Frequency Range 800 kHz - 1.35 MHz

Functional Mode Extensional

Calibration Tolerance* ± 500 ppm (0.05%)

± 1000 ppm (0.1%)

± 10000 ppm (1.0%)

Load Capacitance 7 pF

Motional Resistance (R₁) $5 \text{ k}\Omega \text{ MAX}$

Motional Capacitance (C₁) 1.2 fF Quality Factor (Q) 150 k

Shunt Capacitance (C_0) 1.0 pF

3 µW MAX. Drive Level

Turning Point (T₀)** 35°C

Temperature Coefficient (k) -0.035 ppm/°C²

Note: Frequency f at temperature T is related to frequency f₀

Note: Frequency i at term, at turning point temperature T_0 by: $\frac{f-f_0}{f_0} = k(T-T_0)^2$

5 ppm MAX Aging, first year

Shock, survival 1000 g peak, 0.3 ms, 1/2 sine

10 g RMS, 20-1,000 Hz random Vibration, survival Operating Temp. Range

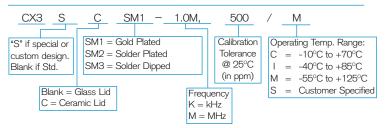
-10°C to +70°C (Commercial) -40°C to +85°C (Industrial)

 -55° C to $+125^{\circ}$ C (Military)

-55°C to +125°C Storage Temp. Range 260°C for 20 sec. Max Process Temperature

PACKAGING OPTIONS

CX3SM - Tray Pack


- Tape and Reel

(Reference tape and reel data sheet 10109)

TERMINATIONS

Designation **Termination** SM₁ Gold Plated SM₂ Solder Plated SM3 Solder Dipped

HOW TO ORDER CX3SM CRYSTALS

TYPICAL APPLICATION FOR A PIERCE OSCILLATOR

The low profile CX miniature surface mount crystal is ideal for small, high density, battery operated portable products. The CX crystal designed in a Pierce oscillator (single inverter) circuit provides very low current consumption and high stability. A conventional CMOS Pierce oscillator circuit is shown below. The crystal is effectively inductive and in a PI-network circuit with C_D and C_G provides the additional phase shift necessary to sustain oscillation. The oscillation frequency (f_0) is 15 to 150 ppm above the crystal's series resonant frequency (f_s).

Drive Level

RA is used to limit the crystal's drive level by forming a voltage divider between R_A and C_D. R_A also stabilizes the oscillator against changes in the amplifiers output resistance (R₀). R_A should be increased for higher voltage operation.

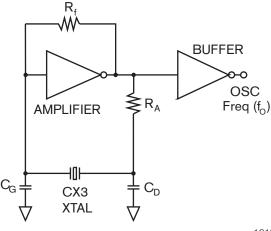
Load Capacitance

The CX crystal calibration tolerance is influenced by the effective circuit capacitances, specified as the load capacitance (C_L). C_L is approximately equal to:

$$C_{L} = \frac{C_{D} \times C_{G}}{C_{D} + C_{G}} + C_{S}$$
 (1)

NOTE: C_D and C_G include stray layout to ground and C_S is the stray shunt capacitance between the crystal terminal. In practice, the effective value of C_L will be less than that calculated from C_D , C_G and C_S values because of the effect of the amplifier output resistance. C_S should be minimized.

The oscillation frequency (f_0) is approximately equal to:


$$f_0 = f_S \left[1 + \frac{C_1}{2(C_0 + C_1)} \right]$$
 (2)

 f_S = Series resonant frequency of the crystal

C₁ = Motional Capacitance

Co = Shunt Capacitance

CONVENTIONAL CMOS PIERCE OSCILLATOR CIRCUIT

10123 - Rev B

^{*} Tighter tolerances available.

^{**} Other values available.