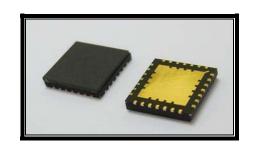


UPDATED: 04/24/2008

14.4 - 15.4 GHz High Gain Surface-Mounted PA


FEATURES

- 14.4 15.4GHz Operating Frequency Range
- 29.0dBm Output Power @1dB Compression
- 28.0dB Typical Power Gain @1dB Compression
- -40dBc OIMD3 @Pout 18.5dBm/tone
- 7X7mm QFN Package

APPLICATIONS

- Point-to-point and point-to-multipoint radio
- Military Radar Systems

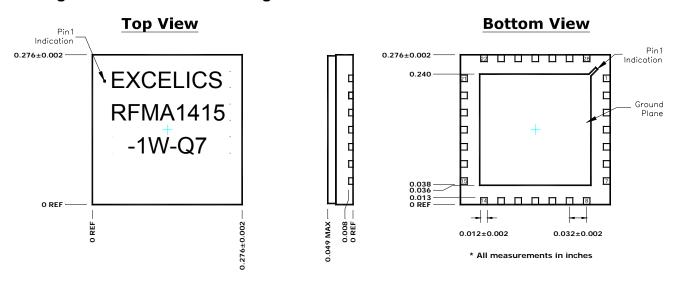
ELECTRICAL CHARACTERISTICS (T_B=25 °C)

SYMBOL	PARAMETER/TEST CONDITIONS	MIN	TYP	MAX	UNITS
F	Operating Frequency Range	14.4		15.4	GHz
P _{1dB}	Output Power @1dB Gain Compression	28.0	29.0		dBm
G _{1dB}	Gain @1dB Gain Compression	24.0	28.0		dB
OIMD3	Output 3 rd Order Intermodulation Distortion @∆f=10MHz, Pout = 18.5dBm/tone		-40	-37	dBc
Input RL	Input Return Loss		-10	-8	dB
Output RL	Output Return Loss		-15		dB
I _{D1}	Drain Current ¹		180	220	mA
I _{D2}	Drain Current ¹		800	940	mA
V_{D1}, V_{D2}	Drain Voltage		7		V
V_{G1}, V_{G2}	Gate Voltage	-2.5		-0.25	V
Rth	Thermal Resistance ²		9		°C/W
Tb	Operating Base Plate Temperature	-30		+75	°C

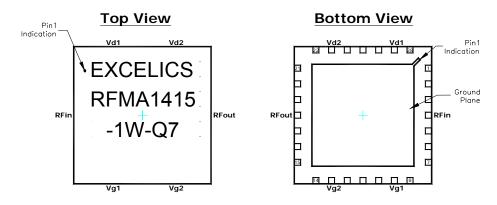
^{1.} Recommended to bias each amplifier stage separately using a gate voltage range, starting from -2.5 to -0.3V to achieve typical current levels. 2. Rth is mounting dependent. Measured result when used with Excelics recommended evaluation board. **MAXIMUM RATINGS AT 25°C**^{3,4}

SYMBOL	CHARACTERISTIC	ABSOLUTE	CONTINOUS
V_{D1}, V_{D2}	Drain to Source Voltage	12V	8 V
V_{G1}, V_{G2}	Gate to Source Voltage	-5V	-2.5 V
I_{D1}, I_{D2}	Drain Current	Idss	220, 940mA
P_{IN}	Input Power	20dBm	@ 3dB compression
T _{CH}	Channel Temperature	175°C	150°C
T _{STG}	Storage Temperature	-65/175°C	-65/150°C
P_{T}	Total Power Dissipation	15.0W	12.6W

^{3.} Operation beyond absolute or continuous ratings may result in permanent damage or reduction of MTTF respectively.


^{4.} Bias conditions must also satisfy the following equation $V_{DS}^{\star}I_{DS} < (T_{CH} - T_B)/R_{TH}$; where T_B = Temperature of Base Plate

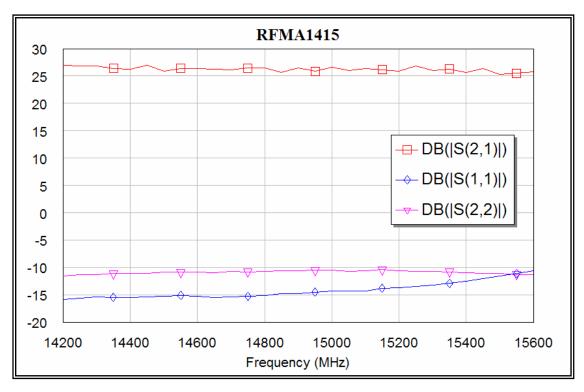
UPDATED: 04/24/2008


14.4 – 15.4 GHz High Gain Surface-Mounted PA

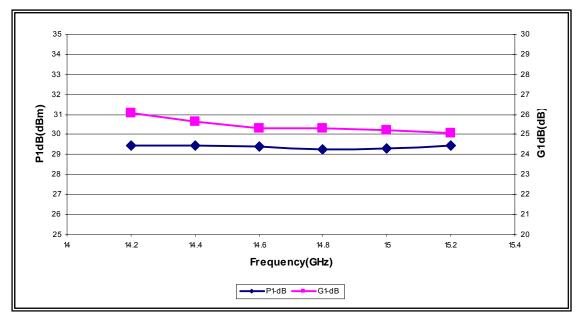
Package Dimension and Pin Assignment

Additional Notes:

- Ground Plane must be soldered to PCB RF ground
- All dimensions are in inches
- Refer to Excelics application notes on QFNs for further guidelines 3)
- Pin Assignment:


Pin	Assignment
1, 2, 3, 5, 6, 7, 8, 10, 11, 12, 14	NC
4	RF _{in}
9	V_{g1}
13	V_{g2}
15, 16, 17, 19, 20, 21, 22, 24, 25, 26, 28	NC
18	RF _{out}
23	V_{d2}
27	V_{d1}

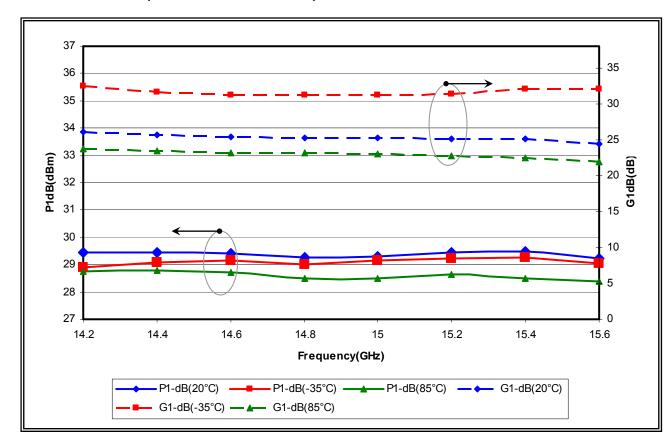
UPDATED: 04/24/2008


14.4 – 15.4 GHz High Gain Surface-Mounted PA

Typical Performance:

1. Small Signal Performance (@ $V_{d1} = V_{d2} = 7V$, $I_{d1} = 180mA$, $I_{d2} = 800mA$)

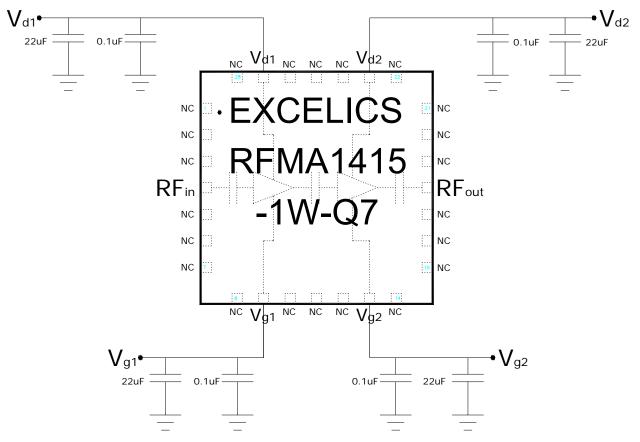
2. P1-dB & G1-dB (@ $V_{d1} = V_{d2} = 7V$, $I_{d1} = 180mA$, $I_{d2} = 800mA$)



UPDATED: 04/24/2008

14.4 – 15.4 GHz High Gain Surface-Mounted PA

3. P1-dB & G1-dB (@ 20°C, -35°C & 85°C)



UPDATED: 04/24/2008

14.4 – 15.4 GHz High Gain Surface-Mounted PA

Recommended Circuit Schematic:

Notes:

- External bypass capacitors should be placed as close to the package as possible. 1)
- Dual biasing sequence required:
 - Turn-on Sequence: Apply $V_{g1} = -2.5V$, $V_{g2} = -2.5V$, followed by $V_{d1} = V_{d2} = 7V$, lastly increase $V_{g1} \ \& \ V_{g2}$ in sequence until required I_{d1} and I_{d2} is obtained.
 - Turn-off Sequence: Turn off V_{d1} & V_{d2} , followed by V_{g1} & V_{g2}
- 3) Demonstration board available upon request.

