APCI-IB40

Introduction

The APCI-IB40 is a 32-bit PCI Local Bus I/O board which provides 40 digital I/O lines and three timer/counters. Each I/O line can be configured as either an input or an output. The board also has the facility to define the power-up/reset state of those lines to be used as outputs. The I/O connector conforms to Arcoms standard signal conditioning system (SCS) and may be used to drive a range of Signal Conditioning Boards (SCB), contact Arcom for more details.

Features

- 40 Digital I/O lines.
- Open collector output's can sink 24mA @ 0.45V, Sources from 4K7 Ohm at +5V.
- Bit programmable for input or output.
- 8254 Compatible Timer/Counter (Three 16-bit Counters).
- Board Access LED (Red).
- User programmable LED (Green).
- 32-Bit PCI 2.1 Compliant Interface.
- EEPROM for PCI Interface configuration.
- 50 Way D-Type I/O Connector (Configured for Arcom Signal Conditioning System).
- Operating Temperature range o to +70 C.
- Power Consumption 220mA @ +5V.
- MTBF 370,030 hours (using generic figures from MIL-HDBK-217F at ground benign).

Getting Started

- Power down your PC system.
- Install the board in a spare PCI Slot (See Installation for CE compliance).
- Power up system with MSDOS.
- Run APCI.EXE (supplied on the utility disk), this will search for the board and check I/O access. If this fails, check board is correctly located.

Warning

This board contains **CMOS** devices which may be damaged by static electricity. Please ensure antistatic precautions are taken at all times when handling this board. If for any reason this board is returned to Arcom Control Systems, please ensure it is adequately packed to prevent damage during shipment.

Operation

PCI Bus Interface

The PCI bus is a high speed alternative to ISA bus, it has been designed to overcome some of the limitations of ISA bus, and provide faster throughput for I/O intensive peripheral devices. PCI bus also supports Plug and Play configuration which allows the system software to allocate resources during initialisation helping to overcome resource conflicts, which might exist in a system.

The APCI-IB40 uses a single chip PCI bus slave controller which is designed and manufactured by PLX Technology. This device has been designed to fully support the PCI 2.1 specification and provides plug and play software capabilities. During power-up initialisation the PCI BIOS will detect the card and assign a unique I/O address location and interrupt line. This ensures that there are no resource conflicts on the PCI bus. Multiple cards are supported through this mechanism without the need for address decode links.

The PLX device contains a standard type ooH configuration space header. The table below shows the registers within this header which are required for configuration of the APCI-IB40.

Offset	Register Name	Description	Value
00-01H	Vendor ID	ID of PCI device manufacturer	10B5H (PLX Technology)
02-03H	Device ID	ID of PCI device	9050H
18-1BH	Base Address Register	I/O base address assigned to card	0000XXXX
2C-2DH	Subsytem Vendor ID	ID of board manufacturer	13ABH (ARCOM)
2E-2FH	Subsystem ID	ID of Board	0591H (APCI-IB40)
3CH	Interrupt Line	Interrupt line assigned to device	OX

Configuration Space Header

These registers can be accessed using PCI BIOS functions. Please contact Arcom control systems customer support team (Tel: 01223 412428) for a copy of the PCI BIOS Specification if required.

Digital I/O

If an I/O line is to be used as an output, writing a 'o' to the corresponding bit in the output register will turn the output buffer on and it will sink current. This will force the output line to a logic 'o'. When the software output enable feature is selected the output control latch must be written to with o1H before the outputs will be enabled.

Since each output has an open collector drive, each line can alternatively be configured as an input by switching the output buffer OFF (Writing '1' to the corresponding bit in the output register) and then driving the line either high or pulling it low via an external source.

For lines using the software output enable feature the power-up links can be used to set the outputs to a defined state at power on. If the output buffers are permanently enabled the power up state can not be guaranteed.

Electrical configuration of each digital I/O line:

Note:- If an I/O line is to be configured as an input, it is necessary that the power-up link for that group of lines is set in the 'A' position. This means that any lines to be used as outputs will be set high, or OFF. A good rule is to keep the lines to be used as inputs and those to be used as outputs in separate groups of eight I/O lines.

Timer/Counter

The APCI-IB40 contains an 8254 compatible timer/counter. This device contains three 16-bit counters, each with its own clock input, gate input and output pin. The clock input to counter o is driven from an on board frequency source which is selected by LK1 to be 1MHZ, 100KHZ or 10KHZ, and the output can be used to generate an interrupt signal. The clock and gate inputs for the remaining counters are derived from I/O lines 24-27, and the output signals are routed to I/O lines 16-17 via LK3-4.

As this device is compatible with the counter/timer used on a PC/AT motherboard programming information can be found in most PC reference guides. A data sheet for this device can be obtained from our customer support team if required (Tel: 01223 412428).

I/O Map

The APCI-IB40 uses an indexed I/O addressing scheme to access the on-board devices and special function registers. Two consecutive I/O locations are required to implement this scheme, the base address is used to set the index value and the base+1 address is used to access the device.

The I/O base address is set by the PCI BIOS during initialisation (refer to the PCI Bus section of this manual for details). A PCI BIOS function call may be used to determine the base address once the system has been initialised. Multiple boards may be used in a system as each will be given a unique address.

Address	Read/Write	Register Name	Function
Base	Write	Index Register	Write Index value
Base	Read	Clear Interrupt	Read clears pending interrupt
Base+1	Read/Write	Data Register	Read/Write data to and from registers

Index Registers

Index	Read/Write	Register Name	Function
00	Write	Output Control Latches	Bit o-7 o = Output 'o'
		I/O lines 0-7	1 = Output '1'
00	Read	Status of I/O lines o-7	Bit o-7 o = Input 'o'
			1 = Input '1'
01	Write	Output Control Latches	Bit o-7 o = Output 'o'
		I/O lines 8-15	1 = Output '1'
01	Read	Status of I/O lines 8-15	Bit o-7 o = Input 'o'
			1 = Input '1'
02	Write	Output Control Latches	Bit o-7 o = Output 'o'
		I/O lines 16-23	1 = Output '1'
02	Read	Status of I/O lines 16-23	Bit o-7 o = Input 'o'
			1 = Input '1'
03	Write	Output Control Latches	Bit o-7 o = Output 'o'
		I/O lines 24-31	1 = Output '1'
03	Read	Status of I/O lines 24-31	Bit o-7 o = Input 'o'
			1 = Input '1'
04	Write	Output Control Latches	Bit o-7 o = Output 'o'
		I/O lines 32-39	1 = Output '1'
04	Read	Status of I/O lines 32-39	Bit o-7 o = Input 'o'
			1 = Input '1'
05	Read	Interrupt source register	Bit o = 1 Counter/Timer o
			Bit 1 = 1 Counter/Timer 1
			Bit 2-7 Not used
06-0F	N/A	Not Used	N/A
10	Read/Write	Counter o	Refer to manufactures data
11	Read/Write	Counter 1	sheet for programming
12	Read/Write	Counter 2	Information
13	Write	Timer/Counter Control Word	

Special Function Register

Index	Read/Write	Register Name	Bit Function
80	Write	User LED	Bit o $o = LED off$
			1 = LED on
			Bit 1-7 Not used
81	Read	Board Ident	Bit o-7 Always gives value of
			ooH for APCI-IB40
90	Write	Output buffer enable	Bit o o = Outputs disabled
			1 = Outputs enabled
			Bit 1-7 Not used.

Interrupts

The APCI-IB40 has one interrupt output signal which is routed to an IRQ line during the PCI BIOS initialisation. This interrupt line is expanded on board to provide two interrupt sources. These interrupts are connected to the output signals from counter 0 and counter 1. An interrupt source register has been provided at index 05H (See Index Registers table).

As PCI interrupts are level triggered the interrupt service routine must determine the source of the interrupt then clear the interrupt, this is achieved by reading from the base address location. A PCI BIOS call can be used to determine the IRQ signal assigned to this card.

Links

Throughout this section a '+' indicates the default link position.

Default Link Position Diagram

Counter o Clock Frequency selection

LK1 is used to select the clock frequency for counter o.

LK1	CLK o Input
A +	1MHZ
В	100KHZ
C	10KHZ

Timer/Counter Output Signals

LK3 & LK4 are used to route the counter/timer output signals to the 50 way I/O connector. These signals share pins with I/O lines 16 and 17.

LK3	Connects timer/counter channel 2 output to ribbon cable pin 24 (I/O Line 17)
LK4	Connects timer/counter channel 1 output to ribbon cable pin 23 (I/O Line 16)

Note:- These signals are buffered before being sent to the links, and have the same open-collector output stage as the other I/O signals. When these links are fitted the corresponding output line should be set to a logic '1' i.e. OFF. If the timer/counter outputs are not required the links should not be fitted.

Power Up Output State Control

LK10-14 are used to set the power up state of the digital I/O lines, which are to be used as outputs. Each link is associated with a group of eight I/O lines.

Link	I/O Lines	Position A +	Position B
LK10	0-7	'1'	ʻ0'
LK11	8-15	'1'	ʻ0'
LK12	16-23	'1'	ʻ0'
LK13	24-31	'1'	ʻ0'
LK14	32-39	'1'	ʻ0'

I/O Outputs Enabled by Software

LK20-24 are used to select between permanent or software enabled output buffers. When software control is selected the output buffers are enabled by writing 01H to the software enable register at index 90H.

Link	I/O Lines	Position A +	Position B
LK20	0-7	Software	Permanent
LK21	8-15	Software	Permanent
LK22	16-23	Software	Permanent
LK23	24-31	Software	Permanent
LK24	32-39	Software	Permanent

Note:- A jumper must be fitted to each link, to ensure correct operation.

User Configuration Record Diagram

Link	Default	User
LK1	A	
LK3	OPEN	
LK4	OPEN	
LK10	A	
LK11	A	
LK12	A	
LK13	A	
LK14	A	
LK20	A	
LK21	A	
LK22	A	
LK23	A	
LK24	A	

D-50 I/O Connector (PL1) Pin Assignments

The pin assignments are listed with the pin number of the D-50 connector and also the pin number when a 50-way IDC ribbon cable is connected to the D-50. The pin assignments conform to the Arcom signal conditioning system (SCS) and may be connected to an external signal conditioning board.

Signal Name	D-type Pin No.	Ribbon Cable
oV	1	1
oV	34	2
I/O Line o	18	3
I/O Line 1	2	4
I/O Line 2	35	5
I/O Line 3	19	6
I/O Line 4	3	7
I/O Line 5	36	8
I/O Line 6	20	9
I/O Line 7	4	10
oV	37	11
I/O Line 32	21	12
I/O Line 8	5	13
I/O Line 9	38	14
I/O Line 10	22	15
I/O Line 11	6	16
I/O Line 12	39	17
I/O Line 13	23	18
I/O Line 14	7	19
I/O Line 15	40	20
oV	24	21
I/O Line 33	8	22
I/O Line 16 (CT1 O/P)	41	23
I/O Line 17 (CT2 O/P)	25	24
I/O Line 18	9	25
I/O Line 19	42	26

Signal Name	D-type	Ribbon
	Pin No.	Cable
I/O Line 20	26	27
I/O Line 21	10	28
I/O Line 22	43	29
I/O Line 23	27	30
oV	11	31
I/O Line 34	44	32
I/O Line 24	28	33
(Gate 1 I/P)		
I/O Line 25	12	34
(CLK 1 I/P)		
I/O Line 26	45	35
(Gate 2 I/P)		
I/O Line 27	29	36
(CLK 2 I/P)		
I/O Line 28	13	37
I/O Line 29	46	38
I/O Line 30	30	39
I/O Line 31	14	40
oV	47	41
I/O Line 35	31	42
I/O Line 36	15	43
I/O Line 37	48	44
I/O Line 38	32	45
I/O Line 39	16	46
-12V	49	47
+12V	33	48
+5V	17	49
+5V	50	50

Installation for CE Compliance

To maintain compliance with the requirements of the EMC directive (89/336/EEC), this product must be correctly installed. The PC system in which the board is housed must be CE compliant as declared by the manufacturer. The type of external I/O cable required can be chosen according to the notes below:

1. Remove the cover of the PC observing any additional instructions of the PC manufacturer.

- 2. Locate the board in a spare PCI slot and press gently but firmly into place.
- 3. Ensure that the metal bracket attached to the board is fully seated.
- 4. fit the bracket clamping screw and firmly tighten this on the bracket.

Note:- Good contact of the bracket to the chassis is essential.

5. Replace the cover of the PC observing any additional instructions of the PC manufacturer.

Cable

Cable length 1 Metre or less	:	Ribbon cable satisfactory.
Cable 1 Metre to 3 Meters	:	Commerial screened cable.
> 3 Meters or noisy environment	:	Use fully screened cable with metal backshells
		e.g. Arcom CAB5oCE

The following standards have been applied to this product:

BS EN50081-1: 1992 Generic Emissions Standard, Residential, Commercial, Light IndustryBS EN50082-1: 1992 Generic Immunity Standard, Residential, Commercial, Light IndustryBSEN55022: 1995 ITE Emissions, Class B, Limits and Methods.

Revision History

Manual	РСВ	Comments					
Issue A	V1 lss 2	980313 First released in this format.					

Product Information

Full information about other Arcom products is available via the **Fax-on-Demand System**, (Telephone Numbers are listed below), or by contacting our **WebSite** in the UK at: **www.arcom.co.uk**, or in the US at: **www.arcomcontrols.com**

Useful Contact Information

Customer Support

 Tel:
 +44 (0)1223 412 428

 Fax:
 +44 (0)1223 403 400

 E-mail:
 support@arcom.co.uk

Sales

 Tel:
 +44 (0)1223 411 200

 Fax:
 +44 (0)1223 410 457

 E-mail
 sales@arcom.co.uk or for the US

 E-mail
 icpsales@arcomcontrols.com

United Kingdom Arcom Control Systems Ltd		United States Arcom Control Systems Inc		France Arcom Control Systems		Germany Kostenlose Infoline:		Belgium Groen Nummer:	
Clifton Road		13510 South Oak Street		Centre d'affaires SCALDY		Tel:	0130 824 511	Tel:	0800 7 3192
Cambridge CB1 4WH, UK		Kansas City MO 64145 USA		23 rue Colbert		Fax:	0130 824 512	Fax:	0800 7 3191
Tel:	01223 411 200	Tel:	816 941 7025	7885 S/	AINT QUENTIN	FoD:	0130 860 449		
Fax:	01223 410 457	Fax:	816 941 0343	Cedex, FRANCE				Netherlands	
FoD:	01223 240 600	FoD:	800 747 1097	Tel:	0800 90 84 06	Italy		Gratis o6 Nummer:	
				Fax: 0800 90 84 12		NumeroVerde:		Tel:	06022 11 36
				FoD:	0800 90 23 80	FoD:	1678 73600	Fax:	06022 11 48

The choice of boards or systems is the responsibility of the buyer, and the use to which they are put cannot be the liability of Arcom Control Systems Ltd. However, Arcom's sales team is always available to assist you in making your decision.

© 1997 Arcom Control Systems Ltd Arcom Control Systems is a subsidiary of Fairey Group Plc. Specifications are subject to change without notice and do not form part of any contract. All trademarks recognised.

Arcom Control Systems Ltd operate a company-wide quality management system which has been certified by the British Standards Institution (BSI) as compliant with ISO9001:1994

Certificate No. FM 12961

