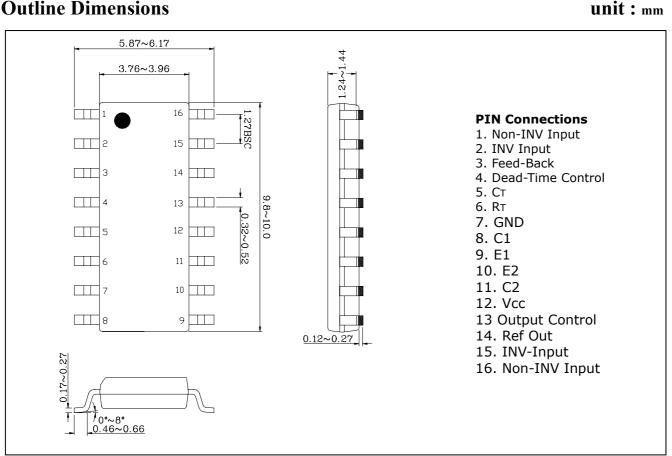


Description

The S494 is a monolithic integrated circuit which includes all the necessary building blocks for the design of pulse width modulate(PWM) switching power supplies, including push-pull, bridge and series configuration. The device can operate at switching frequencies between 1KHz and 300KHz and output voltage up to 40V. The S494 is specified over an operating temperature range of -40% to 85%.


Features

- Uncommitted output transistors capable of 200mA source or sink
- Internal protection from double pulsing of out-puts with narrow pulse widths or with supply voltages bellows specified limits
- Easily synchronized to other circuits
- Dead time control comparator
- Output control selects single-ended or push-pull operation

Ordering Information

Type NO.	Marking	Package Code	
S494	S494	SOP-16	

Outline Dimensions

KSI-K003-001

Absolute Maximum Ratings

Ta=25°C

Characteristic	Symbol	Ratings	Unit
supply voltage	V_{CC}	42	V
Voltage From Any Pin to Ground (except pin 8 and pin 11)	V_{IN}	V _{CC} +0.3	V
Output Collector Voltage	V_{C1} , V_{C2}	42	V
Peak Collector Current	I_{C1} , I_{C2}	250	mA
Power Dissipation	P_D	1500	mW
Operating Temperature	T_{opr}	-40 ~ 85	°C
Storage Temperature	T_{stg}	-65 ~ 150	°C

Recommended Operating Condition

Characteristic	Symbol	Min.	Max.	Unit
supply voltage	V_{CC}	7	40	V
Voltage on Any Pin Except Pin 8 and 11(Referenced to Ground)	V _{IN}	-0.3	V _{CC} +0.3	V
Output Voltage	V_{C1} , V_{C2}	-0.3	40	V
Output Collector Current	I_{C1} , I_{C2}	-	200	mA
Timing Capacitor	Ct	470	-	PF
Timing Capacitor	Ct	-	10	μ F
Timing Resistor	R _t	1.8	500	kΩ
Oscillator Frequency	f _{osc}	1	300	KHz

Electrical Characteristics

Reference Section

Characteristic	Symbol	Test Condition	Min.	Тур.	Max.	Unit
Reference Voltage	Vref	Iref = 1.0mA	4.75	5.00	5.25	V
Line Regulation	V_{LINE}	7V < Vcc < 40V	-	2	25	mV
Load Regulation	V_{LOAD}	1mA< I _{REF} <10mA	-	1	15	mV
Temperature Coefficient	-	0°C < Ta <70°C	-	0.01	0.03	%/°C

Oscillator Section

Characteristic	Symbol	Test Condition	Min.	Typ.	Max.	Unit
Oscillator Frequency	f _{OSC}	$C_t=0.01 \mu F$, $R_t=12 k\Omega$	-	10	-	kHz
Oscillator Frequency Change Over Operating Temperature Range	∆ f _{SOC}	$C_t=0.01 \mu\text{F}, R_t=12 \text{k}\Omega$	-	1	2	%

Dead Time Control Section

Character	ristic	Symbol	Test Condition	Min.	Typ.	Max.	Unit
Input Bias Current (I	Pin4)	$I_{IB(DT)}$	Vcc = 15V, 0V < V ₄ < 5.25V	-	-2	-10	μA
Max. Duty cycle, Eac	ch Output	DC _(Max)	Vcc = 15V, Pin4 = 0V, Output Control Pin = Vref	43	ı	45	%
Input Threshold	Zero Duty	\/	_	-	3	3.3	V
Voltage	Max Duty	V_{TH}	-	0	-	-	V

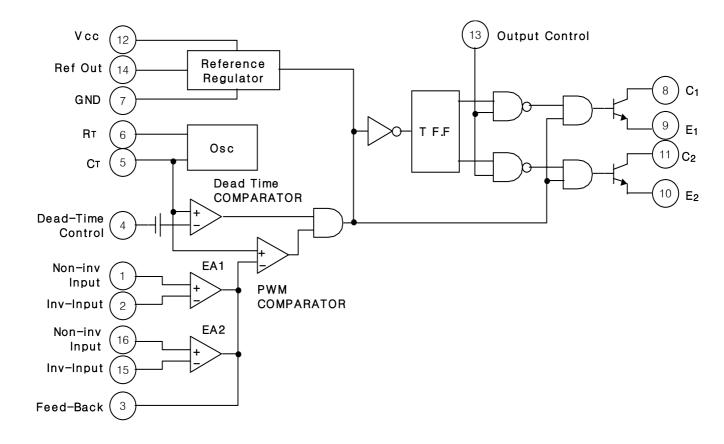
Error Amplifier Section

Characteristic	Symbol	Test Condition	Min.	Typ.	Max.	Unit
Input Offset Voltage	V_{IOS}	$V_3 = 2.5V$	-	2	10	mV
Input Offset Current	I_{IOS}	$V_3 = 2.5V$	-	25	250	nA
Input Bias Current	I_{IB}	$V_3 = 2.5V$	-	0.2	1	μA
Input Common Mode voltage Range	V_{ICR}	$7V \le V_{CC} \le 40V$	-0.3	-	V _{CC}	V
Large Signal Open Loop Voltage Range	G _{vo}	$0.5V \leq V_3 \ \leq 3.5V$	60	74	-	dB
Unity Gain Band width	f _C	-	-	650	-	kHz

PWM Comparator Section (Pin3)

Characteristic	Symbol	Test Condition	Min.	Тур.	Max.	Unit
Inhibit Threshold Voltage	V_{THI}	Zero duty cycle	-	4	4.5	V
Output Source Current	Io ⁺	0.5V < V ₃ < 3.5V	2	-	-	mA
Output Sink Current	Io ⁻	0.5V< V ₃ < 3.5V	-0.2	-0.6	-	mA

Output Section

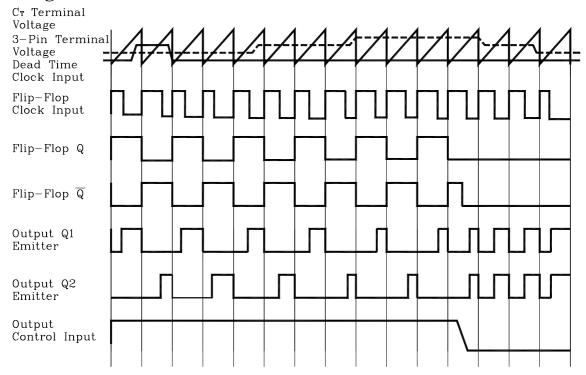

Char	acteristic	Symbol	Test Condition	Min.	Тур.	Max.	Unit
Output Satur-	Common-Emitter	V	$V_E = 15V, I_C = 200mA$	-	1.1	1.3	V
ation Voltage	Emitter-Follower	$V_{CE(SAT)}$	$V_{C} = 15V$, $I_{E} = 200mA$	-	1.5	2.5	V
Collector off-sta	ate Current	$I_{C(off)}$	$V_{CC} = V_{C} = 40V, V_{E} = 0$	-	2	100	Λ
Emitter off-stat	e Current	$I_{E(off)}$	$V_{CC} = V_{C} = 40V, V_{E} = 0$	-	-	-100	μА
Output Control(Pin 13)							
Output Control Required for s Parallel Output	ingle-Ended or	V _{OCL}	-	-	-	0.4	V
Output Control uired for Push-		V _{OCH}	-	2.4	ı	-	V
Total Device							
Standby power Current	Supply	I_{CC}	-	-	6	10	mA

[:] These limits apply when the voltage measured at Pin 3 is with in the range specified.

Output AC Characteristic

Char	acteristic	Symbol	Test Condition	Min.	Тур.	Max.	Unit
Rise Time	Common Emitter	+		-	100	200	
	Emitter Follower	լ Լ _Ր	-	-	100	200	ns
Fall Time	Common Emitter	+		-	25	100	115
	Emitter Follower	t _f	-	-	40	100	

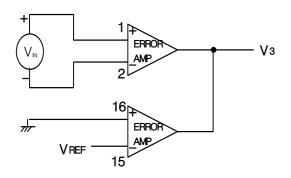
Block Diagram


INFORMATION

The basic oscillator(switching)frequency is controlled by an external resistor (Rt) and capacitor(Ct). The relationship between the values of Rt Ct and frequency is shown in.

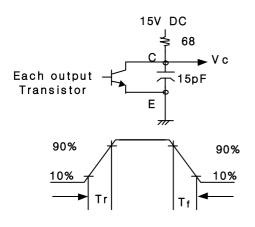
The level of the sawtooth wave form is compared with an error voltage by the pulse width modulated comparator. The output of the PWM Comparator directs the pulse steering flip flop and the output control logic.

The error voltage is generated by the error amplifier. The error amplifier boosts the voltage difference between the output and the 5V internal reference. See Figure7 for error amp sensing techniques. The second error amp is typically used to implement current limiting. The output control logic (Pin13) selects either push-pull or single-ended operation of the output transistors (see Figure6). The dead time control prevents on-state overlap of the output transistors as can be seen is Figure5. The dead time is approximately 3 to 5% of the total period if the dead time control(pin4) is grounded. This dead time can be increased by connecting the dead time control to a voltage up to 5 V. The frequency response of the error amps can be modified by using external resistors and capacitors. These components are typically connected between the compensation terminal (pin3) and the inverting input of the error amps(pin2 or pin15). The switching frequency of two or more S494 circuits can be synchronized. The timing capacitor, Ct is connected as shown in Figure8. Charging current is provided by the master circuit. Discharging is through all the circuits slaved to the master. Rt is required only for the master circuit.


Operating Waveform

Test Circuit

Fig.1Error Amplifier Test Circuit


Fig.2 Current Limit sense Amplifier Test Circuit

V REF 2 ERROR AMP V3

Fig. 3 Common-Emitter Configuration Test circuit and Waveform

Fig. 5 Dead-Time and Feedback Control Test Circuit

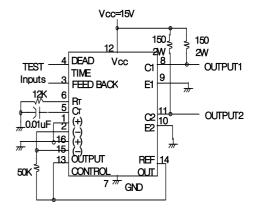
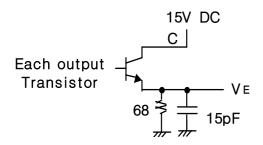
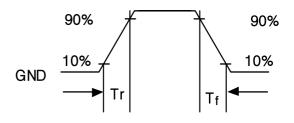




Fig. 4 Emitter-Follower Configuration Test circuit and waveform Voltage waveform

APPLICATION CIRCUIT

Fig. 6 Output Connections for Single-Ended and Push-Pull Configurations

Fig. 7 Error Amplifier Sensing Techniques

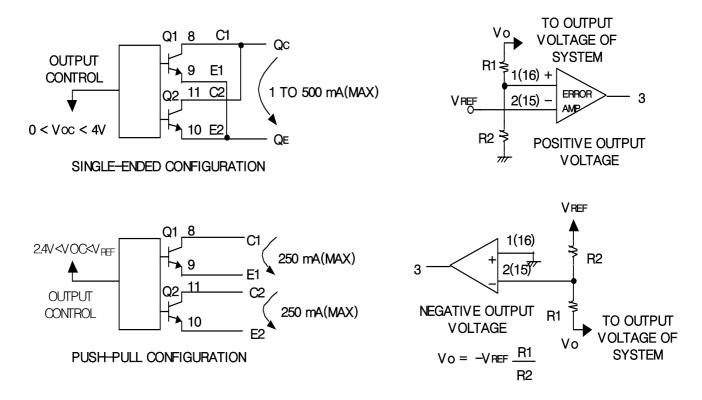
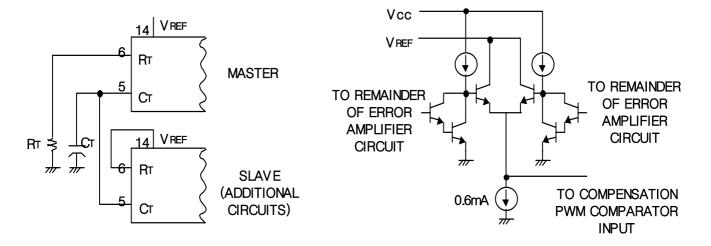



Fig. 8 Slaving Tow or More Control Circuits

Fig. 9Error Amplifier and Current Limit Sense Amplifier Output Circuits

Electrical Characteristic Curves

Fig. 1 $V_{CE(sat)}$ - I_C

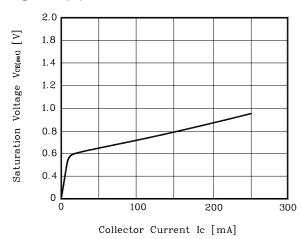


Fig. 2 V_{CE} - I_{E}

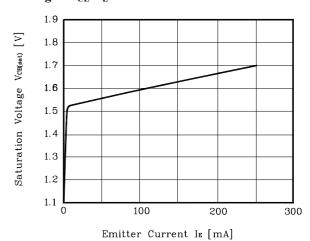


Fig. 3 t_{OSC} - R_T

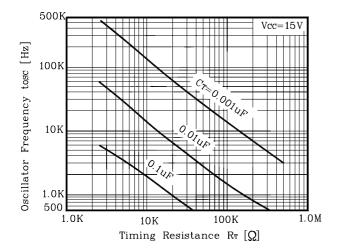


Fig. 4 A_{VOL} , Phase - \boldsymbol{f}

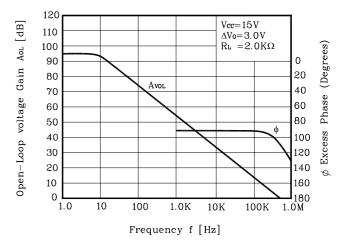



Fig. 5 I_{CC} - V_{CC}

These AUK products are intended for usage in general electronic equipments (Office and communication equipment, measuring equipment, domestic electrification, etc.).

Please make sure that you consult with us before you use these AUK products in equipments which require high quality and/or reliability, and in equipments which could have major impact to the welfare of human life(atomic energy control, airplane, spaceship, traffic signal, combustion central, all types of safety device, etc.).

AUK cannot accept liability to any damage which may occur in case these AUK products were used in the mentioned equipments without prior consultation with AUK.