Specifications

Operating voltage	$20 \mathrm{Vp-p} \mathrm{max}$.	
Current consumption	7 mA max.	at $10 \mathrm{Vp-p}$, square wave, 4.0 KHz
Sound pressure level	80 db min.	at $10 \mathrm{~cm} / 10 \mathrm{Vp}-\mathrm{p}$, square wave, 4.0 KHz
Electrostatic capacity	$14,000 \mathrm{pF} \pm 30 \%$	at $120 \mathrm{~Hz} / 1 \mathrm{~V}$
Operating tempurature	$-20 \sim+85^{\circ} \mathrm{C}$	
Storage tempurature	$-30 \sim+90^{\circ} \mathrm{C}$	
Dimensions	$\varnothing 14.0 \times \mathrm{H7.0} \mathrm{~mm}$	
Weight	$0.85 \mathrm{~g} \mathrm{max}$.	
Material	PP UL-94 V-1 (Grey)	
Terminal	Pin type	
RoHS	yes	

Appearance Drawing

Tolerance: ± 0.5

CEP-1162 CUI G

Typical Frequency Response Curve

Measurement Method

S.P.L. Measuring Circuit

Input Signal: $10 \mathrm{Vp}-\mathrm{p}, 4.0 \mathrm{KHz}$, Square Wave

PIEZO

MEASURING DISTANCE 10 cm

Mic: RION S.P.L. meter UC30 or equivalent
S.G.: Hewlett Packard 33120A Function Generator or equivalent

Mechanical Characteristics

Item	Test Condition
Solderability	Lead terminals are immersed in rosin for 5 seconds and then immersed in solder bath of $270 \pm 5^{\circ} \mathrm{C}$ for 3 ± 1 seconds.
Soldering Heat Resistance	Lead terminals are immersed up to 1.5 mm from buzzer's body in solder bath of $300 \pm 5^{\circ} \mathrm{C}$ or $260 \pm 5^{\circ} \mathrm{C}$ for 10 ± 1 seconds.
Terminal Mechanical Strength	For 10 seconds, the force of $9.8 \mathrm{~N}(1.0 \mathrm{~kg})$ is applied to each terminal in axial direction.
Vibration	The buzzer shall be measured after applying a vibration amplitude of 1.5 mm with 10 to 55 Hz band of vibration frequency to each of the 3 perpendicular directions for 2 hours.
Drop Test	The part will be dropped from a height of 75 cm onto a 40 mm thick wooden board 3 times in 3 axes (X, Y, Z) for a total of 9 drops.

Test Condition

Lead terminals are immersed in rosin for 5 seconds and then immersed in solder bath of $270 \pm 5^{\circ} \mathrm{C}$ for 3 ± 1 seconds.
Lead terminals are immersed up to 1.5 mm from buzzer's body in solder bath of $300 \pm 5^{\circ} \mathrm{C}$ or $260 \pm 5^{\circ} \mathrm{C}$ for 10 ± 1 seconds.
For 10 seconds, the force of $9.8 \mathrm{~N}(1.0 \mathrm{~kg})$ is applied to each terminal in axial direction. The buzzer shall be measured after applying vibion amplitde 1.5 mm wit 10 to the 3 perpendicular directions for 2 hours. The part will be dropped from a height of 75 cm onto a 40 mm thick wooden board 3 times in 3 axes ($\mathrm{X}, \mathrm{Y}, \mathrm{Z}$) for a total of 9 drops.

Evaluation Standard

90\% min. of the lead terminals will be wet with solder. (Except the edge of the terminal)

No interference in operation.
No damage or cutting off.

The value of oscillation frequency/current consumption should be $\pm 10 \%$ of the initial measurements. The SPL should be within $\pm 10 \mathrm{~dB}$ compared with the initial measurement.

Environment Test

Item	Test Condition	Evaluation Standard
High temp. test	After being placed in a chamber at $+90^{\circ} \mathrm{C}$ for 240 hours.	The buzzer will be measured after being placed at $+25^{\circ} \mathrm{C}$ for 4 hours. The value of the oscillation frequency/current consumption should be $\pm 10 \%$ compared to the initial measurements. The SPL should be within $\pm 10 \mathrm{~dB}$ compared to the initial measurements.
Low temp. test	After being placed in a chamber at $-30^{\circ} \mathrm{C}$ for 240 hours.	
Humidity test	After being placed in a chamber at $+40^{\circ} \mathrm{C}$ and $90 \pm 5 \%$ relative humidity for 240 hours.	
Temp. cycle test	The part shall be subjected to 5 cycles. One cycle will consist of:	

Reliability Test

Item	Test Condition	Evaluation Standard
Operating (Life Test)	1. Continuous life test: The part will be subjected to 250 hours of continuous operation at $+60^{\circ} \mathrm{C}$ with rated	The buzzer will be measured after being placed at $+25^{\circ} \mathrm{C}$ for 4 hours. The value of the
	voltage applied.	oscillation frequency $/$ current consumption should be $\pm 10 \%$
	2. Intermittent life test:	compared to the initial
	A duty cycle of 1 minute on, 1 minute off, a	measurements. The SPL should
	minimum of 5,000 times at room temp	be within $\pm 10 \mathrm{~dB}$ compared to
	$\left(+25 \pm 2^{\circ} \mathrm{C}\right)$ with rated voltage applied.	the initial measurements.

Test Conditions

Standard Test Condition
a) Tempurature: $+5 \sim+35^{\circ} \mathrm{C}$
b) Humidity: 45-85\%
c) Pressure: 860-1060 mbar
a) Tempurature: $+25 \pm 2^{\circ} \mathrm{C}$
b) Humidity: 60-70\%
c) Pressure: 860-1060 mbar

Judgement Test Condition

Packaging

Each minimum unit will be individually packaged and be placed ina carton box. The box will be clearly marked with Part Number, Quantity, and Outgoing Inspection Number. There will be no mechanical damage on products during transportation and/or in storage.

