Schottky Rectifier, 2×20 A

TO-247AC

PRODUCT SUMMARY	
$\mathrm{I}_{\mathrm{F}(\mathrm{AV})}$	$2 \times 20 \mathrm{~A}$
$\mathrm{~V}_{\mathrm{R}}$	15 V
I_{RM}	600 mA at $100^{\circ} \mathrm{C}$

FEATURES

- $125^{\circ} \mathrm{C} \mathrm{T}_{\mathrm{J}}$ operation $\left(\mathrm{V}_{\mathrm{R}}<5 \mathrm{~V}\right)$
- Center tap module
- Optimized for OR-ing applications
- Ultra low forward voltage drop
- High frequency operation
- High purity, high temperature epoxy encapsulation for enhanced mechanical strength and moisture resistance
- Guard ring for enhanced ruggedness and long term reliability
- Designed and qualified for industrial level

DESCRIPTION

The STPS40L15CW center tap Schottky rectifier module has been optimized for ultra low forward voltage drop specifically for the OR-ing of parallel power supplies. The proprietary barrier technology allows for reliable operation up to $125^{\circ} \mathrm{C}$ junction temperature. Typical applications are in parallel switching power supplies, converters, reverse battery protection, and redundant power subsystems.

MAJOR RATINGS AND CHARACTERISTICS			
SYMBOL			
$\mathrm{I}_{\mathrm{F}(\mathrm{AV})}$	CHARACTERISTICS	VALUES	UNITS
$\mathrm{V}_{\mathrm{RRM}}$	Rectangular waveform	40	A
$\mathrm{I}_{\mathrm{FSM}}$		15	V
$\mathrm{~V}_{\mathrm{F}}$	$\mathrm{t}_{\mathrm{p}}=5 \mu \mathrm{~s}$ sine	700	A
$\mathrm{~T}_{J}$	$19 \mathrm{Apk}, \mathrm{T}_{J}=125^{\circ} \mathrm{C}$ (per leg, typical)	0.25	V

VOLTAGE RATINGS				
PARAMETER	SYMBOL	TEST CONDITIONS	STPS40L15CW	UNITS
Maximum DC reverse voltage	V_{R}	$\mathrm{T}_{J}=100^{\circ} \mathrm{C}$	15	V
			V	

ABSOLUTE MAXIMUM RATINGS

PARAMETER	SYMBOL	TEST CONDITIONS		VALUES	UNITS
Maximum average forward current per leg	$\mathrm{I}_{\mathrm{F}(\mathrm{AV})}$	50% duty cycle at $\mathrm{T}_{\mathrm{C}}=86{ }^{\circ} \mathrm{C}$, rectangular waveform		20	A
See fig. 5 per device				40	
Maximum peak one cycle non-repetitive surge current per leg See fig. 7	$\mathrm{I}_{\text {FSM }}$	$5 \mu \mathrm{~s}$ sine or $3 \mu \mathrm{~s}$ rect. pulse	Following any rated load condition and with rated $\mathrm{V}_{\text {RRM }}$ applied	700	
		10 ms sine or $6 \mathrm{~ms} \mathrm{rect}$.		330	
Non-repetitive avalanche energy per leg	$\mathrm{E}_{\text {AS }}$	$\mathrm{T}_{J}=25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{AS}}=2 \mathrm{~A}, \mathrm{~L}=5 \mathrm{mH}$		10	mJ
Repetitive avalanche current per leg	$\mathrm{I}_{\text {AR }}$	Current decaying linearly to zero in $1 \mu \mathrm{~s}$ Frequency limited by T_{J} maximum $\mathrm{V}_{\mathrm{A}}=1.5 \times \mathrm{V}_{\mathrm{R}}$ typical		2	A

Vishay High Power Products Schottky Rectifier, 2×20 A

ELECTRICAL SPECIFICATIONS						
PARAMETER	SYMBOL	TEST CONDITIONS		TYP.	MAX.	UNITS
Maximum forward voltage drop per leg See fig. 1	$\mathrm{V}_{\mathrm{FM}}{ }^{(1)}$	19 A	$\mathrm{T}_{J}=25^{\circ} \mathrm{C}$	-	0.41	V
		40 A		-	0.52	
		19 A	$\mathrm{T}_{J}=125^{\circ} \mathrm{C}$	0.25	0.33	
		40 A		0.37	0.50	
Reverse leakage current per leg See fig. 2	$\mathrm{I}_{\mathrm{RM}}{ }^{(1)}$	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$	$\mathrm{V}_{\mathrm{R}}=$ Rated V_{R}	-	10	mA
		$\mathrm{T}_{\mathrm{J}}=10{ }^{\circ} \mathrm{C}$		-	600	
Threshold voltage	$\mathrm{V}_{\mathrm{F}(\mathrm{TO})}$	$\mathrm{T}_{J}=\mathrm{T}_{J}$ maximum		0.182		V
Forward slope resistance	r_{t}					$\mathrm{m} \Omega$
Maximum junction capacitance per leg	$\mathrm{C}_{\text {T }}$	$\mathrm{V}_{\mathrm{R}}=5 \mathrm{~V}$ DC (t	e 100 kHz to 1 MHz$) 25^{\circ} \mathrm{C}$	-	2000	pF
Typical series inductance per leg	$\mathrm{L}_{\text {s }}$	Measured lead	m from package body	8	-	nH
Maximum voltage rate of change	dV/dt	Rated V_{R}				V/us

Note
(1) Pulse width $<300 \mu \mathrm{~s}$, duty cycle $<2 \%$

PARAMETER	SYMBOL	TEST CONDITIONS	VALUES	UNITS
Maximum junction temperature range	T_{J}		- 55 to 125	${ }^{\circ} \mathrm{C}$
Maximum storage temperature range	$\mathrm{T}_{\text {Stg }}$		- 55 to 150	
Maximum thermal resistance, junction to case per leg	$\mathrm{R}_{\text {thJc }}$	DC operation See fig. 4	1.4	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Maximum thermal resistance, junction to case per package		DC operation	0.7	
Typical thermal resistance, case to heatsink	$\mathrm{R}_{\text {thCs }}$	Mounting surface, smooth and greased	0.24	
proximate weight			6	g
proximate weight			0.21	oz.
minimum		Non-lubricated threads	6 (5)	$\mathrm{kgf} \cdot \mathrm{cm}$ (lbf $\cdot \mathrm{in}$)
maximum			12 (10)	
Marking device		Case style TO-247AC (JEDEC)	STPS40L15CW	

Fig. 1 - Maximum Forward Voltage Drop Characteristics

Fig. 2 - Typical Values of Reverse Current vs. Reverse Voltage

Fig. 3 - Typical Junction Capacitance vs. Reverse Voltage

Fig. 4 - Maximum Thermal Impedance $Z_{\text {thJc }}$ Characteristics

Fig. 5 - Maximum Allowable Case Temperature vs. Average Forward Current

Fig. 6 - Forward Power Loss Characteristics

Fig. 7 - Maximum Non-Repetitive Surge Current

Fig. 8 - Unclamped Inductive Test Circuit

ORDERING INFORMATION TABLE

Tube standard pack quantity: 25 pieces

LINKS TO RELATED DOCUMENTS	
Dimensions	http://www.vishay.com/doc?95223
Part marking information	http://www.vishay.com/doc?95226

Disclaimer

All product specifications and data are subject to change without notice.
Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product.

Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

Product names and markings noted herein may be trademarks of their respective owners.

