PNP Epitaxial Silicon Transistor

General purpose transistor

Collector Emitter Voltage: V_{CEO} = 40 V Collector Dissipation: P_C (max) = 625 mW

On special request, these transistors can be manufactured in different pin configurations.

1. Emitter 2. Base 3. Collector

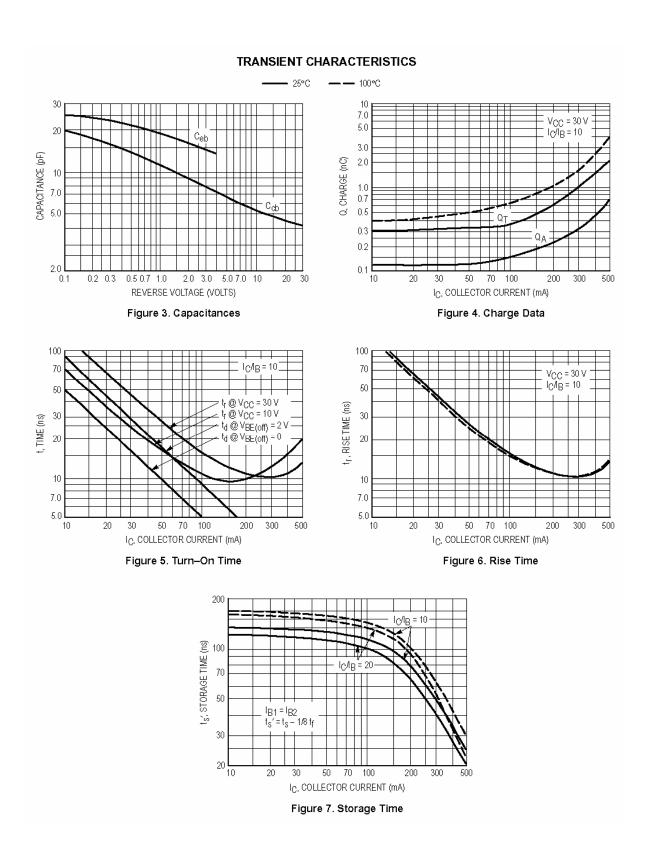
TO-92 Plastic Package Weight approx. 0.19g

Absolute Maximum Ratings (T_a = 25 °C)

Parameter	Symbol	Value	Unit
Collector Base Voltage	-V _{CBO}	40	V
Collector Emitter Voltage	-V _{CEO}	40	V
Emitter Base Voltage	-V _{EBO}	5	V
Collector Current	-I _C	600	mA
Power Dissipation	P _{tot}	625	mW
Junction Temperature	T _j	150	°C
Storage Temperature Range	Ts	-55 to +150	°C

Characteristics at T_{amb}=25 °C

Parameter		Symbol	Min.	Max.	Unit
DC Current Gain at $-V_{CE}=1V$, $-I_{C}=0.1mA$ at $-V_{CE}=1V$, $-I_{C}=1mA$	ST 2N4403 ST 2N4402 ST 2N4403	h _{FE} h _{FE} h _{FE}	30 30 60	-	-
at -V _{CE} =1V, -I _C =10mA	ST 2N4402 ST 2N4403	h _{FE}	50 100	- -	-
at -V _{CE} =1V, -I _C =150mA	ST 2N4402 ST 2N4403	h _{FE} h _{FE}	50 100	150 300	-
at -V _{CE} =2V, -I _C =500mA	ST 2N4403 ST 2N4403	h _{FE} h _{FE}	20 20	-	-
Collector Cutoff Current at -V _{CB} =35V		-I _{CBO}	-	100	nA
Emitter Cutoff Current at -V _{EB} =5V		-I _{EBO}	-	100	nA
Collector Emitter Breakdown Voltage at -I _C =1mA		-V _{(BR)CEO}	40	-	V
Collector Base Breakdown Voltage at -I _C =100µA		-V _{(BR)CBO}	40	-	V
Emitter Base Breakdown Voltage at -I _E =100µA		-V _{(BR)EBO}	5	-	V
Collector Saturation Voltage at -I _C =150mA, -I _B =15mA		-V _{CEsat}	-	0.4	V
Base Saturation Voltage at -I _C =150mA, -I _B =15mA		-V _{BEsat}	0.75	0.95	V
Gain Bandwidth Product at -V _{CE} =10V, -I _C =20mA, f=100MHz	ST 2N4402	f _⊤	150 200	-	MHz MHz
Collector Base Capacitance at -V _{CB} =10V, f=140MHz	ST 2N4403	ССВО	-	8.5	pF
Turn On Time at - V_{CC} =30 V , - V_{BE} =2 V , - I_{C} =150 m A, - I_{B1} =15	mA	t _{on}	-	35	ns
Turn Off Time at $-V_{CC}=30V$, $-I_{C}=150mA$, $-I_{B1}=-I_{B2}=15mA$		t _{off}	-	255	ns



SEMTECH ELECTRONICS LTD.

(Subsidiary of Sino-Tech International Holdings Limited, a company listed on the Hong Kong Stock Exchange, Stock Code: 724)

SEMTECH ELECTRONICS LTD.

Dated: 02/12/2005

SMALL-SIGNAL CHARACTERISTICS NOISE FIGURE $V_{CE} = -10 \text{ Vdc}, T_A = 25^{\circ}\text{C}$ Bandwidth = 1.0 Hz NF, NOISE FIGURE (dB) 9 1.0 mA, R_S = 430 Ω NF, NOISE FIGURE C = 50 μA Ic = 500 μA, Rs = 560 Ω 100 μΑ $I_C = 50 \mu A$, $R_S = 2.7 kΩ$ 500 μΑ $100 \mu A$, $R_S = 1.6 kΩ$ RS = OPTIMUM SOURCE RESISTANCE nΙ 0.01 0.02 0.05 1.0 2.0 100 200 10 k 20 k 50 k 50 f, FREQUENCY (kHz) RS, SOURCE RESISTANCE (OHMS)

Figure 8. Frequency Effects

Figure 9. Source Resistance Effects

h PARAMETERS

 $V_{CE} = -10 \text{ Vdc}, f = 1.0 \text{ kHz}, T_A = 25^{\circ}\text{C}$

This group of graphs illustrates the relationship between hfe and other "h" parameters for this series of transistors. To obtain these curves, a high-gain and a low-gain unit were

selected from both the 2N4402 and 2N4403 lines, and the same units were used to develop the correspondinglynumbered curves on each graph.

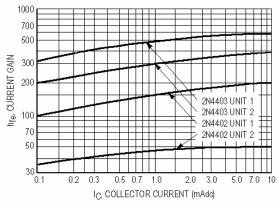


Figure 10. Current Gain

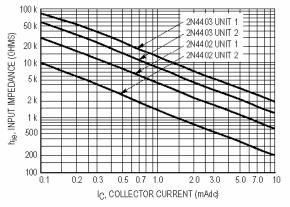


Figure 11. Input Impedance

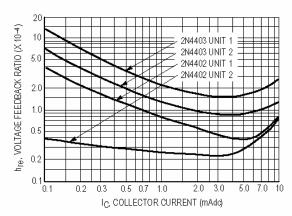


Figure 12. Voltage Feedback Ratio

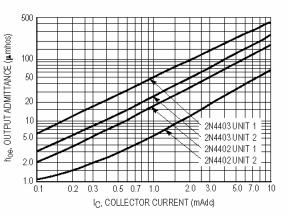


Figure 13. Output Admittance

SEMTECH ELECTRONICS LTD.

(Subsidiary of Sino-Tech International Holdings Limited, a company listed on the Hong Kong Stock Exchange, Stock Code: 724)

Dated: 02/12/2005

STATIC CHARACTERISTICS

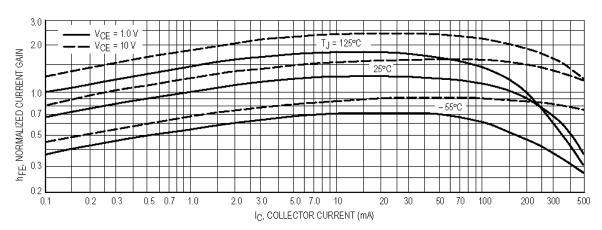


Figure 14. DC Current Gain

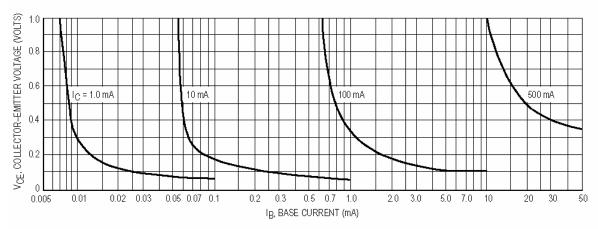


Figure 15. Collector Saturation Region

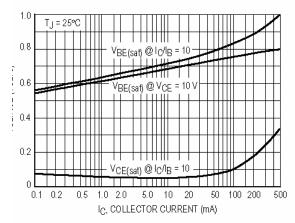


Figure 16. "On" Voltages

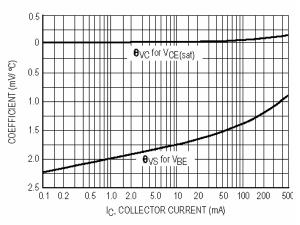


Figure 17. Temperature Coefficients

SEMTECH ELECTRONICS LTD.

(Subsidiary of Sino-Tech International Holdings Limited, a company listed on the Hong Kong Stock Exchange, Stock Code: 724)

Dated: 02/12/2005