32 Mbit (x8/x16) Concurrent SuperFlash SST36VF3203 / SST36VF3204 Data Sheet #### **FEATURES:** - Organized as 2M x16 or 4M x8 - Dual Bank Architecture for Concurrent Read/Write Operation - 32 Mbit Bottom Sector Protection (in the smaller bank) - SST36VF3203: 8 Mbit + 24 Mbit - 32 Mbit Top Sector Protection (in the smaller bank) - SST36VF3204: 24 Mbit + 8 Mbit - Single 2.7-3.6V for Read and Write Operations - Superior Reliability - Endurance: 100,000 cycles (typical) - Greater than 100 years Data Retention - Low Power Consumption: - Active Current: 6 mA typical - Standby Current: 4 μA typical - Auto Low Power Mode: 4 μA typical - Hardware Sector Protection/WP# Input Pin - Protects 8 KWord in the smaller bank by driving WP# low and unprotects by driving WP# high - Hardware Reset Pin (RST#) - Resets the internal state machine to reading array data - Byte# Pin - Selects 8-bit or 16-bit mode - · Sector-Erase Capability - Uniform 2 KWord sectors - Chip-Erase Capability - Block-Erase Capability - Uniform 32 KWord blocks - Erase-Suspend / Erase-Resume Capabilities - Security ID Feature - SST: 128 bitsUser: 256 Bytes - Fast Read Access Time - 70 ns - Latched Address and Data - Fast Erase and Program (typical): - Sector-Erase Time: 18 ms Block-Erase Time: 18 ms Chip-Erase Time: 35 ms Program Time: 7 µs - Automatic Write Timing - Internal V_{PP} Generation - End-of-Write Detection - Togale Bit - Data# Polling - Ready/Busy# pin - CMOS I/O Compatibility - Conforms to Common Flash Memory Interface (CFI) - JEDEC Standards - Flash EEPROM Pinouts and command sets - Packages Available - 48-ball TFBGA (6mm x 8mm) - 48-lead TSOP (12mm x 20mm) - All non-Pb (lead-free) devices are RoHS compliant #### PRODUCT DESCRIPTION The SST36VF320x are 2M x16 or 4M x8 CMOS Concurrent Read/Write Flash Memory manufactured with SST's proprietary, high performance CMOS SuperFlash technology. The split-gate cell design and thick-oxide tunneling injector attain better reliability and manufacturability compared with alternate approaches. The devices write (Program or Erase) with a 2.7-3.6V power supply and conform to JEDEC standard pinouts for x8/x16 memories. Featuring high performance Word-Program, these devices provide a typical Program time of 7 µsec and use the Toggle Bit, Data# Polling, or RY/BY# to detect the completion of the Program or Erase operation. To protect against inadvertent write, the devices have on-chip hardware and Software Data Protection schemes. Designed, manufactured, and tested for a wide spectrum of applications, these devices are offered with a guaranteed endurance of 10,000 cycles. Data retention is rated at greater than 100 years. These devices are suited for applications that require convenient and economical updating of program, configuration, or data memory. For all system applications, the devices significantly improve performance and reliability, while lowering power consumption. Since for any given voltage range, the SuperFlash technology uses less current to program and has a shorter erase time, the total energy consumed during any Erase or Program operation is less than alternative flash technologies. These devices also improve flexibility while lowering the cost for program, data, and configuration storage applications. SuperFlash technology provides fixed Erase and Program times, independent of the number of Erase/Program cycles that have occurred. Therefore the system software or hardware does not have to be modified or de-rated as is necessary with alternative flash technologies, whose Erase and Program times increase with accumulated Erase/Program cycles. To meet high-density, surface-mount requirements, these devices are offered in 48-ball TFBGA and 48-lead TSOP packages. See Figures 1 and 2 for pin assignments. ### **Device Operation** Memory operation functions are initiated using standard microprocessor write sequences. A command is written by asserting WE# low while keeping CE# low. The address bus is latched on the falling edge of WE# or CE#, whichever occurs last. The data bus is latched on the rising edge of WE# or CE#, whichever occurs first. #### **Auto Low Power Mode** These devices also have the **Auto Lower Power** mode which puts them in a near standby mode within 500 ns after data has been accessed with a valid Read operation. This reduces the I_{DD} active Read current to 4 μ A typically. While CE# is low, the devices exit Auto Low Power mode with any address transition or control signal transition used to initiate another Read cycle, with no access time penalty. # **Concurrent Read/Write Operation** The dual bank architecture of these devices allows the Concurrent Read/Write operation whereby the user can read from one bank while programming or erasing in the other bank. For example, reading system code in one bank while updating data in the other bank. #### **CONCURRENT READ/WRITE STATE** | Bank 1 | Bank 2 | |--------------|--------------| | Read | No Operation | | Read | Write | | Write | Read | | Write | No Operation | | No Operation | Read | | No Operation | Write | **Note:** For the purposes of this table, write means to perform Blockor Sector-Erase or Program operations as applicable to the appropriate bank. ### **Read Operation** The Read operation is controlled by CE# and OE#; both have to be low for the system to obtain data from the outputs. CE# is used for device selection. When CE# is high, the chip is deselected and only standby power is consumed. OE# is the output control and is used to gate data from the output pins. The data bus is in a high impedance state when either CE# or OE# is high. Refer to the Read cycle timing diagram for further details (Figure 3). ### **Program Operation** These devices are programmed on a word-by-word or byte-by-byte basis depending on the state of the BYTE# pin. Before programming, one must ensure that the sector which is being programmed is fully erased. The Program operation is accomplished in three steps: - 1. Software Data Protection is initiated using the three-byte load sequence. - 2. Address and data are loaded. - During the Program operation, the addresses are latched on the falling edge of either CE# or WE#, whichever occurs last. The data is latched on the rising edge of either CE# or WE#, whichever occurs first. - 3. The internal Program operation is initiated after the rising edge of the fourth WE# or CE#, whichever occurs first. The Program operation, once initiated, will be completed typically within 7 μs. See Figures 4 and 5 for WE# and CE# controlled Program operation timing diagrams and Figure 19 for flowcharts. During the Program operation, the only valid reads are Data# Polling and Toggle Bit. During the internal Program operation, the host is free to perform additional tasks. Any commands issued during an internal Program operation are ignored. # 32 Mbit Concurrent SuperFlash SST36VF3203 / SST36VF3204 Data Sheet ### **Sector- (Block-) Erase Operation** These devices offer both Sector-Erase and Block-Erase operations. These operations allow the system to erase the devices on a sector-by-sector (or block-by-block) basis. The sector architecture is based on a uniform sector size of 2 KWord. The Block-Erase mode is based on a uniform block size of 32 KWord. The Sector-Erase operation is initiated by executing a six-byte command sequence with a Sector-Erase command (50H) and sector address (SA) in the last bus cycle. The Block-Erase operation is initiated by executing a six-byte command sequence with Block-Erase command (30H) and block address (BA) in the last bus cycle. The sector or block address is latched on the falling edge of the sixth WE# pulse, while the command (30H or 50H) is latched on the rising edge of the sixth WE# pulse. The internal Erase operation begins after the sixth WE# pulse. Any commands issued during the Sector- or Block-Erase operation are ignored except Erase-Suspend and Erase-Resume. See Figures 9 and 10 for timing waveforms. ## **Chip-Erase Operation** The devices provide a Chip-Erase operation, which allows the user to erase all sectors/blocks to the "1" state. This is useful when a device must be quickly erased. The Chip-Erase operation is initiated by executing a sixbyte command sequence with Chip-Erase command (10H) at address 555H in the last byte sequence. The Erase operation begins with the rising edge of the sixth WE# or CE#, whichever occurs first. During the Erase operation, the only valid Read is Toggle Bit or Data# Polling. Any commands issued during the Chip-Erase operation are ignored. See Table 7 for the command sequence, Figure 8 for timing diagram, and Figure 22 for the flowchart. When WP# is low, any attempt to Chip-Erase will be ignored. # **Erase-Suspend/Erase-Resume Operations** The Erase-Suspend operation temporarily suspends a Sector- or Block-Erase operation thus allowing data to be read from any memory location, or program data into any sector/block that is not suspended for an Erase operation. The operation is executed by issuing a one-byte command sequence with Erase-Suspend command (B0H). The device automatically enters read mode no more than 10 us after the Erase-Suspend command had been issued. (TES maximum latency equals 10 µs.) Valid data can be read from any sector or block that is not suspended from an Erase operation. Reading at address location within erasesuspended sectors/blocks will output DQ2 toggling and DQ6 at "1". While in Erase-Suspend mode, a Program operation is allowed except for the sector or block selected for Erase-Suspend. The Software ID Entry command can also be executed. To resume Sector-Erase or Block-Erase operation which has been suspended, the system must issue an Erase-Resume command. The operation is executed by issuing a one-byte command sequence with Erase Resume command (30H) at any address in the last byte sequence. # **Write Operation Status Detection** These devices provide one hardware and two software means to detect the
completion of a Write (Program or Erase) cycle in order to optimize the system Write cycle time. The hardware detection uses the Ready/Busy# (RY/BY#) output pin. The software detection includes two status bits: Data# Polling (DQ $_7$) and Toggle Bit (DQ $_6$). The End-of-Write detection mode is enabled after the rising edge of WE#, which initiates the internal Program or Erase operation. The actual completion of the nonvolatile write is asynchronous with the system; therefore, either a Ready/Busy# (RY/BY#), a Data# Polling (DQ7), or Toggle Bit (DQ6) Read may be simultaneous with the completion of the Write cycle. If this occurs, the system may get an erroneous result, i.e., valid data may appear to conflict with either DQ7 or DQ6. In order to prevent spurious rejection if an erroneous result occurs, the software routine should include a loop to read the accessed location an additional two (2) times. If both Reads are valid, then the Write cycle has completed, otherwise the rejection is valid. ### Ready/Busy# (RY/BY#) The devices include a Ready/Busy# (RY/BY#) output signal. RY/BY# is an open drain output pin that indicates whether an Erase or Program operation is in progress. Since RY/BY# is an open drain output, it allows several devices to be tied in parallel to V_{DD} via an external pull-up resistor. After the rising edge of the final WE# pulse in the command sequence, the RY/BY# status is valid. When RY/BY# is actively pulled low, it indicates that an Erase or Program operation is in progress. When RY/BY# is high (Ready), the devices may be read or left in standby mode. ## Byte/Word (BYTE#) The device includes a BYTE# pin to control whether the device data I/O pins operate x8 or x16. If the BYTE# pin is at logic "1" (V_{IH}) the device is in x16 data configuration: all data I/O pins DQ₀-DQ₁₅ are active and controlled by CE# and OE#. If the BYTE# pin is at logic "0", the device is in x8 data configuration: only data I/O pins DQ_0 - DQ_7 are active and controlled by CE# and OE#. The remaining data pins DQ_8 - DQ_{14} are at Hi-Z, while pin DQ_{15} is used as the address input A_{-1} for the Least Significant Bit of the address bus. ## Data# Polling (DQ₇) When the devices are in an internal Program operation, any attempt to read DQ_7 will produce the complement of the true data. Once the Program operation is completed, DQ_7 will produce true data. During internal Erase operation, any attempt to read DQ_7 will produce a '0'. Once the internal Erase operation is completed, DQ_7 will produce a '1'. The Data# Polling is valid after the rising edge of fourth WE# (or CE#) pulse for Program operation. For Sector-, Block-, or Chip-Erase, the Data# Polling is valid after the rising edge of sixth WE# (or CE#) pulse. See Figure 6 for Data# Polling (DQ_7) timing diagram and Figure 20 for a flowchart. ### Toggle Bits (DQ₆ and DQ₂) During the internal Program or Erase operation, any consecutive attempts to read DQ_6 will produce alternating "1"s and "0"s, i.e., toggling between 1 and 0. When the internal Program or Erase operation is completed, the DQ_6 bit will stop toggling. The device is then ready for the next operation. The toggle bit is valid after the rising edge of the fourth WE# (or CE#) pulse for Program operations. For Sector-, Block-, or Chip-Erase, the toggle bit (DQ_6) is valid after the rising edge of sixth WE# (or CE#) pulse. DQ_6 will be set to "1" if a Read operation is attempted on an Erase-suspended Sector/Block. If Program operation is initiated in a sector/block not selected in Erase-Suspend mode, DQ_6 will toggle. An additional Toggle Bit is available on DQ_2 , which can be used in conjunction with DQ_6 to check whether a particular sector is being actively erased or erase-suspended. Table 1 shows detailed status bit information. The Toggle Bit (DQ_2) is valid after the rising edge of the last WE# (or CE#) pulse of a Write operation. See Figure 7 for Toggle Bit timing diagram and Figure 20 for a flowchart. **TABLE 1: WRITE OPERATION STATUS** | Status | | DQ ₇ | DQ ₆ | DQ ₂ | RY/BY# | |---------------------------|---|-----------------|-----------------|-----------------|--------| | Normal
Operation | Standard
Program | DQ7# | Toggle | No Toggle | 0 | | | Standard
Erase | 0 | Toggle | Toggle | 0 | | Erase-
Suspend
Mode | Read From
Erase
Suspended
Sector/Block | 1 | 1 | Toggle | 1 | | | Read From
Non-Erase
Suspended
Sector/Block | Data | Data | Data | 1 | | | Program | DQ7# | Toggle | N/A | 0 | T1.1 1270 Note: DQ₇, DQ₆, and DQ₂ require a valid address when reading status information. The address must be in the bank where the operation is in progress in order to read the operation status. If the address is pointing to a different bank (not busy), the device will output array data. #### **Data Protection** The devices provide both hardware and software features to protect nonvolatile data from inadvertent writes. # 32 Mbit Concurrent SuperFlash SST36VF3203 / SST36VF3204 **Data Sheet** #### **Hardware Data Protection** Noise/Glitch Protection: A WE# or CE# pulse of less than 5 ns will not initiate a Write cycle. $\underline{V_{DD}}$ Power Up/Down Detection: The Write operation is inhibited when V_{DD} is less than 1.5V. <u>Write Inhibit Mode:</u> Forcing OE# low, CE# high, or WE# high will inhibit the Write operation. This prevents inadvertent writes during power-up or power-down. #### **Hardware Block Protection** The devices provide hardware block protection which protects the outermost 8 KWord in the smaller bank. The block is protected when WP# is held low. When WP# is held low and a Block-Erase command is issued to the protected black, the data in the outermost 8 KWord/16 KByte section will be protected. The rest of the block will be erased. See Tables 3 and 4 for Block-Protection location. A user can disable block protection by driving WP# high. This allows data to be erased or programmed into the protected sectors. WP# must be held high prior to issuing the Write command and remain stable until after the entire Write operation has completed. If WP# is left floating, it is internally held high via a pull-up resistor, and the Boot Block is unprotected, enabling Program and Erase operations on that block. #### **Hardware Reset (RST#)** The RST# pin provides a hardware method of resetting the devices to read array data. When the RST# pin is held low for at least T_{RP} , any in-progress operation will terminate and return to Read mode (see Figure 16) and all output pins are set to High-Z. When no internal Program/Erase operation is in progress, a minimum period of T_{RHR} is required after RST# is driven high before a valid Read can take place (see Figure 15). The Erase operation that has been interrupted needs to be reinitiated after the device resumes normal operation mode to ensure data integrity. # **Software Data Protection (SDP)** These devices provide the JEDEC standard Software Data Protection scheme for all data alteration operations, i.e., Program and Erase. Any Program operation requires the inclusion of the three-byte sequence. The three-byte load sequence is used to initiate the Program operation, providing optimal protection from inadvertent Write operations, e.g., during the system power-up or power-down. Any Erase operation requires the inclusion of the six-byte sequence. The devices are shipped with the Software Data Protection permanently enabled. See Table 7 for the specific software command codes. During SDP command sequence, invalid commands will abort the device to Read mode within T_{RC} . The contents of DQ_{15} - DQ_{8} can be V_{IL} or V_{IH} , but no other value during any SDP command sequence. # Common Flash Memory Interface (CFI) These devices also contain the CFI information to describe the characteristics of the devices. In order to enter the CFI Query mode, the system must write the three-byte sequence, same as the Software ID Entry command with 98H (CFI Query command) to address $BK_{\chi}555H$ in the last byte sequence. In order to enter the CFI Query mode, the system can also use the one-byte sequence with $BK_{\chi}55H$ on Address and 98H on Data Bus. See Figure 12 for CFI Entry and Read timing diagram. Once the device enters the CFI Query mode, the system can read CFI data at the addresses given in Tables 8 through 10. The system must write the CFI Exit command to return to Read mode from the CFI Query mode. ### Security ID The SST36VF320x devices offer a 136-word Security ID space. The Secure ID space is divided into two seqments—one 128-bit factory programmed segment and one 128-word (256-byte) user-programmed segment. The first segment is programmed and locked at SST with a unique, 128-bit number. The user segment is left un-programmed for the customer to program as desired. To program the user segment of the Security ID, the user must use the Security ID Program command. End-of-Write status is checked by reading the toggle bits. Data# Polling is not used for Security ID End-of-Write detection. Once programming is complete, the Sec ID should be locked using the User Sec ID Program Lock-Out. This disables any future corruption of this space. Note that regardless of whether or not the Sec ID is locked, neither Sec ID segment can be erased. The Secure ID space can be gueried by executing a three-byte command sequence with Query Sec ID command (88H) at address 555H in the last byte sequence. See Figure 14 for timing diagram. To exit this mode, the Exit Sec ID command should be executed. Refer to Table 7 for more details. #### **Product Identification** The Product Identification mode identifies the devices and manufacturer. For details, see Table 2 for software operation, Figure 11 for the Software ID Entry and Read timing diagram and Figure 21 for the Software ID Entry command sequence flowchart. The addresses
A_{20} and A_{18} indicate a bank address. When the addressed bank is switched to Product Identification mode, it is possible to read another address from the same bank without issuing a new Software ID Entry command. The Software ID Entry command may be written to an address within a bank that is in Read Mode or in Erase-Suspend mode. The Software ID Entry command may not be written while the device is programming or erasing in the other bank. **TABLE 2: PRODUCT IDENTIFICATION** | | Address | Data | |-------------------|-----------------------|-------| | Manufacturer's ID | BK _X 0000H | 00BFH | | Device ID | | | | SST36VF3203 | BK _X 0001H | 7354H | | SST36VF3204 | BK _X 0001H | 7353H | T2.1 1270 Note: BK_X = Bank Address (A₂₀-A₁₈) # Product Identification Mode Exit/CFI Mode Exit In order to return to the standard Read mode, the Software Product Identification mode must be exited. Exit is accomplished by issuing the Software ID Exit command sequence, which returns the device to the Read mode. This command may also be used to reset the device to the Read mode after any inadvertent transient condition that apparently causes the device to behave abnormally, e.g., not read correctly. Please note that the Software ID Exit/CFI Exit command is ignored during an internal Program or Erase operation. See Table 7 for the software command code, Figure 13 for timing waveform and Figure 21 for a flowchart. TABLE 3: SST36VF3203, 2M x16 CSF BOTTOM DUAL-BANK MEMORY ORGANIZATION (1 OF 2) | SST36VF3203 | Block | Block Size | Address Range x8 | Address Range x16 | |-------------|-------|---------------|-------------------|-------------------| | | | 8 KW / 16 KB | 000000H-003FFFH | 000000H-001FFFH | | | BA0 | 24 KW / 48 KB | 004000H-00FFFFH | 002000H-007FFFH | | | BA1 | 32 KW / 64 KB | 010000H-01FFFFH | 008000H-00FFFFH | | | BA2 | 32 KW / 64 KB | 020000H-02FFFFH | 010000H-017FFFH | | | BA3 | 32 KW / 64 KB | 030000H-03FFFFH | 018000H-01FFFFH | | | BA4 | 32 KW / 64 KB | 04000H-04FFFH | 020000H-027FFFH | | | BA5 | 32 KW / 64 KB | 050000H-05FFFFH | 028000H-02FFFFH | | | BA6 | 32 KW / 64 KB | 060000H—06FFFFH | 030000H-037FFFH | | Bank 1 | BA7 | 32 KW / 64 KB | 070000H—07FFFFH | 038000H-03FFFFH | | Dank 1 | BA8 | 32 KW / 64 KB | 080000H—08FFFFH | 040000H-047FFFH | | | BA9 | 32 KW / 64 KB | 090000H—09FFFFH | 048000H-04FFFFH | | | BA10 | 32 KW / 64 KB | 0A0000H—0AFFFFH | 050000H-057FFFH | | | BA11 | 32 KW / 64 KB | 0B0000H—0BFFFFH | 058000H-05FFFFH | | | BA12 | 32 KW / 64 KB | 0C0000H—0CFFFFH | 060000H-067FFFH | | | BA13 | 32 KW / 64 KB | 0D0000H—0DFFFFH | 068000H-06FFFFH | | | BA14 | 32 KW / 64 KB | 0E0000H—0EFFFFH | 070000H-077FFFH | | | BA15 | 32 KW / 64 KB | 0F0000H—0FFFFH | 078000H-07FFFFH | | | BA16 | 32 KW / 64 KB | 100000H—10FFFFH | 080000H-087FFFH | | | BA17 | 32 KW / 64 KB | 110000H—11FFFFH | 088000H-08FFFFH | | | BA18 | 32 KW / 64 KB | 120000H—12FFFFH | 090000H-097FFFH | | | BA19 | 32 KW / 64 KB | 130000H—13FFFFH | 098000H-09FFFFH | | | BA20 | 32 KW / 64 KB | 140000H—14FFFFH | 0A0000H-0A7FFFH | | | BA21 | 32 KW / 64 KB | 150000H—15FFFFH | 0A8000H-0AFFFH | | | BA22 | 32 KW / 64 KB | 160000H—16FFFFH | 0B0000H-0B7FFFH | | | BA23 | 32 KW / 64 KB | 170000H—17FFFFH | 0B8000H-0BFFFFH | | | BA24 | 32 KW / 64 KB | 180000H—18FFFFH | 0C0000H-0C7FFFH | | | BA25 | 32 KW / 64 KB | 190000H—19FFFFH | 0C8000H-0CFFFFH | | | BA26 | 32 KW / 64 KB | 1A0000H—1AFFFFH | 0D0000H-0D7FFFH | | | BA27 | 32 KW / 64 KB | 1B0000H—1BFFFFH | 0D8000H-0DFFFFH | | | BA28 | 32 KW / 64 KB | 1C0000H—1CFFFFH | 0E0000H—0E7FFFH | | Bank 2 | BA29 | 32 KW / 64 KB | 1D0000H—1DFFFFH | 0E8000H—0EFFFFH | | | BA30 | 32 KW / 64 KB | 1E0000H—1EFFFFH | 0F0000H—0F7FFFH | | | BA31 | 32 KW / 64 KB | 1F0000H—1FFFFFH | 0F8000H—0FFFFFH | | | BA32 | 32 KW / 64 KB | 200000H—20FFFFH | 100000H—107FFFH | | | BA33 | 32 KW / 64 KB | 210000H—21FFFFH | 108000H—10FFFFH | | | BA34 | 32 KW / 64 KB | 220000H—22FFFFH | 110000H—117FFFH | | | BA35 | 32 KW / 64 KB | 230000H—23FFFFH | 118000H—11FFFFH | | | BA36 | 32 KW / 64 KB | 240000H—24FFFFH | 120000H—127FFFH | | | BA37 | 32 KW / 64 KB | 250000H—25FFFFH | 128000H—12FFFFH | | | BA38 | 32 KW / 64 KB | 260000H—26FFFFH | 130000H—137FFFH | | | BA39 | 32 KW / 64 KB | 270000H—27FFFH | 138000H—13FFFFH | | | BA40 | 32 KW / 64 KB | 280000H—28FFFFH | 140000H—147FFFH | | | BA41 | 32 KW / 64 KB | 290000H—29FFFFH | 148000H—14FFFFH | | | ודועם | 02 NW / 04 ND | 20000011 20111111 | 11000011 17111111 | TABLE 3: SST36VF3203, 2M x16 CSF BOTTOM DUAL-BANK MEMORY ORGANIZATION (CONTINUED) (2 OF 2) | SST36VF3203 | Block | Block Size | Address Range x8 | Address Range x16 | |-------------|-------|---------------|------------------|-------------------| | | BA42 | 32 KW / 64 KB | 2A0000H—2AFFFFH | 150000H—157FFFH | | | BA43 | 32 KW / 64 KB | 2B0000H-2BFFFFH | 158000H-15FFFFH | | | BA44 | 32 KW / 64 KB | 2C0000H-2CFFFFH | 160000H-167FFFH | | | BA45 | 32 KW / 64 KB | 2D0000H-2DFFFFH | 168000H-16FFFFH | | | BA46 | 32 KW / 64 KB | 2E0000H-2EFFFFH | 170000H-177FFFH | | | BA47 | 32 KW / 64 KB | 2F0000H-2FFFFH | 178000H-17FFFFH | | | BA48 | 32 KW / 64 KB | 300000H-30FFFFH | 180000H-187FFFH | | | BA49 | 32 KW / 64 KB | 310000H-31FFFFH | 188000H-18FFFFH | | | BA50 | 32 KW / 64 KB | 320000H-32FFFFH | 190000H-197FFFH | | | BA51 | 32 KW / 64 KB | 330000H-33FFFFH | 198000H-19FFFFH | | Bank 2 | BA52 | 32 KW / 64 KB | 340000H-34FFFFH | 1A0000H-1A7FFFH | | Dank 2 | BA53 | 32 KW / 64 KB | 350000H-35FFFFH | 1A8000H-1AFFFFH | | | BA54 | 32 KW / 64 KB | 360000H-36FFFFH | 1B0000H-1B7FFFH | | | BA55 | 32 KW / 64 KB | 370000H-37FFFFH | 1B8000H-1BFFFFH | | | BA56 | 32 KW / 64 KB | 380000H-38FFFFH | 1C0000H-1C7FFFH | | | BA57 | 32 KW / 64 KB | 390000H-39FFFFH | 1C8000H-1CFFFFH | | | BA58 | 32 KW / 64 KB | 3A0000H-3AFFFFH | 1D0000H-1D7FFFH | | | BA59 | 32 KW / 64 KB | 3B0000H-3BFFFFH | 1D8000H-1DFFFFH | | | BA60 | 32 KW / 64 KB | 3C0000H-3CFFFFH | 1E0000H-1E7FFFH | | | BA61 | 32 KW / 64 KB | 3D0000H-3DFFFFH | 1E8000H-1EFFFFH | | | BA62 | 32 KW / 64 KB | 3E0000H-3EFFFFH | 1F0000H-1F7FFFH | | | BA63 | 32 KW / 64 KB | 3F0000H-3FFFFH | 1F8000H-1FFFFFH | T3.0 1270 TABLE 4: SST36VF3204, 2M x16 CSF TOP DUAL-BANK MEMORY ORGANIZATION (1 OF 2) | SST36VF3204 | Block | Block Size | Address Range x8 | Address Range x16 | |-------------|-------|---------------|------------------|-------------------| | | BA0 | 32 KW / 64 KB | 000000H-00FFFFH | 000000H-007FFFH | | | BA1 | 32 KW / 64 KB | 010000H-01FFFFH | 008000H-00FFFFH | | | BA2 | 32 KW / 64 KB | 020000H-02FFFFH | 010000H-017FFFH | | | BA3 | 32 KW / 64 KB | 030000H-03FFFFH | 018000H-01FFFFH | | | BA4 | 32 KW / 64 KB | 040000H-04FFFFH | 020000H-027FFFH | | | BA5 | 32 KW / 64 KB | 050000H-05FFFFH | 028000H-02FFFFH | | | BA6 | 32 KW / 64 KB | 060000H—06FFFH | 030000H-037FFFH | | | BA7 | 32 KW / 64 KB | 070000H—07FFFFH | 038000H-03FFFFH | | | BA8 | 32 KW / 64 KB | 080000H—08FFFFH | 040000H-047FFFH | | | BA9 | 32 KW / 64 KB | 090000H—09FFFFH | 048000H-04FFFFH | | | BA10 | 32 KW / 64 KB | 0A0000H—0AFFFFH | 050000H-057FFFH | | | BA11 | 32 KW / 64 KB | 0B0000H—0BFFFFH | 058000H-05FFFFH | | | BA12 | 32 KW / 64 KB | 0C0000H—0CFFFFH | 060000H-067FFFH | | | BA13 | 32 KW / 64 KB | 0D0000H—0DFFFFH | 068000H-06FFFFH | | | BA14 | 32 KW / 64 KB | 0E0000H—0EFFFFH | 070000H-077FFFH | | | BA15 | 32 KW / 64 KB | 0F0000H—0FFFFH | 078000H-07FFFFH | | | BA16 | 32 KW / 64 KB | 100000H—10FFFFH | 080000H-087FFFH | | | BA17 | 32 KW / 64 KB | 110000H—11FFFFH | 088000H-08FFFFH | | | BA18 | 32 KW / 64 KB | 120000H—12FFFFH | 090000H-097FFFH | | | BA19 | 32 KW / 64 KB | 130000H—13FFFFH | 098000H-09FFFFH | | | BA20 | 32 KW / 64 KB | 140000H—14FFFFH | 0A0000H-0A7FFFH | | Bank 2 | BA21 | 32 KW / 64 KB | 150000H—15FFFFH | 0A8000H-0AFFFFH | | | BA22 | 32 KW / 64 KB | 160000H—16FFFFH | 0B0000H-0B7FFFH | | | BA23 | 32 KW / 64 KB | 170000H—17FFFFH | 0B8000H-0BFFFFH | | | BA24 | 32 KW / 64 KB | 180000H—18FFFFH | 0C0000H-0C7FFFH | | | BA25 | 32 KW / 64 KB | 190000H—19FFFFH | 0C8000H-0CFFFFH | | | BA26 | 32 KW / 64 KB | 1A0000H—1AFFFFH | 0D0000H-0D7FFFH | | | BA27 | 32 KW / 64 KB | 1B0000H—1BFFFFH | 0D8000H-0DFFFFH | | | BA28 | 32 KW / 64 KB | 1C0000H—1CFFFFH | 0E0000H-0E7FFFH | | | BA29 | 32 KW / 64 KB | 1D0000H—1DFFFFH | 0E8000H-0EFFFFH | | | BA30 | 32 KW / 64 KB | 1E0000H—1EFFFFH | 0F0000H-0F7FFFH | | | BA31 | 32 KW / 64 KB | 1F0000H—1FFFFFH | 0F8000H-0FFFFFH | | | BA32 | 32 KW / 64 KB | 200000H—20FFFFH | 100000H-107FFFH | | | BA33 | 32 KW / 64 KB | 210000H—21FFFFH | 108000H-10FFFFH | | | BA34 | 32 KW / 64 KB | 220000H—22FFFFH | 110000H-117FFFH | | | BA35 | 32 KW / 64 KB | 230000H—23FFFFH | 118000H-11FFFFH | | | BA36 | 32 KW / 64 KB | 240000H—24FFFFH | 120000H-127FFFH | | | BA37 | 32 KW / 64 KB | 250000H—25FFFFH | 128000H-12FFFFH | | | BA38 | 32 KW / 64 KB | 260000H—26FFFFH | 130000H-137FFFH | | | BA39 | 32 KW / 64 KB | 270000H—27FFFFH | 138000H-13FFFFH | | | BA40 | 32 KW / 64 KB | 280000H—28FFFFH | 140000H-147FFFH | | | BA41 | 32 KW / 64 KB | 290000H—29FFFFH | 148000H-14FFFFH | | | BA42 | 32 KW / 64 KB | 2A0000H—2AFFFFH | 150000H-157FFFH | TABLE 4: SST36VF3204, 2M x16 CSF TOP DUAL-BANK MEMORY ORGANIZATION (CONTINUED) (2 OF 2) | SST36VF3204 | Block | Block Size | Address Range x8 | Address Range x16 | |-------------|-------|---------------|------------------|-------------------| | | BA43 | 32 KW / 64 KB | 2B0000H-2BFFFFH | 158000H-15FFFFH | | | BA44 | 32 KW / 64 KB | 2C0000H-2CFFFFH | 160000H-167FFFH | | Bank 2 | BA45 | 32 KW / 64 KB | 2D0000H-2DFFFFH | 168000H-16FFFFH | | | BA46 | 32 KW / 64 KB | 2E0000H-2EFFFFH | 170000H-177FFFH | | | BA47 | 32 KW / 64 KB | 2F0000H-2FFFFFH | 178000H-17FFFFH | | | BA48 | 32 KW / 64 KB | 300000H-30FFFFH | 180000H-187FFFH | | | BA49 | 32 KW / 64 KB | 310000H-31FFFFH | 188000H-18FFFFH | | | BA50 | 32 KW / 64 KB | 320000H-32FFFFH | 190000H-197FFFH | | | BA51 | 32 KW / 64 KB | 330000H-33FFFFH | 198000H-19FFFFH | | | BA52 | 32 KW / 64 KB | 340000H-34FFFFH | 1A0000H-1A7FFFH | | | BA53 | 32 KW / 64 KB | 350000H-35FFFFH | 1A8000H-1AFFFFH | | | BA54 | 32 KW / 64 KB |
360000H-36FFFFH | 1B0000H-1B7FFFH | | | BA55 | 32 KW / 64 KB | 370000H-37FFFFH | 1B8000H-1BFFFFH | | Bank 1 | BA56 | 32 KW / 64 KB | 380000H-38FFFFH | 1C0000H-1C7FFFH | | | BA57 | 32 KW / 64 KB | 390000H-39FFFFH | 1C8000H-1CFFFFH | | | BA58 | 32 KW / 64 KB | 3A0000H-3AFFFFH | 1D0000H-1D7FFFH | | | BA59 | 32 KW / 64 KB | 3B0000H-3BFFFFH | 1D8000H-1DFFFFH | | | BA60 | 32 KW / 64 KB | 3C0000H-3CFFFFH | 1E0000H-1E7FFFH | | | BA61 | 32 KW / 64 KB | 3D0000H-3DFFFFH | 1E8000H-1EFFFFH | | | BA62 | 32 KW / 64 KB | 3E0000H-3EFFFFH | 1F0000H-1F7FFFH | | | BA63 | 24 KW / 48 KB | 3F0000H-3FBFFFH | 1F8000H-1FDFFFH | | | DAGS | 8 KW / 16 KB | 3FC000H-3FFFFH | 1FE000H-1FFFFFH | T4.0 1270 FIGURE 1: PIN ASSIGNMENTS FOR 48-BALL TFBGA (6MM X 8MM) FIGURE 2: PIN ASSIGNMENTS FOR 48-LEAD TSOP (12MM X 20MM) #### **TABLE** 5: PIN DESCRIPTION | Symbol | Name | Functions | |-----------------------------------|-----------------------------------|---| | A ₂₀ -A ₀ | Address Inputs | To provide memory addresses. During Sector-Erase and Hardware Sector Protection, A_{20} - A_{11} address lines will select the sector. During Block-Erase A_{20} - A_{15} address lines will select the block. | | DQ ₁₄ -DQ ₀ | Data Input/Output | To output data during Read cycles and receive input data during Write cycles Data is internally latched during a Write cycle. The outputs are in tri-state when OE# or CE# is high. | | DQ ₁₅ /A ₋₁ | Data Input/Output and LBS Address | DQ_{15} is used as data I/O pin when in x16 mode (BYTE# = "1")
A ₋₁ is used as the LSB address pin when in x8 mode (BYTE# = "0") | | CE# | Chip Enable | To activate the device when CE# is low. | | OE# | Output Enable | To gate the data output buffers | | WE# | Write Enable | To control the Write operations | | RST# | Hardware Reset | To reset and return the device to Read mode | | RY/BY# | Ready/Busy# | To output the status of a Program or Erase operation RY/BY# is a open drain output, so a $10K\Omega$ - $100K\Omega$ pull-up resistor is required to allow RY/BY# to transition high indicating the device is ready to read. | | WP# | Write Protect | To protect and unprotect top or bottom 8 KWord (4 outermost sectors) from Erase or Program operation. | | BYTE# | Word/Byte Configuration | To select 8-bit or 16-bit mode. | | V_{DD} | Power Supply | To provide 2.7-3.6V power supply voltage | | V_{SS} | Ground | | | NC | No Connection | Unconnected pins | T5.0 1270 **TABLE 6: OPERATION MODES SELECTION** | | | | | | | DQ ₁₅ -DQ ₈ | | | |---------------------------|-----------------|-----------------|----------|-----------------|----------------------------------|-----------------------------------|-------------------------------|---| | Mode | CE# | OE# | WE# | RST# | DQ ₇ -DQ ₀ | BYTE# = V _{IH} | BYTE# = V _{IL} | Address | | Read | V_{IL} | V_{IL} | V_{IH} | V _{IH} | D _{OUT} | D _{OUT} | DQ_{14} - DQ_{8} = High Z | A _{IN} | | Program | V_{IL} | V_{IH} | V_{IL} | V_{IH} | D _{IN} | D _{IN} | $DQ_{15} = A_{-1}$ | A _{IN} | | Erase | V _{IL} | V _{IH} | V_{IL} | V_{IH} | X ¹ | Х | High Z | Sector or Block
address,
555H for
Chip-Erase | | Standby | V_{IHC} | Х | Χ | V_{IHC} | High Z | High Z | High Z | X | | Write Inhibit | Х | V_{IL} | Χ | V_{IH} | High Z / D _{OUT} | High Z / D _{OUT} | High Z | X | | | Х | Х | V_{IH} | V_{IH} | High Z / D _{OUT} | High Z / D _{OUT} | High Z | X | | Product
Identification | | | | | | | | | | Software
Mode | V_{IL} | V _{IL} | V_{IH} | V_{IH} | Manufacturer's ID
(BFH) | Manufacturer's ID (00H) | High Z | See Table 7 | | | | | | | Device ID ² | Device ID ² | High Z | | | Reset | Χ | Χ | Χ | V_{IL} | High Z | High Z | High Z | X | T6.1 1270 ^{1.} X can be V_{IL} or V_{IH} , but no other value. 2. Device ID = SST36VF3203 = 7354H, SST36VF3204 = 7353H TABLE 7: SOFTWARE COMMAND SEQUENCE | Command
Sequence | 1st Bus
Write Cycle | | 2nd Bus
Write Cycle | | 3rd Bus
Write Cycle | | 4th Bus
Write Cycle | | 5th Bus
Write Cycle | | 6th Bus
Write Cycle | | |--|-------------------------------------|-------------------|------------------------|-------------------|--------------------------------------|-------------------|------------------------|-------------------|------------------------|-------------------|------------------------------|-------------------| | | Addr ¹ | Data ² | | Word-Program | 555H | AAH | 2AAH | 55H | 555H | A0H | WA ³ | Data | | | | | | Sector-Erase | 555H | AAH | 2AAH | 55H | 555H | 80H | 555H | AAH | 2AAH | 55H | SA _X ⁴ | 50H | | Block-Erase | 555H | AAH | 2AAH | 55H | 555H | 80H | 555H | AAH | 2AAH | 55H | BA _X ⁴ | 30H | | Chip-Erase | 555H | AAH | 2AAH | 55H | 555H | 80H | 555H | AAH | 2AAH | 55H | 555H | 10H | | Erase-Suspend | XXXH | ВОН | | | | | | | | | | | | Erase-Resume | XXXH | 30H | | | | | | | | | | | | Query Sec ID ⁵ | 555H | AAH | 2AAH | 55H | 555H | 88H | | | | | | | | User Security ID
Word-Program | 555H | AAH | 2AAH | 55H | 555H | A5H | SIWA ⁶ | Data | | | | | | User Security ID
Program Lock-out ⁷ | 555H | AAH | 2AAH | 55H | 555H | 85H | XXXH | 0000H | | | | | | Software ID Entry ^{8,9} | 555H | AAH | 2AAH | 55H | BK _X ⁴
555H | 90H | | | | | | | | CFI Query Entry ⁹ | 555H | AAH | 2AAH | 55H | BK _X ⁴
555H | 98H | | | | | | | | CFI Query Entry ⁹ | BK _X ⁴
55H | 98H | | | | | | | | | | | | Software ID Exit/
CFI Exit/
Sec ID Exit ^{10,11} | 555H | AAH | 2AAH | 55H | 555H | F0H | | | | | | | | Software ID Exit/
CFI Exit/
Sec ID Exit ^{10,11} | XXH | F0H | | | | | | | | | | | T7.1 1270 - 1. Address format A₁₀-A₀ (Hex), Addresses A₂₀-A₁₁ can be V_{IL} or V_{IH}, but no other value (unless otherwise stated), for the command sequence when in x16 mode. - When in x8 mode, Addresses A_{20} - A_{12} , Address A_{-1} , and DQ_{14} - DQ_{8} can be V_{IL} or V_{IH} , but no other value (unless otherwise stated), for the command sequence. - 2. DQ_{15} - DQ_{8} can be V_{IL} or V_{IH} , but no other value, for the command sequence - 3. WA = Program word address - 4. SA_X for Sector-Erase; uses A_{20} - A_{11} address lines - BA_X for Block-Erase; uses A_{20} - A_{15} address lines - BK_X for Bank Address; uses $\mathsf{A}_{20}\text{-}\mathsf{A}_{18}$ address lines - 5. For SST36VF3203 the Security ID Address Range is: (x16 mode) = 100000H to 100087H,(x8 mode) = 100000H to 10010FH SST ID is read at Address Range(x16 mode) = 100000H to 100007H (x8 mode) = 100000H to 10000FH User ID is read at Address Range(x16 mode) = 100008H to 100087H (x8 mode) = 100010H to 10010FH Lock status is read at Address 1000FFH (x16) or 1001FFH (x8). Unlocked: DQ3 = 1 / Locked: DQ3 = 0. For SST36VF3204 the Security ID Address Range is:(x16 mode) = 000000H to 000087H, (x8 mode) = 000000H to 00010FH SST ID is read at Address Range (x16 mode) = 000000 H to 000007 H (x8 mode) = 000000 H to 000007 H User ID is read at Address Range (x16 mode) = 000008H to 000087H (x8 mode) = 000010H to 00010FH Lock Status is read at Address 0000FFH (x16) or 0001FFH (x8). Unlocked: DQ3 = 1 / Locked: DQ3 = 0 6. SIWA = Valid Word addresses for user Sec ID For SST36VF3203 User ID valid Address Range is (x16 mode) = 100008H-100087H (x8 mode) = 100010H-10010FH. For SST36VF3204 User ID valid Address Range is (x16 mode) = 000008H-000087H (x8 mode) = 000010H-00010FH. All 4 cycles of User Security ID Program and Program Lock-out must be completed before going back to Read-Array mode. - 7. The User Security ID Program Lock-out command must be executed in x16 mode (BYTE#=VIH). - 8. The device does not remain in Software Product Identification mode if powered down. - 9. A_{20} , A_{19} , and A_{18} = BK_X (Bank Address): address of the bank that is switched to Software ID/CFI Mode With A_{17} - A_{1} = 0;SST Manufacturer's ID = 00BFH, is read with A_{0} = 0 SST36VF3203 Device ID = 7354H, is read with A_0 = 1 SST36VF3204 Device ID = 7353H, is read with $A_0 = 1$ - 10. Both Software ID Exit operations are equivalent - 11. If users never lock after programming, User Sec ID can be programmed over the previously unprogrammed bits (data=1) using the User Sec ID mode again (the programmed "0" bits cannot be reversed to "1"). TABLE 8: CFI QUERY IDENTIFICATION STRING¹ | Address | Address | Data? | Paraviration | |----------|---------|-------------------|---| | x16 Mode | x8 Mode | Data ² | Description | | 10H | 20H | 0051H | Query Unique ASCII string "QRY" | | 11H | 22H | 0052H | | | 12H | 24H | 0059H | | | 13H | 26H | 0002H | Primary OEM command set | | 14H | 28H | 0000H | | | 15H | 2AH | 0000H | Address for Primary Extended Table | | 16H | 2CH | 0000H | | | 17H | 2EH | 0000H | Alternate OEM command set (00H = none exists) | | 18H | 30H | 0000H | | | 19H | 32H | 0000H | Address for Alternate OEM extended Table (00H = none exits) | | 1AH | 34H | 0000H | | T8.1 1270 TABLE 9: SYSTEM INTERFACE INFORMATION | Address
x16 Mode | Address
x8 Mode | Data ¹ | Description | |---------------------|--------------------|-------------------|--| | 1BH | 36H | 0027H | V _{DD} Min (Program/Erase) | | | | | DQ ₇ -DQ ₄ : Volts, DQ ₃ -DQ ₀ : 100 millivolts | | 1CH | 38H | 0036H | V _{DD} Max (Program/Erase) | | | | | DQ ₇ -DQ ₄ : Volts, DQ ₃ -DQ ₀ : 100 millivolts | | 1DH | 3AH | 0000H | V_{PP} min (00H = no V_{PP} pin) | | 1EH | 3CH | 0000H | V_{PP} max (00H = no V_{PP} pin) | | 1FH | 3EH | 0004H | Typical time out for Program
2^{N} µs (2^{4} = 16 µs) | | 20H | 40H | 0000H | Typical time out for min size buffer program 2 ^N µs (00H = not supported) | | 21H | 42H | 0004H | Typical time out for individual Sector/Block-Erase 2 ^N ms (2 ⁴ = 16 ms) | | 22H | 44H | 0006H | Typical time out for Chip-Erase 2 ^N ms (2 ⁶ = 64 ms) | | 23H | 46H | 0001H | Maximum time out for Program 2^N times typical $(2^1 \times 2^4 = 32 \mu s)$ | | 24H | 48H | 0000H | Maximum time out for buffer program 2 ^N times typical | | 25H | 4AH | 0001H | Maximum time out for individual Sector-/Block-Erase 2 ^N times typical (2 ¹ x 2 ⁴ = 32 ms) | | 26H | 4CH | 0001H | Maximum time out for Chip-Erase 2 ^N times typical (2 ¹ x 2 ⁶ = 128 ms) | T9.0 1270 ^{1.} Refer to CFI publication 100 for more details. ^{2.} In x8 mode, only the lower byte of data is output. ^{1.} In x8 mode, only the lower byte of data is output. # 32 Mbit Concurrent SuperFlash SST36VF3203 / SST36VF3204 Data Sheet **TABLE 10: DEVICE GEOMETRY INFORMATION** | Address
x16 Mode | Address
x8 Mode | Data ¹ | Description | |---------------------|--------------------|-------------------|--| | 27H | 4EH | 0016H | Device size = 2^{N} Bytes (16H = 22; 2^{22} = 4 MByte) | | 28H | 50H | 0002H | Flash Device Interface description; 0002H = x8/x16 asynchronous interface | | 29H | 52H | 0000H | | | 2AH | 54H | 0000H | Maximum number of bytes in multi-byte write = 2 ^N (00H = not supported) | | 2BH | 56H | 0000H | | | 2CH | 58H | 0002H | Number of Erase Sector/Block sizes supported by device | | 2DH | 5AH | 003FH | Block Information (y + 1 = Number of blocks; z x 256B = block size) | | 2EH | 5CH | 0000H | y = 63 + 1 = 64 blocks (003FH = 63) | | 2FH | 5EH | 0000H | | | 30H | 60H | 0001H | z = 256 x 256 Bytes = 64 KByte/block (0100H = 256) | | 31H | 62H | 00FFH | Sector Information (y + 1 = Number of sectors; z x 256B = sector size) | | 32H | 64H | 0003H | y = 1023 + 1 = 1024 sectors (03FFH = 1023) | | 33H | 66H | 0010H | | | 34H | 68H | 0000H | z = 16 x 256 Bytes = 4 KByte/sector (0010H = 16) | 1. In x8 mode, only the lower byte of data is output. T10.2 1270 **Absolute Maximum Stress Ratings** (Applied conditions greater than those listed under "Absolute Maximum Stress Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these conditions or conditions greater than those defined in the operational sections of this data sheet is not implied. Exposure to absolute maximum stress rating conditions may affect device reliability.) | Temperature Under Bias | 55°C to +125°C | |--|-------------------------------| | Storage Temperature | 65°C to +150°C | | D. C. Voltage on Any Pin to Ground Potential | 0.5V to V_{DD} +0.5V | | Transient Voltage (<20 ns) on Any Pin to Ground Potential | 2.0V to V _{DD} +2.0V | | Package Power Dissipation Capability (T _A = 25°C) | 1.0W | | Surface Mount Solder Reflow Temperature | 260°C for 10 seconds | | Output Short Circuit Current | 50 mA | #### **OPERATING RANGE** | Range | Ambient Temp | V_{DD} | |------------|----------------|----------| | Extended | -20°C to +85°C | 2.7-3.6V | | Industrial | -40°C to +85°C | 2.7-3.6V | #### **AC CONDITIONS OF TEST** | Input Rise/Fall Time | 5 ns | |-----------------------|---------------| | Output Load | $C_L = 30 pF$ | | See Figures 17 and 18 | | TABLE 11: DC OPERATING CHARACTERISTICS V_{DD} = 2.7-3.6V | | | | | Limits | | | |------------------------------|---|-------|---------------|----------------------|-------|---| | Symbol | Parameter | Freq | Min | Max | Units | Test Conditions | | I _{DD} ¹ | Active V _{DD} Current | | | | | | | | Read | 5 MHz | | 15 | mA | CE#=V _{IL.} WE#=OE#=V _{IH} | | | | 1 MHz | | 4 | mA | | | | Program and Erase | | | 30 | mA | CE#=WE#=V _{IL} , OE#=V _{IH} | | | Concurrent Read/Write | 5 MHz | | 45 | mA | CE#=V _{IL,} OE#=V _{IH} | | | | 1 MHz | | 35 | mA | | | I_{SB} | Standby V _{DD} Current | | | 20 | μΑ | CE#, RST#=V _{DD} ±0.3V | | I _{ALP} | Auto Low Power V _{DD} Current | | | 20 | μΑ | CE#=0.1V, V _{DD} =V _{DD} Max
WE#=V _{DD} -0.1V
Address inputs=0.1V or V _{DD} -0.1V | | I _{RT} | Reset V _{DD} Current | | | 20 | μΑ | RST#=GND | | I _{LI} | Input Leakage Current | | | 1 | μΑ | V_{IN} =GND to V_{DD} , V_{DD} = V_{DD} Max | | I _{LIW} | Input Leakage Current on WP# pin and RST# pin | | | 10 | μΑ | WP#=GND to V_{DD} , V_{DD} = V_{DD} Max RST#=GND to V_{DD} , V_{DD} = V_{DD} Max | | I_{LO} | Output Leakage Current | | | 1 | μΑ | $V_{OUT} = GND$ to V_{DD} , $V_{DD} = V_{DD}$ Max | | V_{IL} | Input Low Voltage | | | 0.8 | V | V _{DD} =V _{DD} Min | | V_{ILC} | Input Low Voltage (CMOS) | | | 0.3 | V | V _{DD} =V _{DD} Max | | V_{IH} | Input High Voltage | | $0.7\ V_{DD}$ | V _{DD} +0.3 | V | V _{DD} =V _{DD} Max | | V_{IHC} | Input High Voltage (CMOS) | | V_{DD} -0.3 | V _{DD} +0.3 | V | V _{DD} =V _{DD} Max | | V _{OL} | Output Low Voltage | | <u></u> | 0.2 | V | I _{OL} =100 μA, V _{DD} =V _{DD} Min | | V_{OH} | Output High Voltage | | V_{DD} -0.2 | | V | I _{OH} =-100 μA, V _{DD} =V _{DD} Min | ^{1.} Address input = V_{ILT}/V_{IHT} , $V_{DD}=V_{DD}$ Max (See Figure 17) #### TABLE 12: RECOMMENDED SYSTEM POWER-UP TIMINGS | Symbol | Parameter | Minimum | Units | |------------------------------------|-----------------------------|---------|-------| | T _{PU-READ} ¹ | Power-up to Read Operation | 100 | μs | | T _{PU-WRITE} ¹ | Power-up to Write Operation | 100 | μs | T12.0 1270 T11.1 1270 # **TABLE 13: CAPACITANCE** (T_A = 25°C, f=1 Mhz, other pins open) | Parameter | Description | Test Condition | Maximum | |-------------------------------|---------------------|----------------|---------| | C _{I/O} ¹ | I/O Pin Capacitance | $V_{I/O} = 0V$ | 10 pF | | C _{IN} ¹ | Input Capacitance | $V_{IN} = 0V$ | 10 pF | T13.0 1270 #### **TABLE 14: RELIABILITY CHARACTERISTICS** | Symbol | Parameter | Minimum Specification | Units | Test Method | |-------------------------------|----------------|-----------------------|--------|---------------------| | N _{END} ¹ | Endurance | 10,000 | Cycles | JEDEC Standard A117 | | T _{DR} ¹ | Data Retention | 100 | Years | JEDEC Standard A103 | | I _{LTH} ¹ | Latch Up | 100 + I _{DD} | mA | JEDEC Standard 78 | T14.0 1270 ^{1.} This parameter is measured only for initial qualification and after a design or process change that could affect this parameter. ^{1.} This parameter is measured only for initial qualification and after a design or process change that could affect this parameter. ^{1.} This parameter is measured only for initial qualification and after a design or process change that could affect this parameter. #### **AC CHARACTERISTICS** TABLE 15: READ CYCLE TIMING PARAMETERS V_{DD} = 2.7-3.6V | Symbol | Parameter | Min | Max | Units | |--------------------------------|---------------------------------|-----|-----|-------| | T _{RC} | Read Cycle Time | 70 | | ns | | T _{CE} | Chip Enable Access Time | | 70 | ns | | T _{AA} | Address Access Time | | 70 | ns | | T _{OE} | Output Enable Access Time | | 35 | ns | | T _{CLZ} ¹ | CE# Low to Active Output | 0 | | ns | | T _{OLZ} ¹ | OE# Low to Active Output | 0 | | ns | | T _{CHZ} ¹ | CE# High to High-Z Output | | 16 | ns | | T _{OHZ} ¹ | OE# High to High-Z Output | | 16 | ns | | T _{OH} ¹ | Output Hold from Address Change | 0 | | ns | | T _{RP} ¹ | RST# Pulse Width | 500 | | ns | | T _{RHR} ¹ | RST# High before Read | 50 | | ns | | T _{RY} ^{1,2} | RST# Pin Low to Read Mode | | 20 | μs | T15.1 1270 TABLE 16: PROGRAM/ERASE CYCLE TIMING PARAMETERS | Symbol | Parameter | Min | Max | Units | |--------------------------------|----------------------------------|-----|-----|-------| | T _{BP} | Program Time | | 10 | μs | | T _{AS} | Address Setup Time | 0 | | ns | | T _{AH} | Address Hold Time | 40 | | ns | | T _{CS} | WE# and CE# Setup Time | 0 | | ns | | T _{CH} | WE# and CE# Hold Time | 0 | | ns | | T _{OES} | OE# High Setup Time | 0 | | ns | | T _{OEH} | OE# High Hold Time | 10 | | ns | | T _{CP} | CE# Pulse Width | 40 | | ns | | T _{WP} | WE# Pulse Width | 40 | | ns | | T _{WPH} ¹ | WE# Pulse Width High | 30 | | ns | | T _{CPH} ¹ | CE# Pulse Width High | 30 | | ns | | T _{DS} | Data Setup Time | 30 | | ns | | T _{DH} ¹ | Data Hold Time | 0 | | ns | | T _{IDA} ¹ | Software ID Access and Exit Time | | 150 | ns | | T _{SE} | Sector-Erase | | 25 | ms | | T _{BE} | Block-Erase | | 25 | ms | | T _{SCE} | Chip-Erase | | 50 | ms | | T _{ES} | Erase-Suspend Latency | | 10 | μs | | T _{BY} ^{1,2} | RY/BY# Delay Time | 90 | | ns | | T _{BR} ¹ | Bus Recovery Time | | 0 | μs | T16.1 1270 ©2005 Silicon Storage Technology, Inc. S71270-03-000 7/06 ^{1.} This parameter is measured only for initial qualification and after a design or process change that could affect this parameter. ^{2.} This parameter applies to Sector-Erase, Block-Erase, and Program operations. This parameter does not apply to Chip-Erase operations. ^{1.} This parameter is measured only for initial qualification and after a design or process change that could affect this parameter. This parameter applies to Sector-Erase, Block-Erase, and Program operations. This parameter does not apply to Chip-Erase operations. FIGURE 3: READ CYCLE TIMING DIAGRAM FIGURE 4: WE# CONTROLLED PROGRAM CYCLE TIMING DIAGRAM Note: X can be VIL or VIH, but no other value. FIGURE 5: CE# CONTROLLED PROGRAM CYCLE TIMING DIAGRAM FIGURE 6: DATA# POLLING TIMING DIAGRAM ©2005 Silicon Storage Technology, Inc. S71270-03-000 7/06 FIGURE 7: TOGGLE BIT TIMING DIAGRAM Note: This device also supports CE# controlled Chip-Erase operation. The WE# and CE# signals are interchageable as long as minimum
timings are met. (See Table 16) X can be VIL or VIH, but no other value. FIGURE 8: WE# CONTROLLED CHIP-ERASE TIMING DIAGRAM This device also supports CE# controlled Block-Erase operation. The WE# and CE# signals are interchageable as long as minimum timings are met. (See Table 16) BAX = Block Address X can be VIL or VIH, but no other value. FIGURE 9: WE# CONTROLLED BLOCK-ERASE TIMING DIAGRAM FIGURE 10: WE# CONTROLLED SECTOR-ERASE TIMING DIAGRAM X can be V_{IL} or V_{IH}, but no other value. SA_X = Sector Address ©2005 Silicon Storage Technology, Inc. S71270-03-000 7/06 22 Device ID = 7354H for SST36VF3203 and 7353H for SST36VF3204 Note: X can be V_{IL} or V_{IH} , but no other value. FIGURE 11: SOFTWARE ID ENTRY AND READ Note: X can be $V_{\text{\scriptsize IL}}$ or $V_{\text{\scriptsize IH}},$ but no other value. FIGURE 12: CFI ENTRY AND READ Note: X can be VIL or VIH, but no other value. FIGURE 13: SOFTWARE ID EXIT/CFI EXIT Note: A_{MS} = Most significant address $A_{MS} = A_{20}$ for SST39VF3203/3204 WP# must be held in proper logic state (V_{IL} or V_{IH}) 1 μs prior to and 1 μs after the command sequence X can be V_{IL} or V_{IH}, but no other value. FIGURE 14: SEC ID ENTRY FIGURE 15: RST# TIMING DIAGRAM (WHEN NO INTERNAL OPERATION IS IN PROGRESS) FIGURE 16: RST# TIMING DIAGRAM (DURING SECTOR- OR BLOCK-ERASE OPERATION) AC test inputs are driven at V_{IHT} (0.9 V_{DD}) for a logic "1" and V_{ILT} (0.1 V_{DD}) for a logic "0". Measurement reference points for inputs and outputs are V_{IT} (0.5 V_{DD}) and V_{OT} (0.5 V_{DD}). Input rise and fall times (10% \leftrightarrow 90%) are <5 ns. $\begin{aligned} \textbf{Note:} & \ V_{\text{IT}} - V_{\text{INPUT}} \ \text{Test} \\ & \ V_{\text{OT}} - V_{\text{OUTPUT}} \ \text{Test} \\ & \ V_{\text{IHT}} - V_{\text{INPUT}} \ \text{HIGH Test} \\ & \ V_{\text{ILT}} - V_{\text{INPUT}} \ \text{LOW Test} \end{aligned}$ FIGURE 17: AC INPUT/OUTPUT REFERENCE WAVEFORMS FIGURE 18: A TEST LOAD EXAMPLE FIGURE 19: WORD-PROGRAM ALGORITHM FIGURE 20: WAIT OPTIONS FIGURE 21: SOFTWARE PRODUCT ID/CFI/SEC ID ENTRY COMMAND FLOWCHARTS FIGURE 22: ERASE COMMAND SEQUENCE #### PRODUCT ORDERING INFORMATION Environmental suffix "E" denotes non-Pb solder. SST non-Pb solder devices are "RoHS Compliant". #### Valid combinations for SST36VF3203 SST36VF3203-70-4E-B3KE SST36VF3203-70-4E-EKE SST36VF3203-70-4I-B3KE SST36VF3203-70-4I-EKE ### Valid combinations for SST36VF3204 SST36VF3204-70-4E-B3KE SST36VF3204-70-4E-EKE SST36VF3204-70-4I-B3KE SST36VF3204-70-4I-EKE **Note:** Valid combinations are those products in mass production or will be in mass production. Consult your SST sales representative to confirm availability of valid combinations and to determine availability of new combinations. #### **PACKAGING DIAGRAMS** 48-BALL THIN-PROFILE, FINE-PITCH BALL GRID ARRAY (TFBGA) 6MM X 8MM **SST PACKAGE CODE: B3K** 48-LEAD THIN SMALL OUTLINE PACKAGE (TSOP) 12MM X 20MM SST PACKAGE CODE: EK #### **TABLE 17: REVISION HISTORY** | Number | Description | Date | |--------|--|----------| | 00 | Initial release of data sheet | Feb 2005 | | 01 | Updated "Erase-Suspend/Erase-Resume Operations" on page 3 | Sep 2005 | | | Updated footnote 5 and added footnote 7 to Table 7 on page 13 | | | | Updated CFI Query Identification in Table 8 on page 14 | | | | Updated Device Geometry Information in Table 10 on page 15 | | | | Updated T_{ES} parameter from 20 μs to 10 μs in Table 16 on page 18 | | | | In "Product Ordering Information" on page 31 | | | | Removed all MPNs for packages containing Pb (B3K/EK) Removed all commercial temperature MPNs Added extended temperature MPNs for all devices | | | 02 | Removed Industrial Grade reference | May 2006 | | | Changed to Data Sheet | | | | Removed non-Pb reference | | | | Updated Bank information | | | | Changes TOE from 30ns to 35ns, Table 15, page 18 | | | 03 | Re-added Industrial Grade reference | Jul 2006 | Silicon Storage Technology, Inc. • 1171 Sonora Court • Sunnyvale, CA 94086 • Telephone 408-735-9110 • Fax 408-735-9036 www.SuperFlash.com or www.sst.com