HD74HC137

3-to-8-line Decoder/Demultiplexer with Address Latch

REJ03D0569-0200
(Previous ADE-205-443)
Rev. 2.00
Oct 11, 2005

Description

The HD74HC137 implements a three-to-eight line decoder with latches on the three address inputs. When $\overline{\mathrm{GL}}$ goes from low to high, the address present at the select inputs (A, B and C) is stored in the latches. As long as $\overline{\mathrm{GL}}$ remains high no address changes will be recognized. Output enable controls, G_{1} and $\overline{\mathrm{G}}_{2}$, control the state of the outputs independently of the select or latch-enable inputs.

All of the outputs are high unless G_{1} is high and $\overline{\mathrm{G}}_{2}$ is low. The HD74HC137 is ideally suited for the implementation of glitchfree decoders in stored-address applications in bus oriented systems.

Features

- High Speed Operation: $\mathrm{t}_{\mathrm{pd}}(\mathrm{A}, \mathrm{B}, \mathrm{C}$ to Y$)=16.5 \mathrm{~ns}$ typ $\left(\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}\right)$
- High Output Current: Fanout of 10 LSTTL Loads
- Wide Operating Voltage: $\mathrm{V}_{\mathrm{CC}}=2 \mathrm{~V}$ to 6 V
- Low Input Current: $1 \mu \mathrm{~A}$ max
- Low Quiescent Supply Current: I_{CC} (static) $=4 \mu \mathrm{~A} \max \left(\mathrm{Ta}=25^{\circ} \mathrm{C}\right)$
- Ordering Information

Part Name	Package Type	Package Code (Previous Code)	Package Abbreviation	Taping Abbreviation (Quantity)
HD74HC137P	DILP-16 pin	PRDP0016AE-B (DP-16FV)	P	-
HD74HC137FPEL	SOP-16 pin (JEITA)	PRSP0016DH-B (FP-16DAV)	FP	EL (2,000 pcs/reel)
HD74HC137RPEL	SOP-16 pin (JEDEC)	PRSP0016DG-A (FP-16DNV)	RP	EL (2,500 pcs/reel)

Note: Please consult the sales office for the above package availability.

Function Table

Inputs						Outputs							
Enable			Select										
$\overline{\mathrm{GL}}$	G_{1}	$\overline{\mathrm{G}}_{2}$	C	B	A	Y_{0}	Y_{1}	Y	Y_{3}	Y_{4}	Y_{5}	Y_{6}	Y_{7}
X	X	H	X	X	X	H	H	H	H	H	H	H	H
X	L	X	X	X	X	H	H	H	H	H	H	H	H
L	H	L	L	L	L	L	H	H	H	H	H	H	H
L	H	L	L	L	H	H	L	H	H	H	H	H	H
L	H	L	L	H	L	H	H	L	H	H	H	H	H
L	H	L	L	H	H	H	H	H	L	H	H	H	H
L	H	L	H	L	L	H	H	H	H	L	H	H	H
L	H	L	H	L	H	H	H	H	H	H	L	H	H
L	H	L	H	H	L	H	H	H	H	H	H	L	H
L	H	L	H	H	H	H	H	H	H	H	H	H	L
H	H	L	X	X	X		ut	spo	to	ad	L;	thers	

H: High level
L: Low level
X: Irrelevant

Pin Arrangement

Logic Diagram

Absolute Maximum Ratings

Item	Symbol	Rating	Unit
Supply voltage range	V_{CC}	-0.5 to +7.0	V
Input voltage	V_{IN}	-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5$	V
Output voltage	$\mathrm{V}_{\mathrm{OUT}}$	-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5$	V
Output current	lout	± 25	mA
DC current drain per $\mathrm{V}_{\mathrm{CC}}, \mathrm{GND}$	$\mathrm{I}_{\mathrm{CC}}, \mathrm{I}_{\mathrm{GND}}$	± 50	mA
DC input diode current	I_{K}	± 20	mA
DC output diode current	I_{KK}	± 20	mA
Power dissipation per package	P_{T}	500	mW
Storage temperature	Tstg	-65 to +150	${ }^{\circ} \mathrm{C}$

Note: The absolute maximum ratings are values, which must not individually be exceeded, and furthermore, no two of which may be realized at the same time.

Recommended Operating Conditions

Item	Symbol	Ratings	Unit	Conditions
Supply voltage	$\mathrm{V}_{\text {cc }}$	2 to 6	V	
Input / Output voltage	$\mathrm{V}_{\text {IN }}$, $\mathrm{V}_{\text {Out }}$	0 to $\mathrm{V}_{\text {cc }}$	V	
Operating temperature	Ta	-40 to 85	${ }^{\circ} \mathrm{C}$	
Input rise / fall time*1	t_{r}, t_{f}	0 to 1000	ns	$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}$
		0 to 500		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$
		0 to 400		$\mathrm{V}_{C C}=6.0 \mathrm{~V}$

Note: 1. This item guarantees maximum limit when one input switches.
Waveform: Refer to test circuit of switching characteristics.
Electrical Characteristics

Item	Symbol	V_{cc} (V)	$\mathrm{Ta}=25^{\circ} \mathrm{C}$			$\mathrm{Ta}=-40$ to $+85^{\circ} \mathrm{C}$		Unit	Test Conditions	
			Min	Typ	Max	Min	Max			
Input voltage	V_{IH}	2.0	1.5	-	-	1.5	-	V		
		4.5	3.15	-	-	3.15	-			
		6.0	4.2	-	-	4.2	-			
	VIL	2.0	-	-	0.5	-	0.5	V		
		4.5	-	-	1.35	-	1.35			
		6.0	-	-	1.8	-	1.8			
Output voltage	V_{OH}	2.0	1.9	2.0	-	1.9	-	V	$\mathrm{Vin}=\mathrm{V}_{\mathrm{IH}}$ or $\mathrm{V}_{\text {IL }}$	I он $=-20 \mu \mathrm{~A}$
		4.5	4.4	4.5	-	4.4	-			
		6.0	5.9	6.0	-	5.9	-			
		4.5	4.18	-	-	4.13	-			$\mathrm{IOH}=-4 \mathrm{~mA}$
		6.0	5.68	-	-	5.63	-			$\mathrm{IOH}=-5.2 \mathrm{~mA}$
	VoL	2.0	-	0.0	0.1	-	0.1	V	$\mathrm{Vin}=\mathrm{V}_{\text {IH }}$ or $\mathrm{V}_{\text {IL }}$	$\mathrm{l} \mathrm{LL}=20 \mu \mathrm{~A}$
		4.5	-	0.0	0.1	-	0.1			
		6.0	-	0.0	0.1	-	0.1			
		4.5	-	-	0.26	-	0.33			$\mathrm{loL}=4 \mathrm{~mA}$
		6.0	-	-	0.26	-	0.33			$\mathrm{loL}=5.2 \mathrm{~mA}$
Input current	lin	6.0	-	-	± 0.1	-	± 1.0	$\mu \mathrm{A}$	$\mathrm{Vin}=\mathrm{V}_{\mathrm{Cc}}$ or GN	
Quiescent supply current	Icc	6.0	-	-	4.0	-	40	$\mu \mathrm{A}$	$\mathrm{Vin}=\mathrm{V}_{\mathrm{CC}}$ or GN	ND, lout $=0 \mu \mathrm{~A}$

Switching Characteristics ($\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$, Input $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=6 \mathrm{~ns}$)

Item	Symbol	$\mathrm{V}_{\mathrm{cc}}(\mathrm{V})$	$\mathrm{Ta}=25^{\circ} \mathrm{C}$			$\mathrm{Ta}=-40$ to $+85^{\circ} \mathrm{C}$		Unit	Test Conditions
			Min	Typ	Max	Min	Max		
Propagation delay time	tplh	2.0	-	-	170	-	215	ns	A, B or C to Y
		4.5	-	16	34	-	43		
		6.0	-	-	29	-	37		
	$\mathrm{t}_{\text {PHL }}$	2.0	-	-	240	-	305	ns	
		4.5	-	17	48	-	60		
		6.0	-	-	41	-	51		
	$\mathrm{t}_{\text {PLH }}$	2.0	-	-	130	-	165	ns	$\overline{\mathrm{G}}_{2}$ to Y
		4.5	-	13	26	-	33		
		6.0	-	-	22	-	28		
	$\mathrm{t}_{\text {PHL }}$	2.0	-	-	195	-	245	ns	
		4.5	-	14	39	-	49		
		6.0	-	-	33	-	42		
	tple	2.0	-	-	150	-	190	ns	G_{1} to Y
		4.5	-	14	30	-	38		
		6.0	-	-	26	-	33		
	tPHI	2.0	-	-	195	-	245	ns	
		4.5	-	14	39	-	49		
		6.0	-	-	33	-	42		
	tplh	2.0	-	-	175	-	220	ns	$\overline{\mathrm{GL}}$ to Y
		4.5	-	17	35	-	44		
		6.0	-	-	30	-	37		
	tphL	2.0	-	-	250	-	315	ns	
		4.5	-	18	50	-	63		
		6.0	-	-	43	-	54		
Pulse width	$\mathrm{t}_{\text {w }}$	2.0	80	-	-	100	-	ns	
		4.5	16	7	-	20	-		
		6.0	14	-	-	17	-		
Setup time	$\mathrm{t}_{\text {su }}$	2.0	100	-	-	125	-	ns	A, B, C inputs
		4.5	20	3	-	25	-		
		6.0	17	-	-	21	-		
Hold time	t_{n}	2.0	50	-	-	65	-	ns	A, B, C inputs
		4.5	10	-3	-	13	-		
		6.0	9	-	-	11	-		
Output rise/fall time	$\mathrm{t}_{\text {TLH, }} \mathrm{t}_{\text {THL }}$	2.0	-	-	75	-	90	ns	
		4.5	-	5	15	-	19		
		6.0	-	-	13	-	16		
Input capacitance	Cin	-	-	5	10	-	10	pF	

Test Circuit

Note: C_{L} includes the probe and fig capacitance.

Waveforms

Notes: 1. Input waveform: $\mathrm{PRR} \leq 1 \mathrm{MHz}, \mathrm{Zo}=50 \Omega, \mathrm{t}_{\mathrm{r}} \leq 6 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 6 \mathrm{~ns}$
2. The output are measured one at a time with one transition per measurement.

- Waveform - 2

Notes: 1. Input waveform: $\mathrm{PRR} \leq 1 \mathrm{MHz}, \mathrm{Zo}=50 \Omega, \mathrm{t}_{\mathrm{r}} \leq 6 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 6 \mathrm{~ns}$
2. The output are measured one at a time with one transition per measurement.

- Waveform - 3

Notes: 1. Input waveform: $\mathrm{PRR} \leq 1 \mathrm{MHz}, \mathrm{Zo}=50 \Omega, \mathrm{t}_{\mathrm{r}} \leq 6 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 6 \mathrm{~ns}$
2. The output are measured one at a time with one transition per measurement.

- Waveform - 4

Notes: 1. Input waveform: $\mathrm{PRR} \leq 1 \mathrm{MHz}, \mathrm{Zo}=50 \Omega, \mathrm{t}_{\mathrm{r}} \leq 6 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 6 \mathrm{~ns}$
2. The output are measured one at a time with one transition per measurement.

- Waveform - 5

Notes: 1. Input waveform: $\mathrm{PRR} \leq 1 \mathrm{MHz}, \mathrm{Zo}=50 \Omega, \mathrm{t}_{\mathrm{r}} \leq 6 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 6 \mathrm{~ns}$
2. The output are measured one at a time with one transition per measurement.

Package Dimensions

RenesasTechnology Corp. Sales Strategic Planning Div. Nippon Bldg., 2--6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan

1. Renesas first in your circuit designs! maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or (iii) prevention against any malfunction or mishap
Notes regarding these materials
2. These materials are intended as a reference to assist our customers in the selection of the Renesas Technology Corp. product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Renesas Technology Corp. or a third party diagrams, charts, programs, algorithms, or circuit application examples contained in these materials.
3. All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Renesas Technology Corp. without notice due to product improvements or other reasons. It is therefore recommended that customers contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor for the latest product information before purchasing a product listed herein
The information described here may contain technical inaccuracies or typographical errors.
Renesas Technology Corp. assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors. Please also pay attention to information published by Renesas Technology Corp. by various means, including the Renesas Technology Corp. Semiconductor
4. When using any or all of the informat evaluate all information as a total system before making a final decision on the applicability of the information and products. Renesas Technology Corp. assumes no responsibility for any damage, liability or other loss resulting from the information contained herein
5. Renesas Technology Corp. semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeate use.
6. The prior written approval of Renesas Technology Corp. is necessary to reprint or reproduce in whole or in part these materials.
7. If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination.
Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited.
8. Please contact Renesas Technology Corp. for further details on these materials or the products contained therein.
http://www.renesas.com

RENESAS SALES OFFICES

Refer to "http://www.renesas.com/en/network" for the latest and detailed information.
Renesas Technology America, Inc.
450 Holger Way, San Jose, CA 95134-1368, U.S.A
Tel: <1> (408) 382-7500, Fax: <1> (408) 382-7501
Renesas Technology Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K.
Tel: <44> (1628) 585-100, Fax: <44> (1628) 585-900

Renesas Technology Hong Kong Ltd.

7th Floor, North Tower, World Finance Centre, Harbour City, 1 Canton Road, Tsimshatsui, Kowloon, Hong Kong
Tel: <852> 2265-6688, Fax: <852> 2730-6071
Renesas Technology Taiwan Co., Ltd.
10th Floor, No.99, Fushing North Road, Taipei, Taiwan
Tel: <886> (2) 2715-2888, Fax: <886> (2) 2713-2999

Renesas Technology (Shanghai) Co., Ltd

Unit2607 Ruijing Building, No. 205 Maoming Road (S), Shanghai 200020, China
Tel: <86> (21) 6472-1001, Fax: <86> (21) 6415-2952

Renesas Technology Singapore Pte. Ltd.

1 Harbour Front Avenue, \#06-10, Keppel Bay Tower, Singapore 098632
Tel: <65> 6213-0200, Fax: <65> 6278-8001
Renesas Technology Korea Co., Ltd.
Kukje Center Bldg. 18th FI., 191, 2-ka, Hangang-ro, Yongsan-ku, Seoul 140-702, Korea
Tel: <82> 2-796-3115, Fax: <82> 2-796-2145
Renesas Technology Malaysia Sdn. Bhd.
Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No.18, Jalan Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: <603> 7955-9390, Fax: <603> 7955-9510

