32-Bit Microcontroller

CMOS

FR65E Series

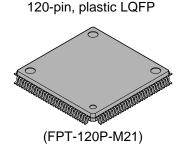
MB91307B

■ DESCRIPTION

The FUJITSU FR family of single-chip microcontrollers using a 32-bit high-performance RISC CPU, with a variety of built-in I/O resources and bus control mechanisms for built-in control applications requiring high-capability, high-speed CPU processing. External bus access is assumed in order to support the expanded address space accessible by the 32-bit CPU, and a 1 KB cache memory plus large 128 KB RAM are provided for high-speed execution of CPU instructions.

This microcontroller is ideal for built-in applications such as DVD players, navigation systems, high-capability FAX and printer control that demand high-capability CPU processing power.

The MB91307B is a FR65E series product based on the FR30/40 series CPU with enhanced bus access for higher speed operation.


■ FEATURES

FR CPU

- 32-bit RISC, load/store architecture, 5-stage pipeline
- Operating frequency 66MHz [with PLL: base frequency 16.5 MHz]
- 16-bit fixed length instructions (basic instructions), 1 instruction per cycle

(Continued)

■ PACKAGE

Purchase of Fujitsu I²C components conveys a license under the Philips I²C Patent rights to use these components in an I²C system provided that the system conforms to the I²C Standard Specification as defined by Philips.

- Instructions for built-in applications: memory-to-memory transfer, bit processing, barrel shift etc.
- Instructions adapted for high-level languages: function input/output instructions, register contents multi-load/ store instructions
- Easier assembler notation: register interlock function
- Built-in multiplier/instruction level support

Signed 32-bit multiplication: 5 cycles

Signed 16-bit multiplication: 3 cycles

- Interrupt (PC, PS removal): 6 cycles, 16 priority levels
- · Harvard architecture for simultaneous execution of program access and data access
- CPU hold 4-word queue allows advanced instruction fetch function
- 4 GB expanded memory space enables linear access
- Instruction compatible with FR30/40 family

Bus Interface

- · Operating frequency: Max 33 MHz
- 8- or 16-bit data output
- · Built-in pre-fetch buffer
- Unused data/address pins can be used as general-0purpose input/output ports
- Fully independent 8-area chip select outputs, can be set in minimum 64 KB units
- Interface support for many memory types

SRAM, ROM/Flash

Page mode flash ROM, page mode ROM interface

Burst mode flash ROM (select burst length 1, 2, 4, 8)

- Basic bus cycle: 2 cycles
- Programmable by area with automatic wait cycle generation to enable wait insert
- RDY input for external wait cycles
- DMA supports fly-by transfer with independent I/O wait control

Built-in RAM

- 128 KB built-in RAM capacity
- · Accepts writing of data and instruction codes, enabling use as instruction RAM

Instruction cache

- 1 KB capacity
- · 2-way set associative
- 4-words (16 bytes) per set
- · Lock function enables permanent program storage
- Areas not used for instruction cache can be used for RAM

DMAC (DMA controller)

- 5-channel (3-channel external-to-external)
- 3 transfer sources (external pin, internal peripheral, software)
- Addressing mode with 32-bit full address indication (increment, decrement, fixed)
- Transfer mode (demand transfer / burst transfer / step transfer / block transfer)
- Fly-by transfer support (3 channels between external I/O and external memory)
- Transfer data size selection 8/16/32-bit

Bit search module (using REALOS)

Searches words from MSB for first bit position of a 1/0 change

Reload timer (includes 1 channel for REALOS)

- 16-bit timer: 3 channels
- Internal clock multiplier choice of x2, x8, x32

(Continued)

UART

- Full duplex double buffer
- 3-channel
- Parity/no parity selection
- Asynchronous (start-stop synchronized), CLK-synchronized communications selection
- Built-in exclusive baud rate timer
- External clock can be used as transfer clock
- Variety of error detection functions (parity, frame, overrun)

I²C interface

- Master/slave sending and receiving
- Clock synchronization function
- Transfer direction detection function
- Bus error detection function
- Arbitration function
- Slave address/general call address detection function
- · Start condition repeat generator and detection function
- 10-bit/7-bit slave address
- Operates in standard mode (Max 100 Kbps) or high speed mode (Max 400 Kbps)

Interrupt controller

- Total of 9 external interrupts: 1 non-maskable interrupt pin (NMI) and 8 normal interrupt pins INT7-INT0
- Interrupt from internal peripheral devices
- Programmable priority settings (16 levels) enabled, except for non-maskable interrupt
- · Can be used for wake-up from stop mode

A/D converter

- 10-bit resolution, 4-channel
- Sequential comparator type, conversion time approx. 5.4 μs
- · Conversion modes: single conversion mode, continuous conversion mode
- Startup source: software / external trigger / timer output signal

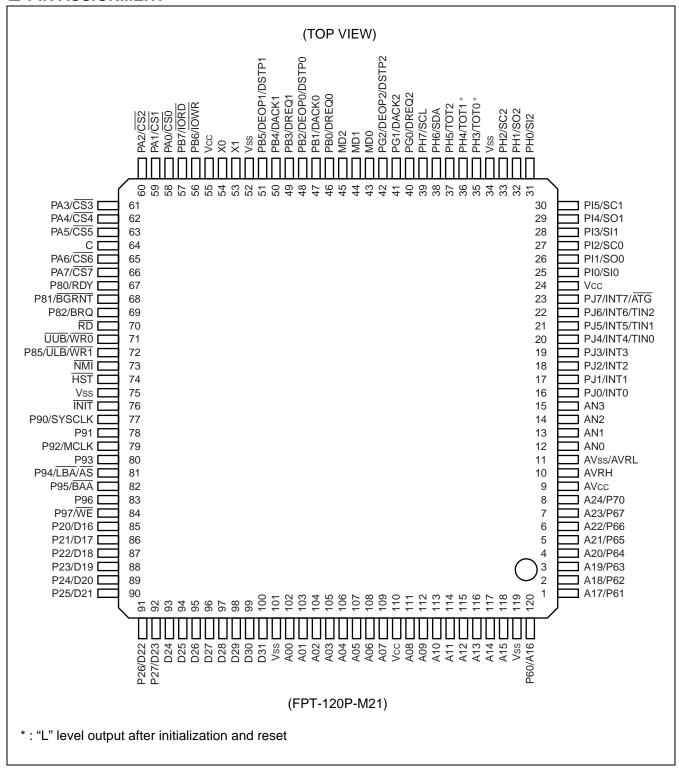
Other interval timers

- 16-bit timer with 3 channels (U-timer)
- · Watchdog timer

I/O port

Maximum 69 ports

Other features


- · Built-in oscillator circuit for clock source, PLL multiplier selection enabled
- INIT reset pin
- · Also included: watchdog timer reset, software reset
- Power-saving modes: stop mode, sleep mode supported
- Gear functions
- Built-in time base timer
- Packages: LQFP-120 (FPT-120P-M21): MB91307B

: MB91V307R(Evaluation product)

• CMOS technology : 0.25 μm

• Supply voltage : 3.3 V \pm 0.3 V (built-in regulator 3.3 V \rightarrow 2.5 V)

■ PIN ASSIGNMENT

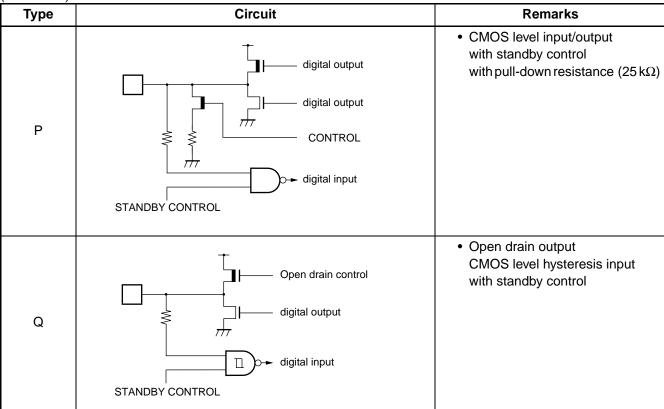
■ PIN DESCRIPTIONS

Pin no.	Pin name	I/O circuit type	Description	
85 to 92	D16 to D23	С	External data bus bits 16-23 Valid only in external bus 16-bit mode.	
	P20 to P27		These pins can be used as ports in external bus 8-bit mode	
93 to 100	D24 to D31	С	External data bus bits 24-31	
102 to 109	A00 to A07	F	External address output bits 0-7	
111 to 118	A08 to A15	F	External address output bits 8-15	
120, 1 to 7	A16 to A23	F	External address output bits 16-23	
120, 1 10 7	P60 to P67	Г	These pins can be used as ports according to setting	
8	A24	F	External data bus output bit 24	
0	P70	Г	This pin can be used as a port according to setting	
9	AVcc	_	Power supply pin. Analog power supply for A/D converter	
10	AVRH	_	A/D converter reference voltage supply	
11	AVss/AVRL	_	Power supply pin. Analog power supply for A/D converter	
12 to 15	AN0 to AN3	D	A/D converter reference voltage supply. Analog input pin.	
16 to 19	INT0 to INT3	I	INT0-INT3: External interrupt input. When the corresponding external interrupt is enabled, this input is in use at all times, so that output from other functions must be stopped unless used intentionally	
	PJ0 to PJ3		PJ0-PJ3: General purpose input/output port	
	TIN0 to TIN2		TIN0-TIN2: Reload timer input. When the corresponding timer input is enabled, this input is in use at all times, so that output from other functions must be stopped unless used intentionally.	
20 to 22	INT4 to INT6	ı	INT4-INT6: External interrupt input. When the corresponding external interrupt is enabled, this input is in use at all times, so that output from other functions must be stopped unless used intentionally.	
			PJ4-PJ6: General purpose input/output port	
	ĀTG		ATG: A/D converter external trigger input. When selected as an A/D start source, this input is in use at all times, so that output from other functions must be stopped unless used intentionally.	
23	INT7	I	INT7: External interrupt input. When the corresponding external interrupt is enabled, this input is in use at all times, so that output from other functions must be stopped unless used intentionally.	
	PJ7		PJ7: General purpose input/output port	
25	SI0	F	SI0: UART0 data input. When the UART0 channel is in input operation, this input is in use at all times, so that output from other functions must be stopped unless used intentionally.	
	PI0		PI0: General purpose input/output port.	
26	SO0	F	SO0: UART0 data output. This function is valid when the UART0 data output function setting is disabled.	
20	PI1	ı ı	PI1: General purpose input/output port. This function is valid when the UART0 data output function setting is disabled.	

Pin no.	Pin name	I/O circuit type	Description
27	SC0	- F	SC0: UART0 clock output. The clock output is valid when the UART0 clock output function setting is enabled.
21	Pl2	'	PI2: General purpose input/output port. This function is valid when the UART0 clock output function is disabled.
28	SI1	F	SI1: UART1 data input. When UART1 is set for input operation, this input is in use at all times, so that output from other functions must be stopped unless used intentionally.
	PI3		PI3: General purpose input/output port.
29	SO1	- F	SO1: UART1 data output. This function is enabled when the UART1 data output function setting is enabled.
29	PI4	'	PI4: General purpose input/output port. This function is valid when the UART1 data output function setting is disabled.
30	SC1	- F	SC1: UART1 clock input/output. The clock output is enabled when the UART1 clock output function setting is enabled.
30	PI5		PI5: General purpose input/output port. This function is valid when the UART1 clock output function setting is disabled.
31	31 SI2		SI2: UART2 data input. When UART2 is set for input operation, this input is in use at all times, so that output from other functions must be stopped unless used intentionally.
	PH0		PH0: General purpose input/output port.
32	SO2		SO2: UART2 data output. This function is enabled when the UART2 data output function setting is enabled.
32	PH1	F	PH1: General purpose input/output port This function is enabled when the UART2 data output function setting is disabled.
33	SC2	- F	SC2: UART2 clock input/output. The clock output is enabled when the UART2 clock output function setting is enabled.
33	PH2	'	PH2: General purpose input/output port This function is enabled when the UART2 clock output function is disabled.
35	ТОТ0	С	TOT0: Timer output port. This function is valid when the timer output setting is enabled.
33	PH3		PH3: General purpose input/output port. This pin outputs an L level signal at reset.
36	TOT1	С	TOT1: Timer output port. This function is valid when the timer output setting is enabled.
30	PH4		PH4: General purpose input/output port. This pin outputs an L level signal at reset.
37	TOT2	С	TOT2: Timer output port. This function is valid when the timer output is enabled.
	PH5		PH5: General purpose input/output port.

Pin no.	Pin name	I/O circuit type	Description	
38	SDA	Q	SDA: I ² C bus input/output port. This function is valid when I ² C operation is enabled. When the I ² C bus is in use, the port output must be set to Hi-Z level. When the I ² C bus is in use, this is an open drain pin.	
	PH6		PH6: General purpose input/output port.	
39	SCL	Q	SCL: I ² C bus input/output port. This function is valid when I ² C operation is enabled. When the I ² C bus is in use, the port output must be set to Hi-Z level. When the I ² C bus is in use, this is an open drain pin.	
	PH7		PH7: General purpose input/output port.	
40	DREQ2	F	DREQ2: DMA external transfer request input. When selected as a DMA startup source, this input is in use at all times, so that output from other functions must be stopped unless used intentionally.	
	PG0		PG0: General purpose input/output port.	
41	DACK2	F	DACK2: DMA external transfer request acknowledge output. This function is valid when the DMA transfer request acknowledge output setting is enabled.	
	PG1		PG1: General purpose input/output port. This function is valid when the DMA transfer request acknowledge output setting is enabled.	
	DEOP2		DEOP2: DMA external transfer end output. This function is valid when the DMA external transfer end output setting is enabled.	
42	DSTP2	F	DSTP2: DMA external transfer stop input. This function is valid when the DMA external transfer stop input setting is enabled.	
	PG2		PG2: General purpose input/output port. This function is valid when the DMA external transfer end output selection and the DMA external transfer stop input selection are disabled.	
43 to 45	MD2 to MD0	G	Mode pins 2-0. The setting of these two pins determines the basic operating mode. They should be connected to $V_{\rm cc}$ or $V_{\rm ss}$.	
46	DREQ0	F	DREQ0: DMA external transfer request input. When selected as a DMA startup source, this input is in use at all times, so that output from other functions must be stopped unless used intentionally.	
	PB0		PB0: General purpose input/output port.	
47	DACK0	F	DACK0: DMA external transfer request acknowledge output. This function is valid when the DMA transfer request acknowledge output setting is enabled.	
	PB1		PB1: General purpose input/output port. This function is enabled when the DMA transfer request acknowledge output setting is disabled.	
	DEOP0		DEOP2: DMA external transfer end output. This function is valid when the DMA external transfer end output setting is enabled.	
48	DSTP0	F	DSTP0: DMA external transfer stop input. This function is valid when the DMA external transfer stop input setting is enabled.	
	PB2		PB2: General purpose input/output port. This function is valid when the DMA external transfer end output selection and the DMA external transfer stop input selection are disabled.	

Pin no.	Pin name	I/O circuit type	Description
49	DREQ1		DREQ1: DMA external transfer request input. When selected as a DMA startup source, this input is in use at all times, so that output from other functions must be stopped unless used intentionally.
	PB3		PB3: General purpose input/output port.
50	DACK1	F	DACK1: DMA external transfer request acknowledge output. This function is valid when the DMA transfer request acknowledge output setting is enabled.
	PB4		PB4: General purpose input/output port. This function is enabled when the DNA transfer request acknowledge output setting is disabled.
	DEOP1		DEOP1: DMA external transfer end output. This function is valid when the DMA external transfer end output setting is enabled.
51	DSTP1	F	DSTP1: DMA external transfer stop input. This function is valid when the DMA external transfer stop input setting is enabled.
	PB5		PB5: General purpose input/output port. This function is valid when the DMA external transfer end output selection and the DMA external transfer stop input selection are disabled.
53	X1	Α	Clock (oscillator) output
54	X0		Clock (oscillator) input
56	ĪOWR	F	IOWR: Write strobe output for DMA fly-by transfer. This function is valid when the DMA fly-by transfer write strobe output setting is enabled.
50	PB6	'	PB6: General purpose input/output port. This function is valid when the DMA fly-by transfer write strobe output setting is disabled.
57	ĪORD	. F	IORD: Read strobe output for DMA fly-by transfer. This function is valid when the DMA fly-by transfer read strobe output setting is enabled.
01	PB7	'	PB7: General purpose input/output port. This function is valid when the DMA fly-by transfer read strobe output setting is disabled.
58	CS0	F	CS0: Chip select output. This function is valid when the chip select 0 output setting is enabled.
30	PA1	'	PA1: General purpose input/output port. This function is valid when the chip select 0 output setting is disabled.
59	CS1	F	CS1: Chip select output. This function is valid when the chip select 1 output setting is enabled.
33	PA1	'	PA1: General purpose input/output port. This function is valid when the chip select 1 output setting is disabled.
60	CS2	F	CS2: Chip select output. This function is valid when the chip select 2 output setting is enabled.
00	PA2	1	PA2: General purpose input/output port. This function is valid when the chip select 2 output setting is disabled.
61	CS3	F	CS3: Chip select output. This function is valid when the chip select 3 output setting is enabled.
O1	PA3	r 	PA3: General purpose input/output port. This function is valid when the chip select 3 output setting is disabled.


Pin no.	Pin name	I/O circuit type	Description	
62	CS4	F	CS4: Chip select output. This function is valid when the chip select 4 output setting is enabled.	
62 PA4		F	PA4: General purpose input/output port. This function is valid when the chip select 4 output setting is disabled.	
63	CS5	F	CS5: Chip select output. This function is valid when the chip select 5 output setting is enabled.	
00	PA5	'	PA5: General purpose input/output port. This function is valid when the chip select 5 output setting is disabled.	
64	С	_	C: Bypass capacitor pin for internal capacitor. See "HANDLING DEVICES"	
65	CS6	. F	CS6: Chip select output. This function is valid when the chip select 6 output setting is enabled.	
	PA6	'	PA6: General purpose input/output port. This function is valid when the chip select 6 output setting is disabled.	
66	CS7	. F	CS7: Chip select output. This function is valid when the chip select 7 output setting is enabled.	
	PA7		PA7: General purpose input/output port. This function is valid when the chip select 7 output setting is disabled.	
67	67 RDY P80		RDY: External ready signal input. This function is valid when the external ready input setting is enabled.	
			P80: General purpose input/output port. This function is valid when the external ready input setting is disabled.	
68	BGRNT 68 F P81		BGRNT: External bus open acknowledge output. This pin outputs an L level signal when the external bus is open. This function is valid when the output setting is enabled.	
			P81: General purpose input/output port. This function is valid when the output setting is disabled.	
69	BRQ	Р	BRQ: External bus open request input. The input value is "1" when the external bus is open. This function is valid when the input setting is enabled.	
	P82		P82: General purpose input/output port. This function is valid when the input setting is disabled.	
70	RD	М	External bus read strobe output.	
71	WR0 UUB	F	External bus write strobe output. UUB: Is the upper side of the 16-bit SRAM input/output mask enable signal. It is valid when the external bus is set to SRAM use. (WE/P97 function as the write strobe.)	
72	WR1 ULB	F	External bus write strobe output. ULB: Is the lower side of the 16-bit SRAM input/output mask enable signal. It is valid when the external bus is set to SRAM use. (WE/P97 function as the write strobe.)	
	P85		P85: General purpose input/output port. This function is valid when the enable output setting is disabled.	

Pin no.	Pin name	I/O circuit type	Description	
73	NMI	Н	NMI request input	
74	HST	Н	Hardware standby input	
76	INIT	В	External reset input	
77	SYSCLK	F	SYSCLK: System clock output. This function is valid when the system clock output setting is enabled. The clock signal output is at the same frequency as the external bus operating frequency. Clock output halts in the stop mode or the hardware standby mode.	
	P90		P90: General purpose input/output port. This function is enabled when the system clock output setting is disabled.	
78	P91	F	P91: General purpose input/output port. This function is enabled when the SDRAM clock enable output setting is disabled.	
79	MCLK	F	MCLK: Memory clock output. Clock output halts in the sleep mode, the stop mode or the hardware standby mode.	
79	P92	Г	P92: General purpose input/output port. This function is enabled when the clock output setting is disabled.	
80	P93	F	P93: General purpose input/output port. This function is enabled when the SDRAM clock re-input setting is disabled.	
	ĀS		AS: Address strobe output. This function is valid when the address strobe output setting is disabled.	
81	LBA	F	LBA: Burst flash ROM address load output. This function is valid when the address load output setting is enabled.	
	P94		P94: General purpose input/output port. This function is valid when the address load output and address strobe output settings are disabled.	
	BAA		BAA: Burst flash ROM address advance output. This function is valid when the address advance output setting is enabled.	
82	P95		P95: General purpose input/output port. This function is valid when the address advance output and column address strobe output settings are disabled.	
83	P96	F	P96: General purpose input/output port. This function is enabled when the column address strobe output setting is disabled.	
84	WE WE		WE: Write strobe output for 16-bit SRAM. This function is enabled when the write strobe output setting is enabled.	
P97			P97: General purpose input/output port. This function is enabled when the write strobe output setting is prohibited.	
9	AVcc	_	A/D converter power supply	
10	AVRH	_	A/D converter power supply	
11	AVss/AVRL	_	A/D converter power supply (GND)	
24, 55, 110	Vcc	_	Power supply pins	
34, 52, 75, 101	Vss	_	Power supply pins (GND)	

■ I/O CIRCUIT TYPE

Туре	Circuit	Remarks
А	X1 X0 STANDBY CONTROL	Oscillator feedback resistance approx. 1 MΩ
В	digital input	CMOS hysteresis input with pull-up resistance (25 kΩ)
С	digital output digital output digital input STANDBY CONTROL	CMOS level input/output with standby control
D	analog input	Analog input with switch

Туре	Circuit	Remarks
F	digital output digital output digital input STANDBY CONTROL	CMOS level output CMOS level hysteresis input with standby control
G	digital input	CMOS level input without standby control
Н	digital input	CMOS level hysteresis input without standby control
I	digital output digital output digital input	CMOS level input CMOS level hysteresis input without standby control
М	digital output digital output	CMOS level input

■ HANDLING DEVICES

OMB91307 Series

Preventing Latchup

When CMOS integrated circuit devices are subjected to applied voltages higher than V_{cc} at input and output pins (other than medium- and high-withstand voltage pins), or to voltages lower than V_{ss} , as well as when voltages in excess of rated levels are applied between V_{cc} and V_{ss} , a phenomenon known as latchup can occur. When a latchup condition occurs, supply current can increase dramatically and may destroy semiconductor elements. In using semiconductor devices, always take sufficient care to avoid exceeding maximum ratings.

• Treatment of unused input pins

If unused input pins are left open, abnormal operation may result. Any unused input pins should be connected to pull-up or pull-down resistance.

• Power supply pins

Devices are designed to prevent problems such as latchup when multiple V_{cc} and V_{ss} supply pins are used, by providing internal connections between pins having the same potential. However, in order to reduce unwanted radiation, prevent abnormal operation of strobe signals due to rise in ground level, and to maintain total output current ratings, all such pins should always be connected externally to power supplies and ground. Also, care must be given to connecting the V_{cc} and V_{ss} pins of this device to a current source with as little impedance as possible.

In addition, it is recommended that a bypass capacitor of 1.0 μF be connected between V_{cc} and V_{ss} as close to the pins as possible.

Crystal oscillators

Noise in proximity to the X0 and X1 pins can cause abnormal operation in this device. Printed circuit boards should be designed so that the X0 and X1 pins, and oscillators (or crystal oscillators), as well as bypass capacitors connected to ground, are placed as close together as possible.

The use of printed circuit board architecture in which the X0 and X1 pins are surrounded by ground contributes to stable operation and is strongly recommended.

• Treatment of NC pins

Any pins marked "NC" (not connected) must be left open.

• Mode pins (MD0-MD2)

These pins should be used in direct connection to V_{cc} or V_{ss} . To prevent noise from causing the device to erroneously switch into test mode, the printed circuit board design should allow the shortest possible pattern length between mode pins and V_{cc} or V_{ss} , and the connection should have as little impedance as possible.

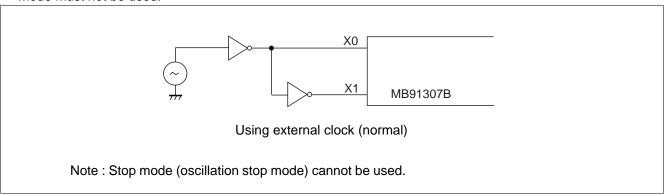
Operation at startup

Immediately after a power-on startup, always apply a reset initialization (INIT) at the INIT pin. Also, in order to assure a wait period for the oscillator circuits to stabilize immediately after startup, be sure that the "L" level input to the INIT pin continues for the required stabilization wait interval. (The INIT cycle for the INIT pin includes only the minimum setting for the stabilization wait period.)

· Base oscillator input at startup

At power-on startup, always input a clock signal until the oscillator stabilization wait period is ended.

· Hardware standby at power-on startup

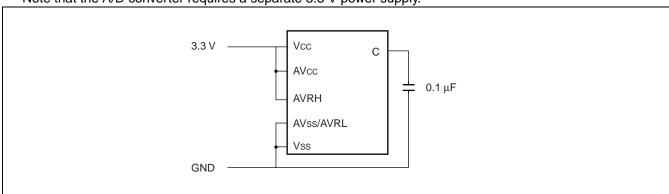

If a power-on startup is followed immediately by a hardware standby request, the reset initialization of settings (INIT) from the INIT pin has priority. However in case of transition from the reset initialization (INIT) to hardware standby, the oscillator stabilization wait period is initialized to maximum duration, and after release of the hardware standby request the maximum setting is applied to the oscillator stabilization wait period.

• Caution on Operations during PLL Clock Mode

If the PLL clock mode is selected, the microcontroller attempt to be working with the self-oscillating circuit even when there is no external oscillator or external clock input is stopped. Performance of this operation, however, cannot be guaranteed.

• Remarks for the external clock operation

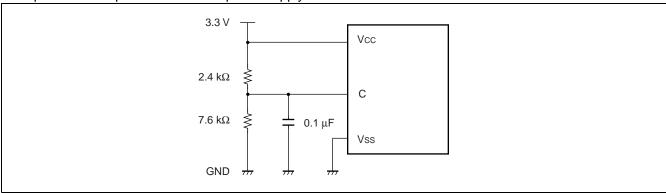
When selecting the external clock, active X0 pin generally. Also simultaneously the opposite phase clock to X0 must be supplied to X1 pin. When using the clock along with STOP (oscillation stopped) mode, the X1 pin stops when "H" is input in STOP mode. To prevent one output from competing against another, in this case, the stop mode must not be used.



Refer to the Data Sheet for maximum input frequency.

• Built-in DC-DC regulator

This device has a built-in regulator, requiring 3.3 V input to the V_{∞} pin and a bypass capacitor of approximately 0.1 μ F connected to the C pin for the regulator.


Note that the A/D converter requires a separate 3.3 V power supply.

• Precautions for use of stop mode

The built-in regulator in this device stops operating when the device is in stop mode. In such cases as when increased leak current (IccH) in stop mode, or abnormal operation or power fluctuation due to noise while in operating mode cause the regulator to stop, the internal 2.5 V power supply can ball below the voltage at which operation is assured. Therefore it is necessary when using the internal regulator and stop mode to assure that the external power supply does not fall below 3.3 V. And even if this should occur, the internal regulator can be set to restart when a reset is applied. (In this case the oscillator stabilization wait period should also be set to L level.)

Sample use of Stop Mode with 3.3 V power supply

- Low-power consumption modes
 - To enter the standby mode, use the synchronous standby mode (set with the SYNCS bit as bit 8 in the TBCR, or time-base counter control register) and be sure to use the following sequence:

```
(LDI
        #value_of_standby, R0)
(LDI
        # STCR, R12)
                               ; Write to standby control register (STCR)
STB
        R0, @R12
                               ; Read STCR for synchronous standby
LDUB
        @R12. R0
LDUB
                               ; Read STCR again for dummy read
        @R12, R0
NOP
                               ; NOP x 5 for timing adjustment
NOP
NOP
NOP
NOP
```

Set the I-flag and the ILM and ICR registers to branch to an interrupt handler when the interrupt handler triggers the microcontroller to return from the standby mode.

• If you use the monitor debugger, follow the precautions below:

Do not set a breakpoint within the above array of instructions.

Do not single-step the above array of instructions.

· Executing instructions on RAM

If instruction codes are placed in RAM, they should not be placed in the last 8 address bytes 0005_FFFF8_H to 0005_FFFF_H. (Instruction code prohibited area)

· Notes on the PS register

Since some instructions manipulate the PS register earlier, the following exceptions may cause the interrupt handler to break or the PS flag to update its display setting when the debugger is being used. As the microcontroller is designed to carry out reprocessing correctly upon returning from such an EIT event, it performs operations before and after the EIT as specified in either case.

- The following operations may be performed when the instruction immediately followed by a DIVOU/DIVOS
 instruction is (a) halted by a user interrupt or NMI, (b) single-stepped, or (c) breaks in response to a data
 event or emulator menu:
 - (1) D0 and D1 flags are updated earlier.
 - (2) The EIT handler (user interrupt/NMI or emulator) is executed.
 - (3) Upon returning from the EIT, the DIVOU/DIVOS instruction is executed and the D0 and D1 flags are updated to the same values as those in (1) above.
- The following operations are performed when the ORCCR/STILM/MOV Ri and PS instructions are executed to enable interruptions when a user interrupt or NMI trigger event has occurred.
 - (1) The PS register is updated earlier.
 - (2) The EIT handler (user interrupt/NMI or emulator) is executed.
 - (3) Upon returning from the EIT, the above instructions are executed and the PS register is updated to the same value as that in (1) above.

• Notes on I-BUS Memory

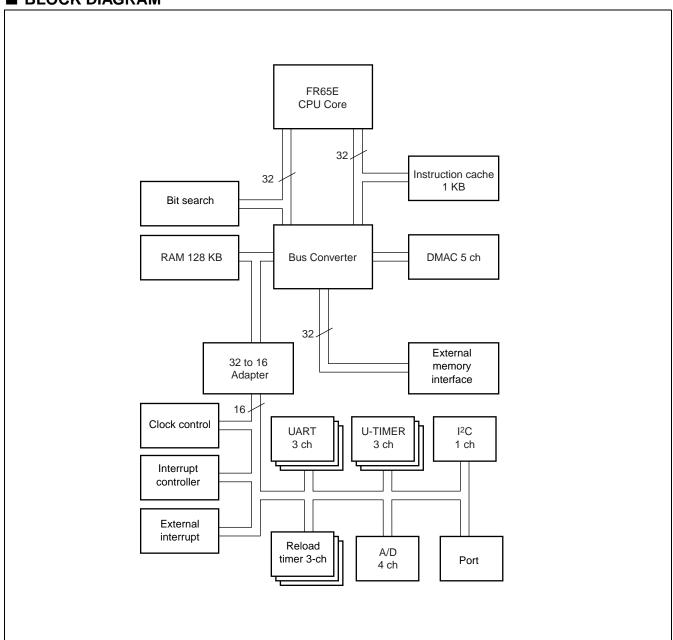
Do not access data in the instruction cache control register or the instruction cache RAM immediately before the RETI instruction.

OUnique to the evaluation chip MB91V307R

• Simultaneous occurrences of a software break and a user interrupt/NMI

When a software break and a user interrupt /NMI take place at the same time, the emulator debugger can cause the following phenomena:

- The debugger stops pointing to a location other than the programmed breakpoints.
- The halted program is not re-executed correctly.


If these phenomena occur, use a hardware break instead of the software break. If the monitor debugger has been used, avoid setting any break at the relevant location.

• Single-stepping the RETI instruction

If an interrupt occurs frequently during single stepping, execute only the relevant processing routine repeatedly after single-stepping RETI. This will prevent the main routine and low-interrupt-level programs from being executed. Do not single-step the RETI instruction for avoidance purposes. When the debugging of the relevant interrupt routine becomes unnecessary, perform debugging with that interrupt disabled.

A stack pointer placed in an area set for a DSU operand break can cause a malfunction. Do not apply a data event break to
access to the area containing the address of a system stack pointer.

■ BLOCK DIAGRAM

■ CPU AND CONTROL BLOCK

Internal Architecture

The FR series CPU is a high-performance core using RISC architecture with a high-capability instruction set intended for built-in applications.

1. Features

Uses of RISC Architecture

Basic instruction set: 1 instruction to 1 cycle.

• 32-bit architecture

General-purpose registers: 32-bits × 16 registers

- 4 GB linear memory space
- Built-in multipliers

32-bit \times 32-bit multiplication: 5 cycles 16-bit \times 16-bit multiplication: 3 cycles

· Enhanced interrupt processing

High-speed response (6 cycles)

Multiple interrupt support

Level masking functions (16 levels)

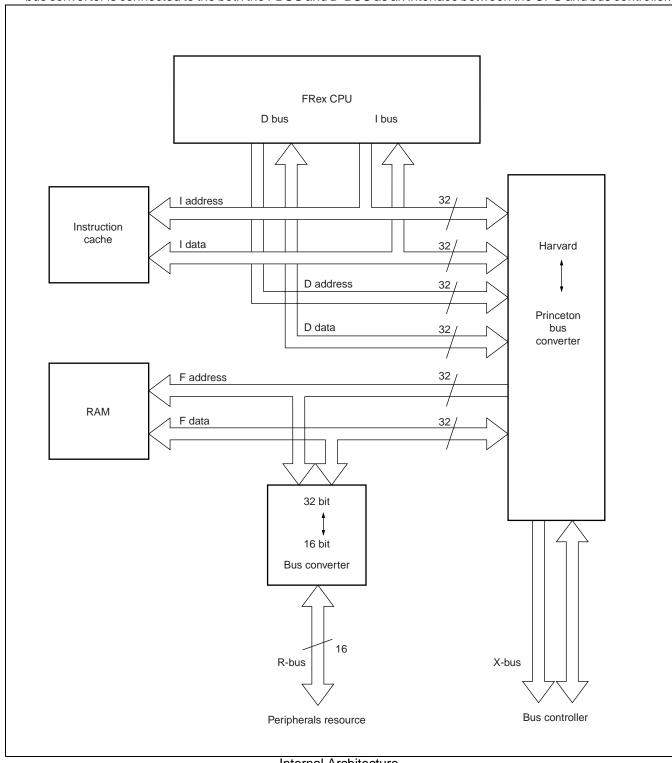
• Enhanced I/O operating instructions

Memory-to-memory transfer instructions

Bit processing instructions

• High code efficiency

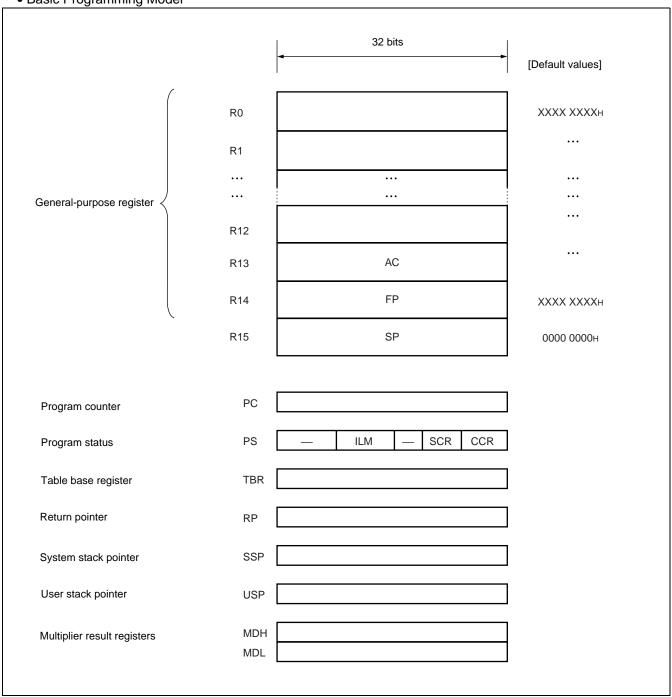
Basic instruction length: 16 bits


• Low power consumption

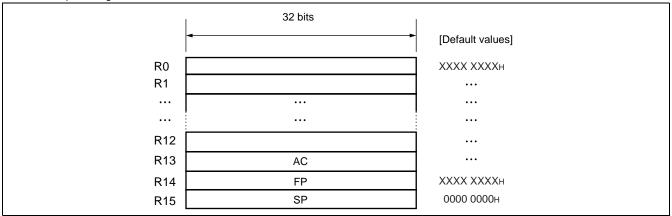
Sleep mode, stop mode

· Gear function

2. Internal Architecture


The FR series CPU uses a Harvard architecture with independent instruction bus and data bus. The instruction bus (I-BUS) is connected to an on-chip instruction cache. a 32-bit ←→16-bit bus converter is connected to the bus (F-BUS) to provide an interface between the CPU and peripheral resources. The Harvard ←→ Princeton bus converter is connected to the both the I-BUS and D-BUS as an interface between the CPU and bus controller.

Internal Architecture


3. Programming Model

Basic Programming Model

4. Registers

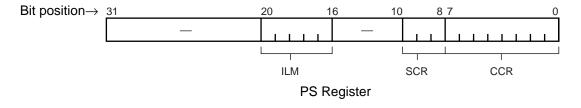
•General Purpose Register

Registers R 0 to R 15 are general-purpose registers. These registers can be used as accumulators for computation operations, or as pointers for memory access.

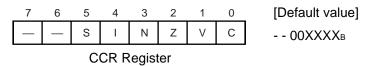
Of the 16 registers, enhanced commands are provided for the following registers to enable their use for particular applications.

R13: Virtual accumulator

R14: Frame pointer


R15: Stack pointer

Default values at reset are undefined for R0 to R14. The value for R15 is 00000000H (SSP value).


PS (Program Status Register)

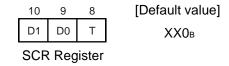
This register holds the program status, and is divided into three parts, ILM, SCR, and CCR.

All bits not defined in the diagram are reserved bits with read value "0" at all times. Write access to these bits is not enabled.

•CCR (Condition Code Register)

S: Stack flag, cleared to "0" at reset.

I : Interrupt flag, cleared to "0" at reset.


N : Negative flag, default value at reset undefined.

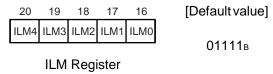
Z : Zero flag, default value at reset undefined.

V : Overflow flag, default value at reset undefined.

C : Carry flag, default value at reset undefined.

•SCR (System Condition code Register)

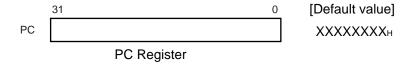
Stepwise division flags


These flags store interim data during execution of stepwise division.

Step trace trap flag

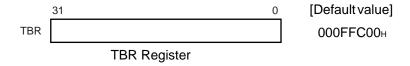
Indicates whether the step trace trap is enabled or disabled.

The step trace trap function is used by emulators. When an emulator is in use, it cannot be used in execution of user programs.


•ILM(Interrupt Level Mask Register)

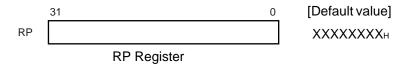
This register stores interrupt level mask values, for use in level masking.

The register is initialized to value 15 (01111_B) at reset.


•PC (Program Counte Registerr)

The program counter indicates the address of the instruction that is executing.

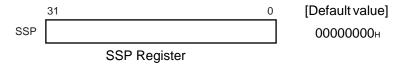
The default value at reset is undefined.


•TBR (Table Base Register)

The table base register stores the starting address of the vector table used in EIT processing.

The default value at reset is 000FFC00_H.

•RP (Return Pointer)


The return register stores the address for return from subroutines.

During execution of a CALL instruction, the PC value is transferred to this RP register.

During execution of a RET instruction, the contents of the RP register are transferred to this PC register.

The default value at reset is undefined.

•SSP (System Stack Pointer)

The SSP register is the system stack pointer.

When the S flag is "0," this register functions as the R15 register.

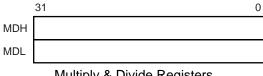
The SSP register can also be explicitly specified.

This register is also used as a stack pointer to indicate the stack to which the PS and PC are removed when an EIT occurs.

The default value at reset is 00000000H.

•USP (User Stack Pointer)

The USP register is the user stack pointer.


When the S flag is "1," this register functions as the R15 register.

The USP register can also be explicitly specified.

The default value at reset is undefined.

This register cannot be used with RETI instructions.

Multiply & Divide registers

Multiply & Divide Registers

The multiply and divide registers are each 32 bits in length.

The default value at reset is undefined.

■ SETTING MODE

In the FR family, the mode pins (MD2, MD1, MD0) and the mode register (MODR) are used to set the operating mode.

1. Mode Pins

The three pins MD2, MD1, MD0 are used in mode vector fetch instructions, and also to make settings in test mode.

N	Node pi	n	Mode name	Reset vector access	Remarks		
MD2	MD1	MD0	WIOGE Hame	area	Kemarks		
0	0	1	External ROM mode vector	Outside	Bus width is set by mode register.		

2. Mode Register (MODR)

The mode data fetch instruction writes data to the address "0000_07FDH" called the mode data.

The area "0000_07FDH" is the mode register (MODR). When a setting is made to this register, the device will operate the mode corresponding to that setting.

The mode register can only be set by a reset source at the INIT level. It is not possible to write to this register from a user program.

*No data exists at the FR family mode register address (0000_07FFH).

< Detailed register description >

MODR Address	7	6	5	4	3	2	1	0	Default
0000 07FDн	0	0	0	0	0	ROMA	WTH1	WTH0	XXXXXXXX
						Operating	g mode se	etting bits	

[bit7-3] Reserved bits

These bits should always be set to "00000." If set to any other value, stable operation is not assured.

[bit2] ROMA (Internal RAM enable bit)

This bit indicates whether internal RAM is enabled.

ROMA	Function	Remarks
0	External ROM mode	The built-in RAM area functions as external area.
1	Internal RAM mode	The built-in RAM area is enabled. The 128 KB built-in RAM can be used.

[bit1, 0] WTH1, WTH0 (Bus width indicator bits)

In external bus mode, these bits determine the bus width setting.

In external bus mode, the value of these bits sets the BW1, 0 bits in the AMD0 register (CS0 area).

WTH1	WTH0	Bus width
0	0	8-bit
0	1	16-bit
1	0	Setting prohibited
1	1	Setting prohibited

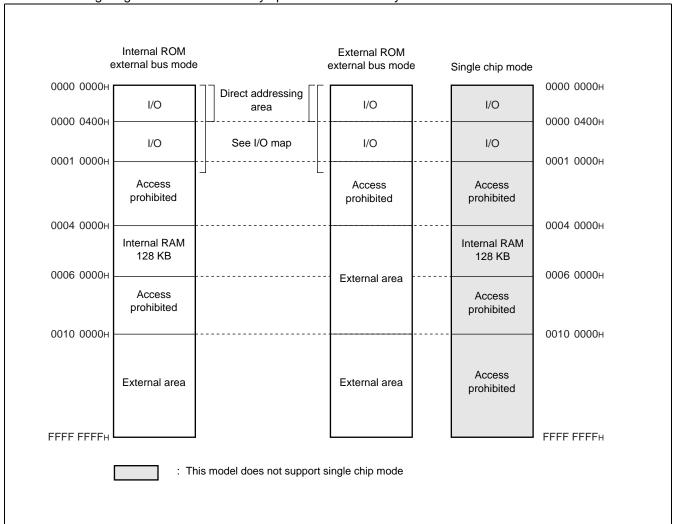
■ MEMORY SPACE

1. Memory Space

The FR family has 4 GB (2³² addresses) of logical address space with linear access from the CPU.

Direct Addressing Areas

The following areas of address space are used for I/O operations.

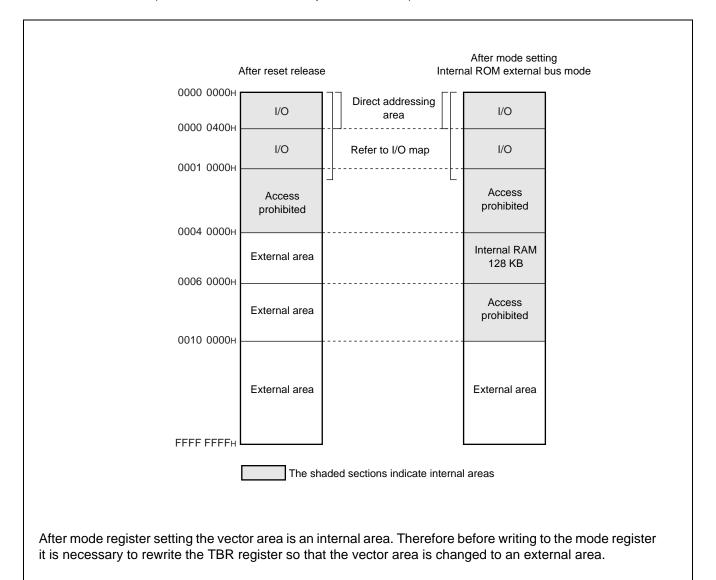

These areas are called direct addressing areas, in which the address of an operand can be specified directly during an instruction.

The direct areas differ according to the size of the data accessed, as follows.

 \rightarrow byte data access : 0-0FFH \rightarrow half word data access : 0-1FFH \rightarrow word data access : 0-3FFH

2. Memory Map

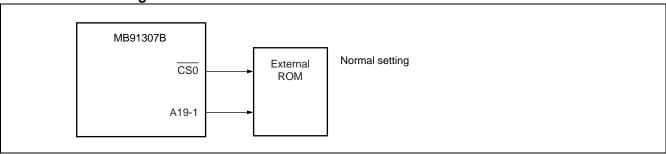
The following diagram illustrates memory space in the FR family.



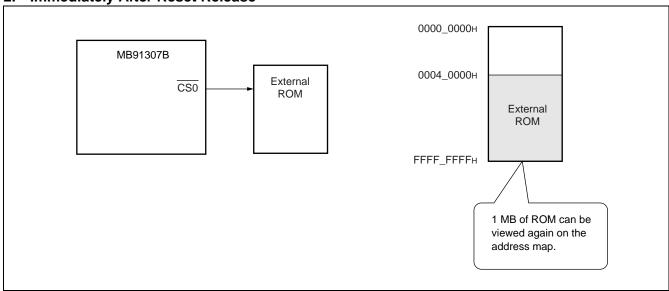
•Use of Built-in RAM

The MB91307B provides 128 KB of built-in RAM. To enable use of this RAM, the mode register must be set to internal ROM external bus mode (ROMA=1).

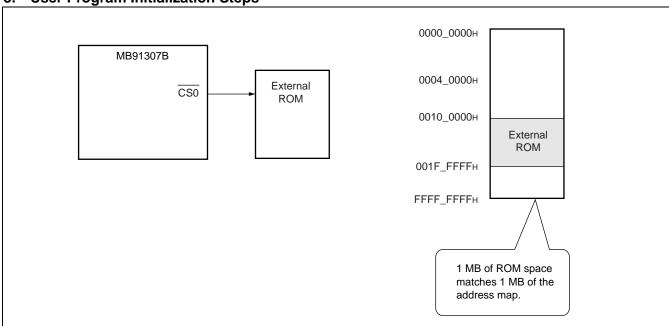
Precautions for use of this model


- The reset vector is fixed at 000F_FFFCH.
- For the MB91307B, the 128Kbyte RAM area is from 0004_0000H to 0005_FFFFH. The area from 0006_0000H to 000F_FFFFH is access prohibited.
- In order to use RAM the mode register must be set to internal ROM external bus mode.
- In internal ROM external bus mode the built-in RAM area can be used, but the vector area 000F_FFXXH is an internal area and cannot be accessed externally. Please refer to the following explanation.
- When placing instruction code in RAM, nothing should be placed in the last 8 bytes of the area 0005_FFFF8h to 0005_FFFFH. (This is an instruction code prohibited area.)

■ USER PROGRAM INITIALIZATION


The following sequence describes an example using built-in RAM.

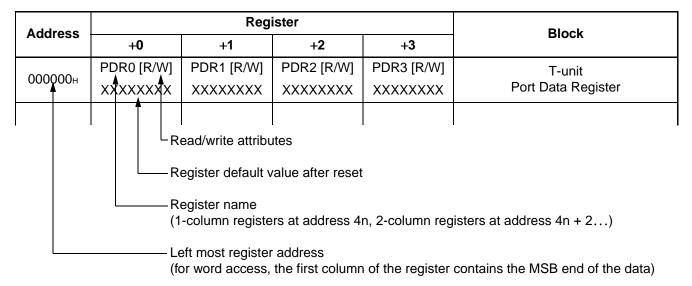
1. Hardware Setting Conditions


- 1) Assume that 1 MB of external ROM is placed beginning at 0010_0000H. Place the program at this location in the linker. (The following description can apply to other addresses than this one as well.)
- 2) Connect addresses A19 to A1 (1 MB) to ROM, other addresses will use $\overline{\text{CSO}}$.
- 3) Set the mode pins (MD2, MD1, MD0) to external vectors.
- 4) Write the reset vector to 001F_FFFCH. Likewise write the mode vector to 001F_FFF8H.

2. Immediately After Reset Release

- After reset release, the CPU will attempt to load a mode vector from 000F_FFF8H, a reset vector from 000F_FFFCH, however because this will be an external vector, the CPU will have to go externally. However the CS0 default value causes 1 MB of external ROM to be repeated in external space, so that the mode vector and the reset vector itself will load the contents written at 001F_FFF8H and 001F_FFFCH in external ROM.
- 2) The branch destination is set in the linker to an address in the area 001X_XXXXH, so that subsequent program execution will be in this area.

3. User Program Initialization Steps



- 1) Set the TBR register so that the interrupt table is 001F_FFXXH, then perform initialization. This process also includes a chip select setting, and at the same time the CS0 address is set to be valid at 001X_XXXXH. The CS0 decoding result is the same before and after the setting, so that the CPU can continue to run programs on external ROM.
- 2) If necessary, initialize the contents of RAM.
- 3) Now initialization is complete, and the application program can be executed.

■ I/O MAP

This map shows the correlation between areas of memory space and individual registers in peripheral resources.

[How to read the map]

Note: Default register bit values are indicated as follows:

"1" : Default value "1"
"0" : Default value "0"
"X" : Default value "X"

"-" : No physical register at this location

Adduses		Reg	Black		
Address	+0	+1	+2	+3	Block
000000н			PDR2 [R/W]		
	_	_	XXXXXXX	_	
000004			PDR6 [R/W]	PDR7 [R/W]	
000004н	_	_	XXXXXXX	X	T-unit
000000	PDR8 [R/W]	PDR9 [R/W]	PDRA [R/W]	PDRB [R/W]	Port Data Register
000008н	XXXX	XXXXXXX-	XXXXXXX	xxxxxxx	
00000Сн		_	_		
000010н	PDRG [R/W]	PDRH [R/W]	PDRI [R/W]	PDRJ [R/W]	
0000 ТОН	XXX	XXX00XXX	XXXXX	XXXXXXXX	R-bus
000018н					Port Data Register
to 00001Сн		_	_		
000010н					
to		_	_		Reserved
00003Сн					
000040н	EIRR [R/W]	ENIR [R/W]	ELVR [R/W]		Ext int
	00000000	00000000	0000	0000	
000044н	DICR [R/W]	HRCL [R/W]	_		DLYI/I-unit
	0 TMDLD	011111	TMR	[D]	
000048н	TMRLR	XXXXXXXX		XXXXXXXX	
		***************************************	TMCSR		Reload Timer 0
00004Сн	_	_		00000000	
	TMRLR	[W]	TMR		
000050н		XXXXXXX	xxxxxxx	XXXXXXX	D 1 17
000054			TMCSR	[R/W]	Reload Timer 1
000054н	_	_	0000	00000000	
000058н	TMRLR	[W]	TMR	[R]	
000036н	XXXXXXXX XXXXXXXX		XXXXXXX	XXXXXXX	Reload Timer 2
00005Сн		_	TMCSR	[R/W]	Rolodd Filliel Z
30003CH			0000 00000000		
000060н	SSR [R/W]	SIDR [R/W]	SCR [R/W]	SMR [R/W]	UART0
	00001-00	XXXXXXX	00000100	000-0-	55
000064н	UTIM [R]	(UTIMR [W])	DRCL [W]	UTIMC [R/W]	U-TIMER 0
00000111	00000000			000001	
000068н	SSR [R/W]	SIDR [R/W]	SCR [R/W]	SMR [R/W]	UART1
	00001-00	XXXXXXX	00000100	000-	(Continued)

A -l -l		Regi	Block				
Address	+0	+1					
00006Сн	UTIM [R]	(UTIMR [W])	DRCL [W]	UTIMC [R/W]	II TIMED 4		
	00000000	00000000		000001	U-TIMER 1		
000070н	SSR [R/W]	SIDR [R/W]	SCR [R/W]	SMR [R/W]	UART2		
000070H	00001-00	XXXXXXX	00000100	000-0-	UAINTZ		
000074н	UTIM [R]	(UTIMR [W])	DRCL [W]	UTIMC [R/W]	U-TIMER 2		
00007 411	00000000	00000000		000001	O TIMERCE		
000078н	ADCR	[R]	ADCS	[R/W]	A/D Converter		
00007011	XX	XXXXXXX	00000000	00000000	sequential comparator		
00007Сн		_	_		Reserved		
000080н		_	_		Reserved		
000084н		_	_		Reserved		
000088н		_	Reserved				
00008Сн		_	Reserved				
000090н		_	Reserved				
22224	IBCR [R/W]	IBSR [R/W]	ITBA	[R/W]			
000094н	00000000	00000000	00	00000000			
000098н	ITMK	[R/W]	ISMK [R/W]	ISBA [R/W]	120 :		
ООООЭОН	0011	11111111	01111111	00000000	I ² C interface		
00009Сн		IDAR [R/W]	ICCR [R/W]	IDBL [R/W]			
00009Сн		00000000	0-011111	0			
0000А0н		_	Reserved				
0000А4н		_	Reserved				
0000А8н		_	Reserved				
0000АСн		_	Reserved				
0000В0н		_	Reserved				

Addusses		Re	gister	Disale	
Address —	+0	+1	+2	Block	
000200н		DMACA			
	00000	000 0000XXXX		XXXXXX	
000204н		DMACB4			
	000	00000 0000000			
000208н	20000	DMACA ²		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
	00000	000 0000XXXX		XXXXXX	
00020Сн	000	DMACB4 00000 0000000		00000	
	000	DMACA2		00000	
000210н	00000	000 0000XXXX		XXXXXX	
		DMACB4		700000	
000214н	000	00000 0000000		00000	DMAC
		DMACA			
000218н	00000	000 0000XXXX		xxxxx	
000040		DMACB4	4 [R/W]		
00021Сн	000	00000 0000000	0 00000000 000	00000	
000220н		DMACA4	4 [R/W]		
000220H	00000	000 0000XXXX	XXXXXXXX XX		
000224н		DMACB4			
	000	000000 0000000	0 00000000 000	00000	
000228н	00228н —				
00022Сн					
to				Reserved	
00023Сн					
000240н			R [R/W]		DMAC
	0XX00	000 XXXXXXXX	(XXXXXXXX X	(XXXXX	
000244н to				Reserved	
000274н			Reserved		
000278н				Reserved	
00027Сн	_				Reserved
000280н					
to 0002FC⊦			Reserved		
300ZI On				(Continued)	

Address		Reg	Block		
Address	+0	+1			
000300н		-	Reserved		
000304н		_	Instruction Cache		
000308н to 0003E0н		-	Reserved		
0003Е4н		_		ICHRC [R/W] 0 - 000000	Instruction Cache
0003E8н to 0003EСн		-	Reserved		
0003F0н	XXXXXX	BSD0 XX XXXXXXX	xxxxxx		
0003F4н	xxxxxx		[R/W] XXXXXXXX X	xxxxxx	Bit Search Module
0003F8н	xxxxxx	BSDC XX XXXXXXX	[W]	xxxxxx	
0003FСн	XXXXXX	BSRR XX XXXXXXX			
000400н	DDRG [R/W] 000	DDRH [R/W] 00011000	DDRI [R/W] 000000	DDRJ [R/W] 00000000	
000404н		-		R-bus	
000408н		-	Port Direction Register		
00040Сн		-			
000410н	PFRG [R/W]	PFRH [R/W] 0000000-	PFRI [R/W] 00-00-	_	
000414н		-	R-bus		
000418н		Port Function Register			
00041Сн		_			
000420н to		-	Reserved		
00043Сн			(Continued		

Address		Reg	Plank		
	+0	+1	+2	+3	Block
000440н	ICR00 [R/W]	ICR01 [R/W]	ICR02 [R/W]	ICR03 [R/W]	
	11111	11111	11111	11111	
000444	ICR04 [R/W]	ICR05 [R/W]	ICR06 [R/W]	ICR07 [R/W]	
000444н	11111	11111	11111	11111	Interrupt Control unit
000448н	ICR08 [R/W]	ICR09 [R/W]	ICR10 [R/W]	ICR11 [R/W]	Interrupt Control unit
000446н	11111	11111	11111	11111	
00044Сн	ICR12 [R/W]	ICR13 [R/W]	ICR14 [R/W]	ICR15 [R/W]	
00044CH	11111	11111	11111	11111	
000450н	ICR16 [R/W]	ICR17 [R/W]	ICR18 [R/W]	ICR19 [R/W]	
000430H	11111	11111	11111	11111	
000454н	ICR20 [R/W]	ICR21 [R/W]	ICR22 [R/W]	ICR23 [R/W]	
000434H	11111	11111	11111	11111	
000458н	ICR24 [R/W]	ICR25 [R/W]	ICR26 [R/W]	ICR27 [R/W]	
000430н	11111	11111	11111	11111	
00045Сн	ICR28 [R/W]	ICR29 [R/W]	ICR30 [R/W]	ICR31 [R/W]	
000 4 30n	11111	11111	11111	11111	Interrupt Control unit
000460н	ICR32 [R/W]	ICR33 [R/W]	ICR34 [R/W]	ICR35 [R/W]	interrupt Control unit
000 4 00H	11111	11111	11111	11111	
000464н	ICR36 [R/W]	ICR37 [R/W]	ICR38 [R/W]	ICR39 [R/W]	
0004048	11111	11111	11111	11111	
000468н	ICR40 [R/W]	ICR41 [R/W]	ICR42 [R/W]	ICR43 [R/W]	
000400н	11111	11111	11111	11111	
00046Сн	ICR44 [R/W]	ICR45 [R/W]	ICR46 [R/W]	ICR47 [R/W]	
000 1 00h	11111	11111	11111	11111	
000470н					
to 00047Сн		_	_		_
000480н	RSRR [R/W]	STCR [R/W]	TBCR [R/W]	CTBR [W]	
	10000000 *2	00110011 *2	00XXXX00 *1	xxxxxxx	
	CLKR [R/W]	WPR [W]	DIVR0 [R/W]	DIVR1 [R/W]	Clock Control unit
000484н		_	<u>. </u>	•	
	00000000 *1	XXXXXXX	00000011 *1	00000000 *1	
000488н	,				
to	_				Reserved
0005FCн					

^{*1:} These registers have different default values at reset level. The value shown is the INIT level value.

^{*2:} These registers have different default values at reset level. The value shown is the INIT level value from the INIT pin.

A dd =====		Reg	Block				
Address	+0	+1					
000600н			DDR2 [R/W]				
ООООООН	_	_	00000000				
000604н		_	DDR6 [R/W]	DDR7 [R/W]			
00000-11			00000000	00000000	T-unit		
000608н	DDR8 [R/W]	DDR9 [R/W]	DDRA [R/W]	DDRB [R/W]	Port Direction Register		
	0000	00000000	00000000	0000000			
00060Сн		_	_				
000610н	_	_	_	_			
000614н			PFR6 [R/W]	PFR7 [R/W]			
000614H	_	_	11111111	1			
000618н	PFR8 [R/W]	PFR9 [R/W]	PFRA [R/W]	PFRB1 [R/W]			
0000 гон	10	1111111-	0-001101	00000000			
00061Сн	PFRB2 [R/W]				T-unit Port Function Register		
00001CH	00		. on a direction regions.				
000620н		_					
000624н		_					
000628н							
to 00063Fн		_		Reserved			
	ASR0	[R/W]	[R/W]				
000640н	00000000			00000000			
	ASR1			[R/W]			
000644н		XXXXXXXX		xxxxxxxx			
	ASR2	[R/W]	ACR2 [R/W]				
000648н	xxxxxxx	XXXXXXX	T-unit				
000010	ASR3	[R/W]					
00064Сн	XXXXXXX	XXXXXXX					
000050	ASR4 [R/W] ACR4 [R/W]						
000650н	XXXXXXX	XXXXXXX					
	ASR5	[R/W]	ACR5	[R/W]			
000654н	XXXXXXX	XXXXXXX	xxxxxxx				

A 1 1		Regi	ister		Block
Address	+0	+1	+2	+3	Block
000650	ASR6	[R/W]	ACR6	[R/W]	
000658н	xxxxxxx	XXXXXXX	XXXXXXX	XXXXXXX	
00065Сн	ASR7	[R/W]	ACR7	[R/W]	
00005Сн	XXXXXXX	XXXXXXX	XXXXXXX	XXXXXXX	
000660н	AWR0	[R/W]	AWR1	[R/W]	
ООООООН	011111111	11111111	XXXXXXX	XXXXXXX	
000664н	AWR2	[R/W]	AWR3	[R/W]	
000004н	XXXXXXX	XXXXXXX	XXXXXXX	XXXXXXX	
000668н	AWR4	[R/W]	AWR5	[R/W]	
ООООООН	XXXXXXX	XXXXXXX	XXXXXXX	XXXXXXX	
00066Сн	AWR6	[R/W]	AWR7	[R/W]	
00000Сн	XXXXXXX	XXXXXXX	XXXXXXX	XXXXXXX	T-unit
000670н		_	_		1-dillt
000674н		_			
000678н	IOWR0 [R/W] XXXXXXXX	IOWR1 [R/W]	IOWR2 [R/W]	_	
00067Сн		_	_		
000680н	CSER [R/W] 000000001	CSHR [R/W] 11111111		TCR [R/W] 00000000	
000684н		_	_		
000684н to 0007F8н		_	_		Reserved
0007FСн		_	_		_
000800н to 000AFCн		_	_		Reserved
	ESTS0 [R/W]	ESTS1 [R/W]	ESTS2 [R]		
000В00н	X0000000	XXXXXXXX	1XXXXXXX		D C::
_	ECTL0 [R/W]	ECTL1 [R/W]	ECTL2 [W]	ECTL3 [R/W]	DSU
000В04н	0X000000	00000000	000X0000	00X00X11	
	<u> </u>	<u> </u>		I	(Continued

Address		Reg		Disale	
Address	+0	+1	+2	+3	Block
000В08н	ECNT0 [W]	ECNT1 [W]	EUSA [W]	EDTC [W]	
ОООВООН	XXXXXXX	XXXXXXX	XXX00000	0000XXXX	
000В0Сн	EWPT	[R]			
ОООВОСН	00000000	00000000			
000В10н	EDTR0	[W]	EDTR1		
000D10H	XXXXXXX	XXXXXXX	XXXXXXX	XXXXXXX	
000В14н					
to 000В1Сн		_	_		
		EIA0	[W]		
000В20н	XXXXXXX	XX XXXXXXXX		××××××	
		EIA1			
000В24н	XXXXXX	xx xxxxxxx		XXXXXX	
		EIA2	[W]		
000В28н	XXXXXX	XX XXXXXXX	XXXXXXXX XX	xxxxxx	
000000		EIA3	[W]		
000В2Сн	XXXXXX	XX XXXXXXXX	XXXXXXXX XX	xxxxxx	
000В30н		EIA4	[W]		DSU
UUUDJUH	XXXXXX	XX XXXXXXX	XXXXXXXX XX	XXXXXX	
000В34н		EIA5	[W]		
000D34H	XXXXXXX	XX XXXXXXXX	XXXXXXXX XX	XXXXXX	
000В38н		EIA6	[W]		
000В30н	XXXXXX	XX XXXXXXXX	XXXXXXXX X	XXXXXX	
000В3Сн		EIA7	[W]		
000D3On	XXXXXX	XX XXXXXXX	XXXXXXXX XX	XXXXXX	
000В40н		EDTA	[R/W]		
00021011	XXXXXX	XX XXXXXXXX	XXXXXX		
000В44н		EDTM			
	XXXXXX	XX XXXXXXXX			
000В48н		EOA0			
	XXXXXX	XX XXXXXXXX	XXXXXXXX XX	XXXXXX	
000В4Сн		EOA1			
	XXXXXX	XX XXXXXXXX	XXXXXX		
000В50н		EPCR	-		
	XXXXXX	XX XXXXXXXX	XXXXXXXX XX	XXXXXX	

Address		Reg		Block					
Address	+0	+1	+2	+3	BIOCK				
000В54н	xxxxx	EPSR XX XXXXXXX		xxxxxxx					
000В58н	xxxxx	EIAM0 XX XXXXXXX		XXXXXXX					
000В5Сн	XXXXXX	EIAM1 XX XXXXXXX		XXXXXXX					
000В60н	XXXXXX	EOAM0/E	ODM0 [W] XXXXXXX X	XXXXXXX	DSU				
000В64н	XXXXXX	EOAM1/E XX XXXXXXXX	ODM1 [W] XXXXXXXX X	XXXXXXX					
000В68н	xxxxx	EOD0 XX XXXXXXX	XXXXXXX						
000В6Сн	xxxxx	EOD1 XX XXXXXXX		xxxxxx					
000В70н to 000FFCн		_	_		Reserved				
001000н	XXXXXX	DMASA0 (X_XXXXXXX		xxxxxxx					
001004н	XXXXXXX	DMADA0 XXXXXXXXX		xxxxxxx					
001008н	XXXXXX	DMASA1 (X_XXXXXXX		xxxxxxx					
00100Сн	XXXXXX	DMADA1 (X_XXXXXXX		xxxxxxx					
001010н	XXXXXXX	DMASA2 (X_XXXXXXX		xxxxxxx	DMAC				
001014н	XXXXXXX	DMADA2 (X_XXXXXXX	xxxxxxx						
001018н	XXXXXXX	DMASA3 XXXXXXXX	xxxxxxx						
00101Сн	XXXXXXX	DMADA3 XX_XXXXXX	xxxxxxx						
001020н	XXXXXXX	DMASA4 (X_XXXXXXX		xxxxxxx					
001024н	XXXXXXX	DMADA4 (X_XXXXXXX		xxxxxxx	DMAC				

■ INTERRUPT SOURCES AND INTERRUPT VECTORS

	Interrupt	number		011	TDD 1 (1/ 11	
Interrupt source	Decimal	Hex	Interrupt level	Offset	TBR default address	RN
Reset	0	00	_	3FСн	000FFFFCн	
Mode vector	1	01	_	3F8н	000FFFF8н	
System reserved	2	02	_	3F4н	000FFFF4н	
System reserved	3	03	_	3F0н	000FFFF0н	
System reserved	4	04	_	3ЕСн	000FFFECн	
System reserved	5	05	_	3Е8н	000FFFE8н	
System reserved	6	06	_	3Е4н	000FFFE4н	_
Coprocessor absent trap	7	07	_	3Е0н	000FFFE0н	
Coprocessor error trap	8	80	_	3DСн	000FFFDCн	_
INTE instruction	9	09	_	3D8н	000FFFD8н	
Instruction break exception	10	0A	_	3D4н	000FFFD4н	
Operand break trap	11	0B	_	3D0н	000FFFD0н	_
Step trace trap	12	0C	_	3ССн	000FFFCCн	_
NMI request (tool)	13	0D	_	3С8н	000FFFC8н	
Undefined instruction exception	14	0E		3С4н	000FFFC4н	
NMI requ	15	0F	15 (Fн)	3С0н	000FFFC0н	
External interrupt 0	16	10	ICR00	3ВСн	000FFFBСн	6
External interrupt 1	17	11	ICR01	3В8н	000FFFB8н	7
External interrupt 2	18	12	ICR02	3В4н	000FFFB4н	11
External interrupt 3	19	13	ICR03	3В0н	000FFFB0н	12
External interrupt 4	20	14	ICR04	3АСн	000FFFACн	13
External interrupt 5	21	15	ICR05	3А8н	000FFFA8н	14
External interrupt 6	22	16	ICR06	3А4н	000FFFA4н	
External interrupt 7	23	17	ICR07	3А0н	000FFFA0н	
Reload timer 0	24	18	ICR08	39Сн	000FFF9Сн	8
Reload timer 1	25	19	ICR09	398н	000FFF98н	9
Reload timer 2	26	1A	ICR10	394н	000FFF94н	10
UART0(RX completed)	27	1B	ICR11	390н	000FFF90н	0
UART1(RX completed)	28	1C	ICR12	38Сн	000FFF8Сн	1
UART2(RX completed)	29	1D	ICR13	388н	000FFF88н	2
UART0(TX completed)	30	1E	ICR14	384н	000FFF84н	3
UART1(TX completed)	31	1F	ICR15	380н	000FFF80н	4
UART2(TX completed)	32	20	ICR16	37Сн	000FFF7Сн	5
DMAC0(end, error)	33	21	ICR17	378н	000FFF78 _H	

	Interrupt	number		011	TDD 1 (1/ 11	
Interrupt source	Decimal	Hex	Interrupt level	Offset	TBR default address	RN
DMAC1(end, error)	34	22	ICR18	374н	000FFF74н	
DMAC2(end, error)	35	23	ICR19	370н	000FFF70н	
DMAC3(end, error)	36	24	ICR20	36Сн	000FFF6Сн	_
DMAC4(end, error)	37	25	ICR21	368н	000FFF68н	_
A/D	38	26	ICR22	364н	000FFF64н	15
I ² C	39	27	ICR23	360н	000FFF60н	
System reserved	40	28	ICR24	35Сн	000FFF5Сн	
System reserved	41	29	ICR25	358н	000FFF58н	
System reserved	42	2A	ICR26	354н	000FFF54н	
System reserved	43	2B	ICR27	350н	000FFF50н	
U-TIMER0	44	2C	ICR28	34Сн	000FFF4Сн	
U-TIMER1	45	2D	ICR29	348н	000FFF48н	
U-TIMER2	46	2E	ICR30	344н	000FFF44н	
Time base timer overflow	47	2F	ICR31	340н	000FFF40н	
System reserved	48	30	ICR32	33Сн	000FFF3Сн	
System reserved	49	31	ICR33	338н	000FFF38н	
System reserved	50	32	ICR34	334н	000FFF34н	_
System reserved	51	33	ICR35	330н	000FFF30н	
System reserved	52	34	ICR36	32Сн	000FFF2Сн	_
System reserved	53	35	ICR37	328н	000FFF28н	_
System reserved	54	36	ICR38	324н	000FFF24н	_
System reserved	55	37	ICR39	320н	000FFF20н	_
System reserved	56	38	ICR40	31Сн	000FFF1Сн	_
System reserved	57	39	ICR41	318н	000FFF18н	_
System reserved	58	3A	ICR42	314н	000FFF14н	_
System reserved	59	3B	ICR43	310н	000FFF10н	_
System reserved	60	3C	ICR44	30Сн	000FFF0Сн	
System reserved	61	3D	ICR45	308н	000FFF08н	_
System reserved	62	3E	ICR46	304н	000FFF04н	
Delay interrupt source bit	63	3F	ICR47	300н	000FFF00н	
System reserved (REALOS use)	64	40	_	2ГСн	000FFEFCн	_
System reserved (REALOS use)	65	41	_	2F8н	000FFEF8н	
System reserved	66	42	_	2F4н	000FFEF4н	
System reserved	67	43	_	2F0н	000FFEF0н	
System reserved	68	44	_	2ЕСн	000FFEECн	

Interwent course	Interrupt	number	Interrupt level	Officet	TRD default address	DN
Interrupt source	Decimal	Hex	Interrupt level	Onset	TBR default address	RN
System reserved	69	45	_	2Е8н	000FFEE8н	
System reserved	70	46	_	2Е4н	000FFEE4н	_
System reserved	71	47	_	2Е0н	000FFEE0н	
System reserved	72	48	_	2DC _H	000FFEDCн	
System reserved	73	49	_	2D8н	000FFED8н	
System reserved	74	4A	_	2D4н	000FFED4н	
System reserved	75	4B	_	2D0н	000FFED0н	
System reserved	76	4C	_	2ССн	000FFECCн	
System reserved	77	4D	_	2С8н	000FFEC8н	
System reserved	78	4E	_	2С4н	000FFEC4н	
System reserved	79	4F	_	2С0н	000FFEC0н	
Used by INT instructions	80 to 255	50 to FF	_	2ВСн to 000н	000FFEBCн to 000FFC00н	_

■ PERIPHERAL RESOURCES

1. Interrupt Controller

(1) Overview

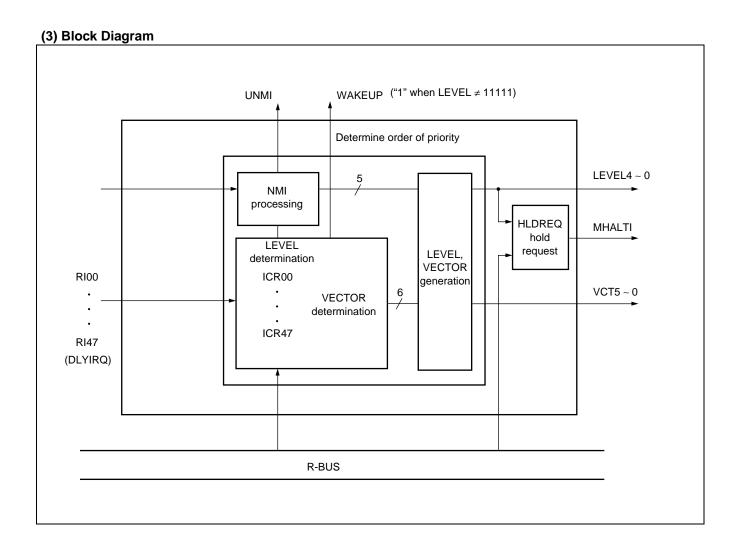
The interrupt controller receives and processes arbitration of interrupts.

Hardware Configuration

This module is configured from the following elements.

- ICR register
- · Interrupt priority determination circuit
- Interrupt level and interrupt number (vector) generator
- Hold request removal request generator

Principal Functions

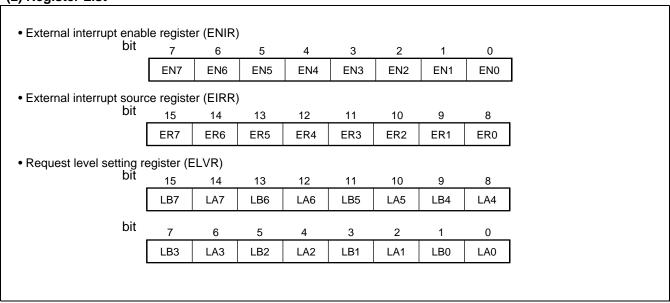

This module primarily provides the following functions.

- NMI request / interrupt request detection
- Order of priority determination (according to level and number)
- Notification (to CPU) of interrupt level of source according to determination
- Notification (to CPU) of interrupt number of source according to determination
- Instruction (to CPU) to recover from stop mode when an interrupt other than NMI/interrupt level "11111" is generated
- · Generation of hold request removal requests to the bus master

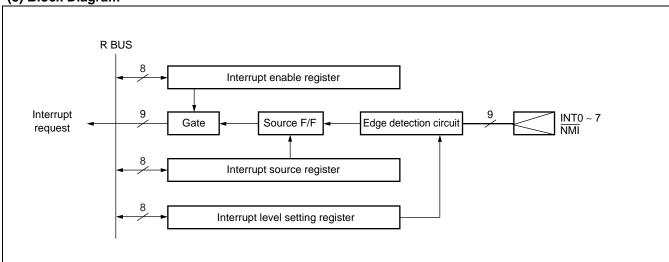
(2) Register List

	bit 7	6	5	4	3	2	1	0	•
Address: 00000440H	_	_	_	ICR4	ICR3	ICR2	ICR1	ICR0	ICR00
Address: 00000441H	_	_	_	ICR4	ICR3	ICR2	ICR1	ICR0	ICR01
Address: 00000442H	_		_	ICR4	ICR3	ICR2	ICR1	ICR0	ICR02
Address: 00000443H	_		_	ICR4	ICR3	ICR2	ICR1	ICR0	ICR03
Address: 00000444H	_		_	ICR4	ICR3	ICR2	ICR1	ICR0	ICR04
Address: 00000445H	_		_	ICR4	ICR3	ICR2	ICR1	ICR0	ICR05
Address: 00000446H	_		_	ICR4	ICR3	ICR2	ICR1	ICR0	ICR06
Address: 00000447H	_		_	ICR4	ICR3	ICR2	ICR1	ICR0	ICR07
Address: 00000448H	_		_	ICR4	ICR3	ICR2	ICR1	ICR0	ICR08
Address: 00000449H	_		_	ICR4	ICR3	ICR2	ICR1	ICR0	ICR09
Address: 0000044AH	_	_	_	ICR4	ICR3	ICR2	ICR1	ICR0	ICR10
Address: 0000044BH	_	_	_	ICR4	ICR3	ICR2	ICR1	ICR0	ICR11
Address: 0000044CH	_	_	_	ICR4	ICR3	ICR2	ICR1	ICR0	ICR12
Address: 0000044DH	_	_	_	ICR4	ICR3	ICR2	ICR1	ICR0	ICR13
Address: 0000044EH	_		_	ICR4	ICR3	ICR2	ICR1	ICR0	ICR14
Address: 0000044FH	_	_	_	ICR4	ICR3	ICR2	ICR1	ICR0	ICR15
Address: 00000450H	_	_	_	ICR4	ICR3	ICR2	ICR1	ICR0	ICR16
Address: 00000451H	_		_	ICR4	ICR3	ICR2	ICR1	ICR0	ICR17
Address: 00000452H	_	_	_	ICR4	ICR3	ICR2	ICR1	ICR0	ICR18
Address: 00000453H		_	_	ICR4	ICR3	ICR2	ICR1	ICR0	ICR19
Address: 00000454H		_	_	ICR4	ICR3	ICR2	ICR1	ICR0	ICR20
Address: 00000455H	_		_	ICR4	ICR3	ICR2	ICR1	ICR0	ICR21
Address: 00000456H	_	_	_	ICR4	ICR3	ICR2	ICR1	ICR0	ICR22
Address: 00000457H	_	_		ICR4	ICR3	ICR2	ICR1	ICR0	ICR23
Address: 00000458H	_	_	_	ICR4	ICR3	ICR2	ICR1	ICR0	ICR24
Address: 00000459H	_	_	_	ICR4	ICR3	ICR2	ICR1	ICR0	ICR25
Address: 0000045AH		_	_	ICR4	ICR3	ICR2	ICR1	ICR0	ICR26
Address: 0000045BH	_		_	ICR4	ICR3	ICR2	ICR1	ICR0	ICR27
Address: 0000045CH	_	_	_	ICR4	ICR3	ICR2	ICR1	ICR0	ICR28
Address: 0000045DH	_	_	_	ICR4	ICR3	ICR2	ICR1	ICR0	ICR29
Address: 0000045EH	_	_	_	ICR4	ICR3	ICR2	ICR1	ICR0	ICR30
Address: 0000045FH	_	_	_	ICR4	ICR3	ICR2	ICR1	ICR0	ICR31
				R	R/W	R/W	R/W	R/W	•

	bit 7	6	5	4	3	2	1	0	
Address: 00000460H	_	_	_	ICR4	ICR3	ICR2	ICR1	ICR0	ICR32
Address: 00000461H	_	_	_	ICR4	ICR3	ICR2	ICR1	ICR0	ICR33
Address: 00000462H	_	_	_	ICR4	ICR3	ICR2	ICR1	ICR0	ICR34
Address: 00000463H	_	_	_	ICR4	ICR3	ICR2	ICR1	ICR0	ICR35
Address: 00000464H	_	_	_	ICR4	ICR3	ICR2	ICR1	ICR0	ICR36
Address: 00000465H	_	_	_	ICR4	ICR3	ICR2	ICR1	ICR0	ICR37
Address: 00000466н	_	_	_	ICR4	ICR3	ICR2	ICR1	ICR0	ICR38
Address: 00000467H	_	_	_	ICR4	ICR3	ICR2	ICR1	ICR0	ICR39
Address: 00000468H	_	_	_	ICR4	ICR3	ICR2	ICR1	ICR0	ICR40
Address: 00000469H	_	_	_	ICR4	ICR3	ICR2	ICR1	ICR0	ICR41
Address: 0000046AH	_	_	_	ICR4	ICR3	ICR2	ICR1	ICR0	ICR42
Address: 0000046BH	_	_	_	ICR4	ICR3	ICR2	ICR1	ICR0	ICR43
Address: 0000046CH	_	_	_	ICR4	ICR3	ICR2	ICR1	ICR0	ICR44
Address: 0000046DH	_	_	_	ICR4	ICR3	ICR2	ICR1	ICR0	ICR45
Address: 0000046EH	_	_	_	ICR4	ICR3	ICR2	ICR1	ICR0	ICR46
Address: 0000046FH	_		_	ICR4	ICR3	ICR2	ICR1	ICR0	ICR47
				R	R/W	R/W	R/W	R/W	-
									_
Address: 00000045H	MHALTI		_	LVL4	LVL3	LVL2	LVL1	LVL0	HRCL
	R/W			R	R/W	R/W	R/W	R/W	



2. External Interrupt - NMI Control Block

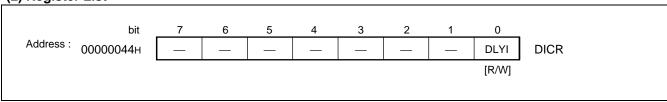

(1) Overview

The External Interrupt - control block controls external interrupt requests input at the $\overline{\text{NMI}}$ and INT0-7 pins. The request level can be selected from "H," "L," "rising edge," or "falling edge" detection (except for NMI).

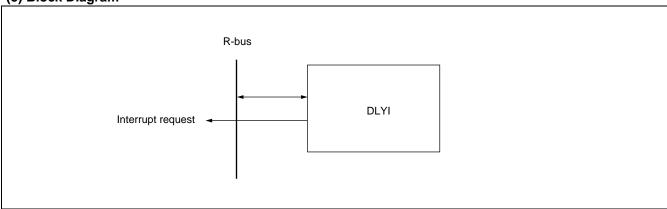
(2) Register List

(3) Block Diagram

3. REALOS Related Hardware


REALOS related hardware is used by the REALOS operating system. Therefore, when REALOS is in use, these resources cannot be used by user programs.

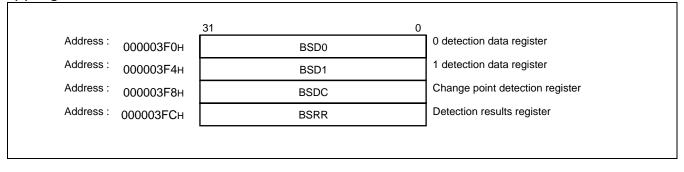
1) Delay Interrupt Module

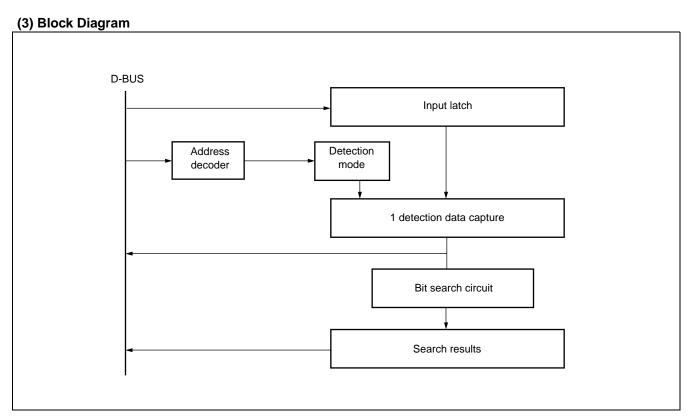

(1) Overview

The delay interrupt module is a module that generates interrupts for task switching. This module can be used with software instructions to generate and cancel interrupts to the CPU.

(2) Register List

(3) Block Diagram




2) Bit Search Module

(1) Overview

Searches data written to input registers for "0" or "1" or change points, and outputs the value of the detected bits.

(2) Register List

4. 16-bit Reload Timer

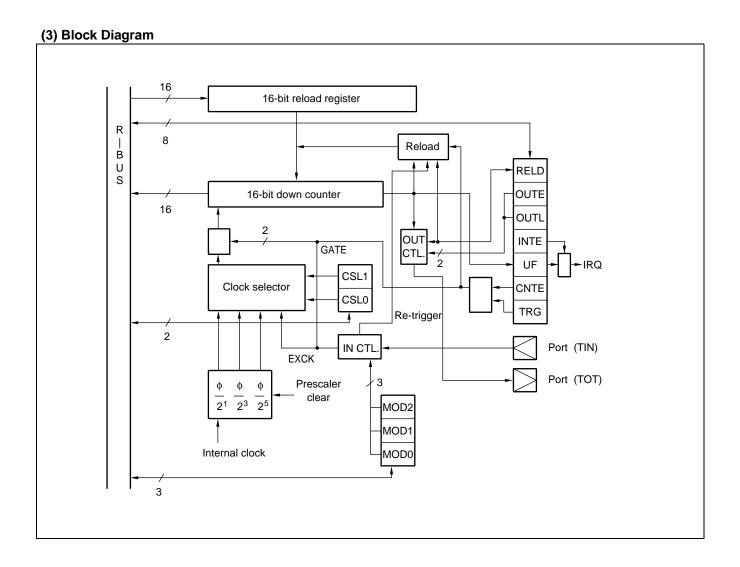
(1) Overview

The 16-bit timer is configured from a 16-bit down-counter, 16-bit reload register, prescaler for internal count clock generation, and a control register.

For the input clock signal, a selection of three internal clock signals (machine clock multiplied by 2, 8, or 32) or external clock is provided.

The output pin (TOUT) produces a toggle output waveform at every underflow in reload mode, and a square wave indicating counting in progress in one-shot mode.

The input pin (TIN) can be used for event input in external event count mode, and trigger input or gate input in internal clock mode.


The external event count function can be used in reload mode or as a frequency multiplier in external clock mode.

There are three built-in 16-bit reload timer channels on this device.

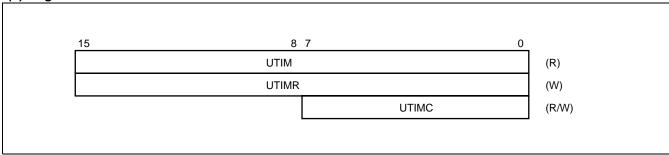
Channels 0 1 and 1 can be used to start DMA transfer from an interrupt signal.

(2) Pagistar List

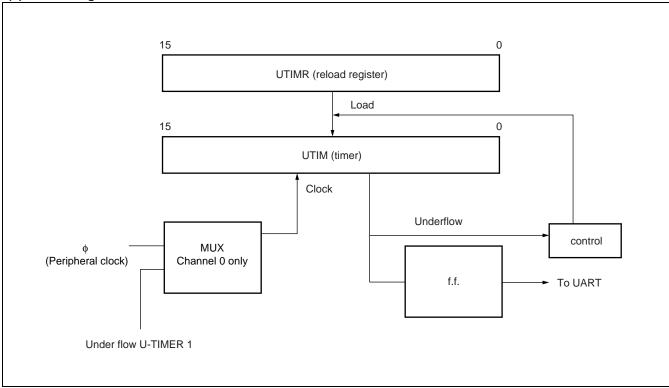
(2) Register List								
Control status register (ΓMCSR)							
	15	14	13	12	11	10	9	8
	_	_	_	_	CSL1	CSL0	MOD2	MOD1
	7	6	5	4	3	2	1	0
	MOD0	_	OUTL	RELD	INTE	UF	CNTE	TRG
• 16-bit timer register (TM	R)							
	15							0
• 16-bit reload register (TI	MRLR)							
	15							0

5. U-TIMER (16 bit timer for UART baud rate generation)

(1) Overview


The U-TIMER is a 16-bit timer used to generate the baud rate for the UART. Any desired baud rate can be set using the combination of chip operating frequency and U-TIMER reload value.

The U-TIMER can also be used as an interval timer by generating an interrupt from a count underflow event.


This device features a 3-channel built-in U-TIMER. By connecting two U-TIMER channels used as interval timers in a cascade connection, it is possible to count intervals up to a maximum of $2^{32} \times \phi$.

The available case connections are channel 0 to channel 1, and channel 1 to channel 2.

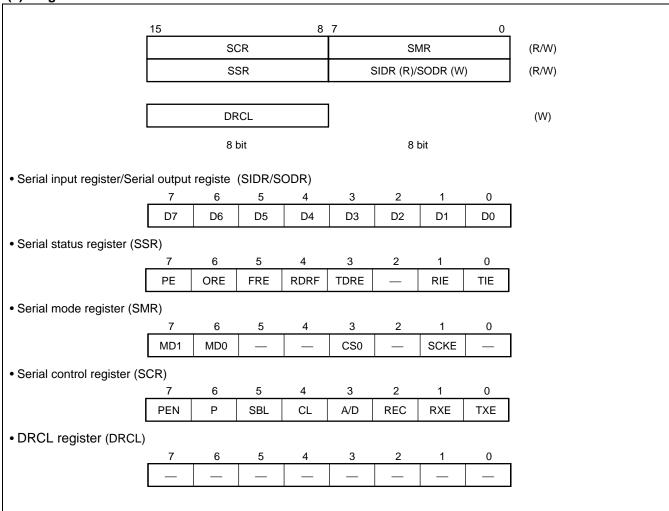
(2) Register List

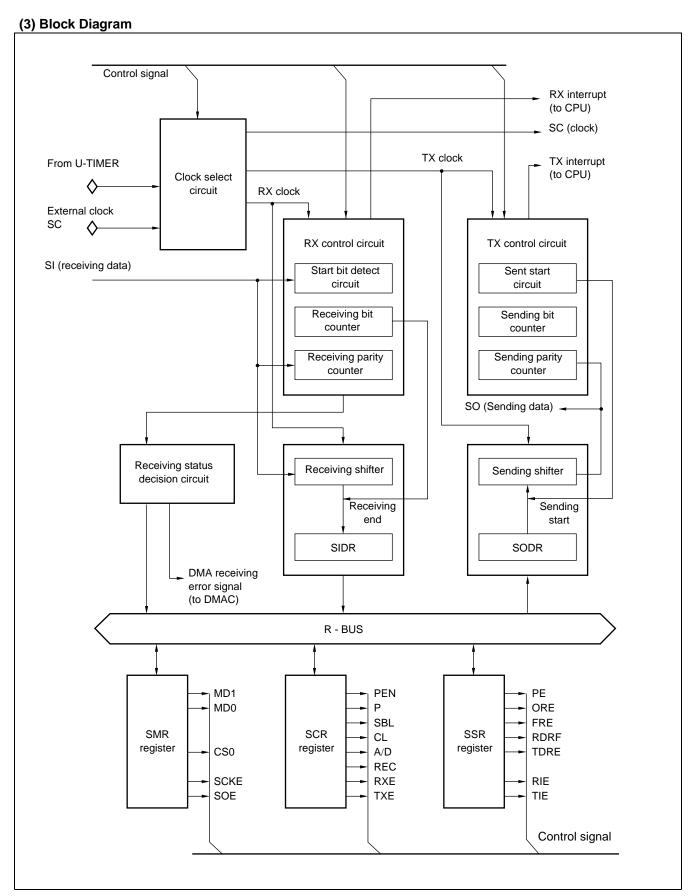
(3) Block Diagram

6. UART

(1) Overview

The UART is an I/O port for asynchronous (start-stop synchronized) or CLK synchronized transmission, providing the following features. This device features a 3-channel built-in UART.


- Full duplex double buffer
- Asynchronous (start-stop synchronized) or CLK synchronized transmission enabled
- Supports multi-processor mode
- Fully programmable baud rate


 Built-in timer can be set to any or

Built-in timer can be set to any desired baud rate (see U-TIMER description)

- Independent baud rate setting from external clock enabled.
- Error detection functions (parity, framing, overrun)
- Transfer signal NRZ encoded
- DMA transfer start from interrupt enabled
- DMAC interrupt source cleared by write operation to DRCL register.

(2) Register List

7. A/D Converter (Sequential comparison type)

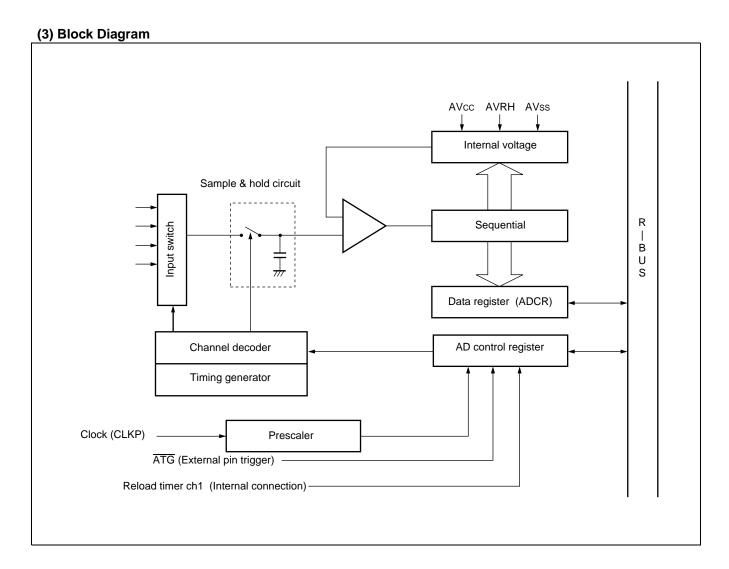
(1) Overview

This A/D converter is a module that coverts analog input voltages to digital values, and provides the following features.

- Minimum conversion time 5.4 μs/ch (at machine clock 33 MHz CKLP)
- Built-in sample & hold circuit
- Resolution 10 bits (8-bit accuracy)
- Analog input: 4 channels by program selection

Single conversion mode: Conversion on 1 select channel

Scan conversion mode: Select continuous multiple channels. Up to 4 channels can be selected by program.


Continuous conversion mode: Continuous conversion on selected channel

Stop conversion mode: 1-channel conversion then pause and wait until the next start is applied (enables synchronized conversion start)

- DMA transfer start from interrupt enabled
- Start sources can be selected from software, external trigger (falling edge), reload timer (rising edge).

(2) Register List

(2) Register Elst										
Control status register (ADCS)										
bit	15	14	13	12	11	10	9	8		
	BUSY	INT	INTE	PAUS	STS1	STS0	STRT	_		
bit	7	6	5	4	3	2	1	0		
	MD1	MD0	ANS2	ANS1	ANS0	ANE2	ANE1	ANE0		
Data register (ADCR)										
bit	15	14	13	12	11	10	9	8		
	_	_	_	_		_	9	8		
bit	7	6	5	4	3	2	1	0		
	7	6	5	4	3	2	1	0		

Precautions for Use:

When the A/D converter is started from an external trigger or internal timer, the ADCS register A/D start source bits STS1, 0 are set, and at this time the input values for the external trigger and internal timer should be set to the inactive side. If these values are set to the active side, abnormal operation may result.

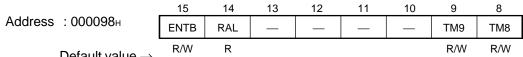
When setting the STS 1, 0 bits, set \overline{ATG} = "1" input, reload timer (channel 2) = "0" output.

Caution: If internal impedance is higher than the specified value, it may not be possible to obtain analog input value sampling within the specified sampling time, so that proper results will not be obtained.

8. I2C Interface

(1) Overview

The I²C interface operates as a master/slave device on the I²C bus at serial I/O ports with IC bus support. The following features are provided.


- Master/slave sending and receiving
- · Arbitration function
- Clock synchronization function
- Slave address/general call address detection function
- Transfer direction detection function
- Start condition repeat generation and detection function
- Bus error detection function
- 10-bit / 7-bit master/slave addressing
- Compatible with standard mode (Max 100 Kbps) or high speed mode (Max 400 Kbps)
- Transfer end interrupt / bus error interrupt generation

(2) Register List

(2) Register L	-IST									
Bus Control	Register (IBCR)									
		15	14	13	12	11	10	9	8	
Address	: 000094н	BER	BEIE	SCC	MSS	ACK	GCAA	INTE	INT	
	Default value →	R/W 0								
Bus Status Register (IBSR)										
	_	7	6	5	4	3	2	1	0	
Address	: 000095н	BB	RSC	AL	LRB	TRX	AAS	GCA	ADT	
	Default value \rightarrow	R 0								
• 10-Bit Slave	Address Registe	r								
		15	14	13	12	11	10	9	8	
Address	: 000096н	_	_	_	_	_	_	TA9	TA8	
	Default value →	_	_	_	_	_	_	R/W 0	R/W 0	
	_	7	6	5	4	3	2	1	0	
Address	: 000097н	TA7	TA6	TA5	TA4	TA3	TA2	TA1	TA0	
	Default value →	R/W 0								

(Continued)

• 10-Bit Slave Address Mask	Register	(ITMK)
-----------------------------	----------	--------

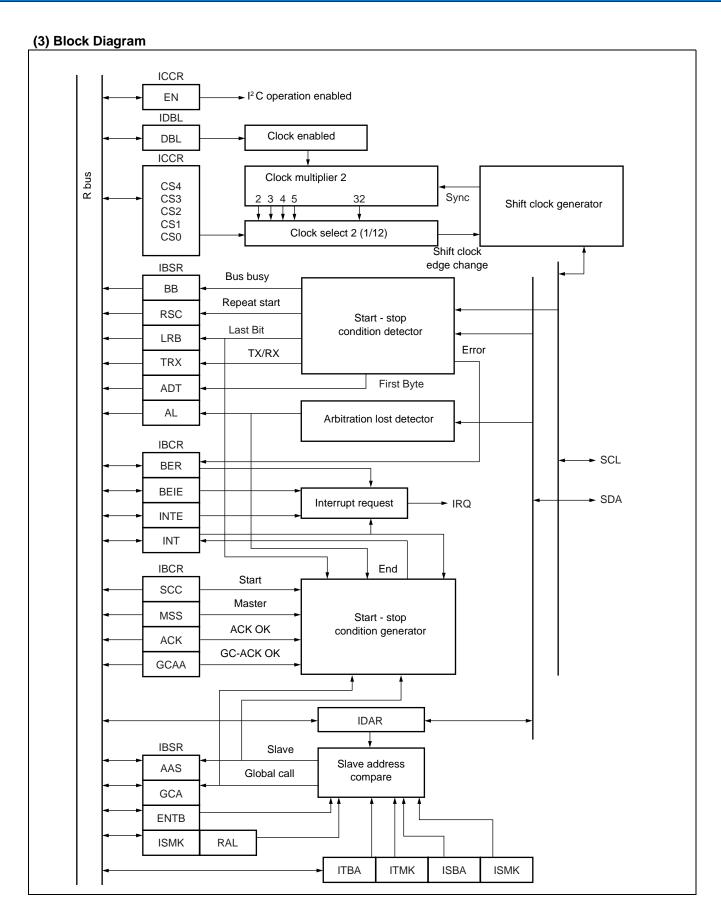
• 7-Bit Slave Address Register (ISBA)

	7	6	5	4	3	2	1	0	_
Address: 00009BH		SA6	SA5	SA4	SA3	SA2	SA1	SA0	
Default value \rightarrow		R/W	•						

• 7-Bit Slave Address Mask Register (ISMK)

	15	14	13	12	11	10	9	8	_
Address: 00009AH	ENSB	SM6	SM5	SM4	SM3	SM2	SM1	SM0	
Default value →	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	-

• Data Register (IDAR)


_	7	6	5	4	3	2	1	0
Address: 00009DH	D7	D6	D5	D4	D3	D2	D1	D0
Default value $ ightarrow$	R/W 0							

• Clock Control Register (ICCR)

	15	14	13	12	11	10	9	8	
Address: 00009EH	TEST	_	EN	CS4	CS3	CS2	CS1	CS0	
Default value \rightarrow	W 0	_	R/W 0	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	-

• Clock Disable Register (IDBL)

	7	6	5	4	3	2	1	0
Address: 00009FH	_	_	_	_	_	_	_	DBL
Default value \rightarrow	_	_	_	_	_	_	_	R/W 0

9. DMAC (DMA Controller)

(1) Overview

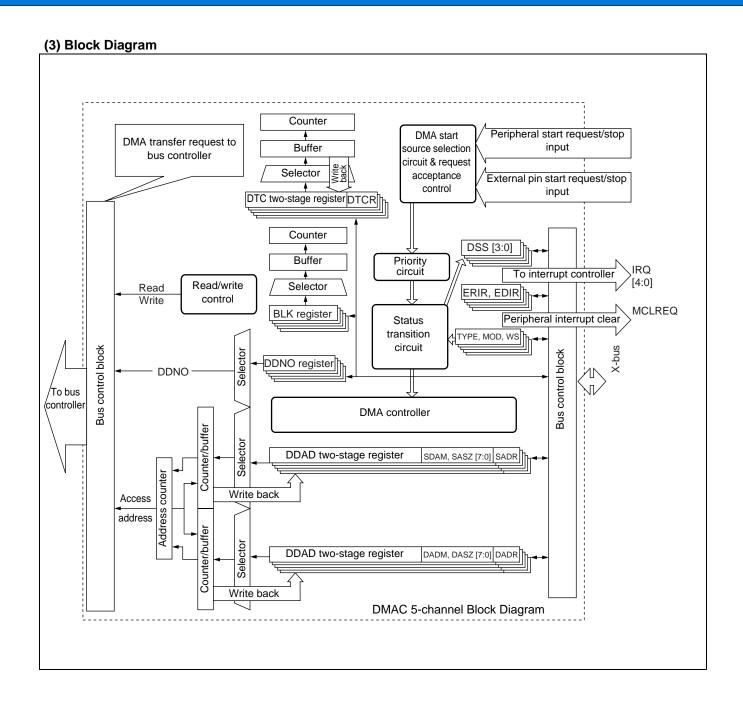
This module is used to accomplish DMA (Direct Memory Access) transfer on FR family devices.

DMA transfer controlled by this module increases system performance by enabling high speed transfer of many types of data without going through the CPU.

•Hardware Configuration

This module is principally configured from the following units:

- Five independent DMA channels
- 5-channel independent access control circuit
- 32-bit address registers (reload enabled: 2 per channel)
- 16-bit transfer count registers (reload enabled: 2 per channel)
- 4-bit block count registers (1 per channel)
- External transfer request input pins: DREQ0,DREQ1,DREQ2 (ch0,1,2 only)
- External transfer request acknowledge output pins: DACK0, DACK1, DACK2 (ch0,1,2 only)
- DMA output completed pins: DEOP0, DEOP1, DEOP2 (ch0,1,2 only)
- Fly-by transfer (memory to I/O, memory to memory) (ch0,1,2 only)
- · Two-cycle transfer


Principal Functions

Data transfer using the DMAC module primarily involves the following functions:

- Supports independent data transfer on multiple channels (5 ch)
- (1) Order of priority (ch.0 > ch.1 > ch.2 > ch.3 > ch.4)
- (2) The order can be reversed between ch.0-ch.1.
- (3) DMAC startup sources
 - Input from an external-only pin (edge detection/level detection, ch0,1,2 only)
- Request from a built-in peripheral (shared interrupt request, including external interrupts)
- Software request (register write)
- (4) Transfer modes
 - Demand transfer / burst transfer / step transfer / block transfer
- Addressing mode 32-bit full address designation (increment/decrement/fixed)
 (address increment can be specified up to -255 to +255)
- Data type, byte / half-word / word length
- Single-shot / reload selection available

(2) Register Descriptions

	(bit) 31 24 23 16 15 08 07 00
ch.0 Control/status register A	DMACA0 0000200н
ch.0 Control/status register B	DMACB0 0000204H
ch.1 Control/status register A	DMACA1 0000208H
ch.1 Control/status register B	DMACB1 000020CH
ch.2 Control/status register A	DMACA2 0000210H
ch.2 Control/status register B	DMACB2 0000214H
ch.3 Control/status register A	DMACA3 0000218H
ch.3 Control/status register B	DMACB3 000021CH
ch.4 Control/status register A	DMACA4 0000220H
ch.4 Control/status register B	DMACB4 0000224H
Overall control register	DMACR 0000240H
-	
ch.0 Transfer source address register	DMASA0 0001000H
ch.0 Transfer source address register	DMADA0 0001004H
ch.1 Transfer source address register	DMASA1 0001008H
ch.1 Transfer source address register	DMADA1 000100CH
ch.2 Transfer source address register	DMASA2 0001010H
ch.2 Transfer source address register	DMADA2 0001014H
ch.3 Transfer source address register	DMASA3 0001018H
ch.3 Transfer source address register	DMADA3 000101CH
ch.4 Transfer source address register	DMASA4 0001020H
Cit.4 Transier source address register	DMADA4 0001024н

10. External Interface

(1) Overview

The external interface controller controls the interface between the LSI's internal bus and external memory or I/O devices.

This section describes the functions of the external interface.

(2) Features

- Up to 32 bit-length (4 Gbyte space) address output.
- Connects directly to many external memory (8 bit/16 bit) devices, allows control of multiple access timings.

Asynchronous SRAM, asynchronous ROM/Flash memory (multiple write strobe type or byte enable type)

Page mode ROM/flash memory (2/4/8 page size enabled)

Burst ROM/Flash memory (MBM29BL160D/161D/162D etc.)

Address/data multiplexed bus (8 bit/16 bit width only)

Synchronous memory* (ASIC built-in memory etc.)

- *: Does not connect to synchronous SRAM.
- 8 independent bank (chip select area) settings, each with corresponding ship select output available Each area size can be set in multiples of 64 KB (from 64 KB to 2 GB per chip select area).

Each area can be set in any desired area of logic address space (boundaries limited by area size).

• The following functions can be independently set for each chip select area.

Chip select area enable/disable (no access to prohibited areas)

Access timing type for each area, etc.

Detailed access timing settings (individual access type settings for wait cycle, etc.)

Data bus width setting (8 bit/16 bit)

Byte ordering endian setting* (big or little).

*: CSO area available with big endian only.

Write prohibited setting (read-only areas)

Internal cache loading enable/disable settings

Pre-fetch function enable/disable settings

Maximum burst length setting (1,2,4,8)

· Different detailed timing settings for each access timing type

Different settings can be used for each chip select area even for the same access timing type.

Auto wait setting up to 15 cycles (asynchronous SRAM, ROM, Flash, I/O areas)

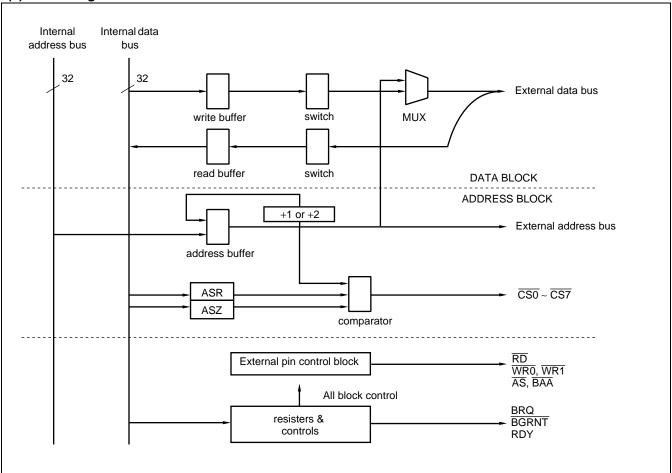
Bus cycle extension with external RDY input enabled (asynchronous SRAM, ROM, Flash, I/O areas)

First access wait and page wait settings enabled (burst, page mode ROM/FLASH areas)

Different idle, recovery cycles setup delay insertion etc. enabled

· Fly-by transfer with DMA enabled

Transfer between memory and I/O with 1 access


Memory wait cycle can be synchronized with I/O wait cycle during fly-by

Hold time can be obtained by delaying transfer access only

Specific idle/recovery cycles can be set for fly-by transfer

- External bus arbitration using BRQ and BGRNT enabled
- Pins not used in external interface can be set for use as general purpose I/O ports

(4) I/O Pins

These are the external interface pins. (Some pins have dual functions.)

< Normal bus interface >

A24 to A0, D31 to D16

CS0, CS1, CS2, CS3, CS4, CS5, CS6, CS7

AS, SYSCLK, MCLK

 $\overline{\mathsf{RD}}$

 \overline{WE} , $\overline{WR0}$ (\overline{UUB}), $\overline{WR1}$ (\overline{ULB})

RDY, BRQ, BGRNT

< Memory interface >

MCLK

 $\overline{\mathsf{LBA}} \ (= \overline{\mathsf{AS}}) \ , \ \overline{\mathsf{BAA}}^*$

*: For burst ROM, Flash use

< DMA interface >

IOWR, IORD

DACK0, DACK1, DACK2

DREQ0, DREQ1, DREQ2

DEOP0/DSTP0, DEOP1/DSTP1, DEOP2/DSTP2

(5) Register List

Address	31 24	23 16	15 08	07 00			
00000640н	AS	R0	AC	R0			
00000644н	AS	R1	AC	R1			
00000648н	AS	R2	ASR2				
0000064Сн	AS	R3	AC	R3			
00000650н	AS	R4	AC	R4			
00000654н	AS	R5	AC	:R5			
00000658н	AS	R6	AC	R6			
0000065Сн	AS	R7	AC	:R7			
00000660н	AW	/R0	AWR1				
00000664н	AW	/R2	AWR3				
00000668н	AW	/R4	AW	/R5			
0000066Сн	AW	/R6	AW	/R7			
00000670н	Reserved	Reserved	Reserved	Reserved			
00000674н	Reserved	Reserved	Reserved	Reserved			
00000678н	IOWR0	IOWR1	IOWR2	Reserved			
0000067Сн	Reserved	Reserved	Reserved	Reserved			
00000680н	CSER	CHER	Reserved	TCR			
00000684н	Reserved	Reserved	Reserved	Reserved			
00000688н	Reserved	Reserved	Reserved	Reserved			
0000068Сн	Reserved Reserved		Reserved	Reserved			
• • •	•••		• • •	• • •			
000007F8н	Reserved	Reserved	Reserved	Reserved			
000007FС _Н	Reserved	(MODR)	Reserved	Reserved			

Reserved: This address is reserved, and should always be set to "0."

MODR: Cannot be accessed from user programs.

■ ELECTRICAL CHARACTERISTICS

1. Absolute Maximum Ratings

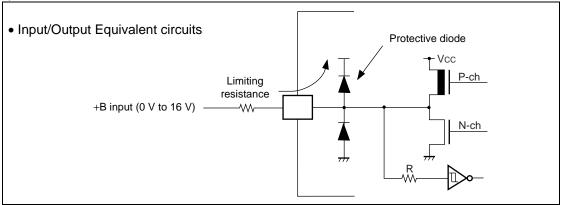
(Vss = AVss = 0 V)

Parameter	Symbol	Rat	ing	Unit	Remarks
Farameter	Syllibol	Min	Max	Onit	Remarks
Supply voltage	Vcc	Vss - 0.5	Vss + 4.0	V	*1
Analog supply voltage	AVcc	Vss - 0.5	Vss + 4.0	V	*2
Analog reference voltage	AVRH	Vss - 0.5	Vss + 4.0	V	*2
Input voltage	Vı	Vss - 0.3	Vcc + 0.3	V	
Analog pin input voltage	VIA	Vss - 0.3	AVcc + 0.3	V	
Output voltage	Vo	Vss - 0.3	Vcc + 0.3	V	
Maximum clamp current	I CLAMP	-2.0	2.0	mA	*6
Total maximum clamp current	Σ ICLAMP		20	mA	*6
L level maximum output current	loL		10	mA	*3
L level average output current	lolav		8	mA	*4
L level maximum total output current	ΣΙοι		100	mA	
L level average total output current	Σ lolav		50	mA	*5
H level maximum output current	Іон		-10	mA	*3
H level average output current	lohav		-4	mA	*4
H level maximum total output current	Σ loн		-50	mA	
H level average total output current	Σ lohav		-20	mA	*5
Power consumption	P□		750	mW	
Operating temperature	TA	0	+70	°C	
Storage temperature	Тѕтс	_	+150	°C	

^{*1:} Vcc must not be lower than Vss - 0.3 V.

- Use within recommended operating conditions.
- Use at DC voltage (current) .
- The +B signal should always be applied with a limiting resistance placed between the +B signal and the microcontroller.
- The value of the limiting resistance should be set so that when the +B signal is applied the input current to the microcontroller pin does not exceed rated values, either instantaneously or for prolonged periods.
- Note that when the microcontroller drive current is low, such as in the power saving modes, the +B input potential may pass through the protective diode and increase the potential at the Vcc pin, and this may affect other devices.

^{*2 :} AVcc and AVRH shall never exceed Vcc+0.3 V. Also AVRH shall never exceed AVcc.


^{*3:} Maximum output current determines the peak value of any one of the corresponding pins.

^{*4 :} Average output current is defined as the value of the average current flowing over 100 ms at any one of the corresponding pins.

^{*5 :} Average total output current is defined as the value of the average current flowing over 100 ms at all of the corresponding pins.

^{*6: •} Applicable to pins: P20 to P27, P60 to P67, P70, PJ0 to PJ7, PI0 to PI5, PH0 to PH7, PB0 to PB5, PA0 to PA7, P80 to P82, P85, P90 to P97, AN0 to AN3

- Note that if a +B signal is input when the microcontroller power supply is off (not fixed at 0 V), the power supply is provided from the pins, so that incomplete operation may result.
- Note that if the +B input is applied during power-on, the power supply is provided from the pins and the resulting supply voltage may not be sufficient to operate the power-on reset.
- Care must be taken not to leave the +B input pin open.
- Note that analog system input/output pins other than the A/D input pins (LCD drive pins, comparator input pins, etc.) cannot accept +B signal input.
- Sample recommended circuits:

WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

2. Recommended Operating Conditions

(Vss = AVss = 0 V)

Parameter	Cumbal	Va	lue	l lmi4	Remarks
raiailletei	Symbol	Min	Max	Unit	Remarks
	Vcc	3.0	3.6	V	In normal operation
Supply voltage	Vcc	3.0	3.6	V	In stop mode with RAM status maintained
Analog supply voltage	AVcc	Vss - 0.3	Vss + 3.6	V	
Analog reference voltage	AVRH	AVss	AVcc	V	
Operating temperature	TA	0	+70	°C	

WARNING: The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges.

Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure.

No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their FUJITSU representatives beforehand.

3. DC Characteristics

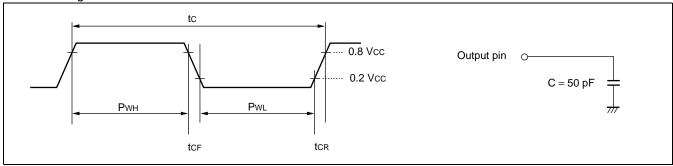
(Vcc = 3.0 V to 3.6 V , Vss = AVss = 0 V, TA = 0 °C to +70 °C)

Davamatar	Counch of	Din nome	Condition		Value		1 lm !4	Demonto
Parameter	Symbol	Pin name	Condition	Min	Тур	Max	Unit	Remarks
#1 12 Lavel Search	VIH	See note *	_	$0.7 \times Vcc$	_	Vcc + 0.3	V	
"H" level input voltage	VHIS	Input pins other than *	_	0.8 × Vcc	_	Vcc + 0.3	٧	Hysteresis input
"L" level input	VIL	See note *	_	Vss		0.25 × Vcc	٧	
voltage	VILS	Input pins other than *	_	Vss	_	0.2×Vcc	V	Hysteresis input
"H" level output voltage	Vон	D16 to D31 A00 to A24 P60 to PJ7	$V_{CC} = 3.0 \text{ V}$ $I_{OH} = -4.0 \text{ mA}$	Vcc - 0.5	_	Vcc	V	
"L" level output voltage	Vol	D16 to D31 A00 to A24 P60 to PJ7	Vcc = 3.0 V loL = 8.0 mA	Vss		0.4	V	
Input leak current (Hi-Z output leak current)	lu	D16 to D31 A00 to A24 P60 to PJ7	Vcc = 3.6 V 0.45 V <v<sub>I<v<sub>CC</v<sub></v<sub>	-5		+5	μΑ	
Pull-up resistance	Rup	ĪNĪT	Vcc = 3.6 V Vı = 0.45 V	12	25	100	kΩ	
Pull-down resistance	Roown	P82/BRQ	Vcc = 3.6 V Vı = 3.3 V	12	25	100	kΩ	
	lcc	.,	fc = 16.5 MHz Vcc = 3.3 V	_	150	_	mA	(4x multiplied) 66 MHz operation
Supply current	Iccs	Vcc	fc = 16.5 MHz Vcc = 3.3 V	_	50	_	mA	Sleep mode
	Іссн		T _A = 25 °C Vcc = 3.3 V	_	50	_	μΑ	Stop mode
Input capacitance	Cin	Other than: Vcc Vss AVcc AVss	_	_	10	_	pF	

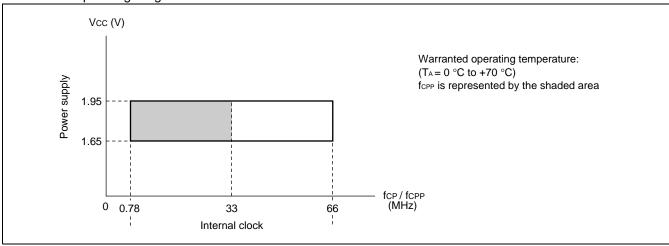
^{*:} Pins without hysteresis input pins: D16 to D31, RDY, BRQ, $\overline{\text{INIT}}$

4. AC Characteristics

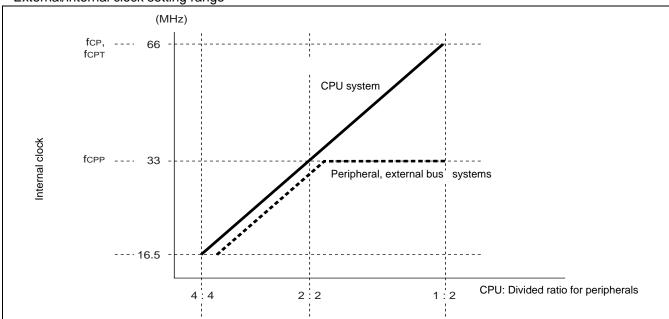
(1) Clock Timing Standards


(Vcc = 3.0 V to 3.6 V , Vss = AVss = 0 V, $T_A = 0$ °C to +70 °C)

Parameter	Sym-	Pin	Condition	Val	lue	Unit	Remarks	
Farameter	bol	name	Condition	Min	Max	Oilit	Remarks	
Clock frequency (1)	fc	X0 X1		12.5	16.5	MHz	PLL system*1 (self oscillation 16.5MHz,	
Clock cycle time	t c	X0 X1			60.6	ns	multiplied x4,maximum internal operation 66MHz)	
Clock frequency (2)	f c	X0 X1		10	33	MHz	Self oscillation (x2 frequency input)	
Clock frequency (3)	f c	X0 X1		10	33	MHz		
Clock cycle time	t c	X0 X1	_	40	100	ns	External clock	
Input clock pulse width	P _{WH} P _{WL}	X0 X1		16		ns		
Input clock rise, fall time	tcr tcr	X0 X1			8	ns	(tcr + tcr)	
	f CP			0.78*2	66	MHz	CPU system	
Internal operating clock frequency	f CPP			0.78*2	33	MHz	Peripheral system	
	f CPT			0.78*2	66	MHz	External bus system	
	t CP			15.2	1280*2	ns	CPU system	
Internal operating clock cycle time	t CPP			30.3	1280*2	ns	Peripheral system	
	t CPT			15.2	1280*2	ns	External bus system	

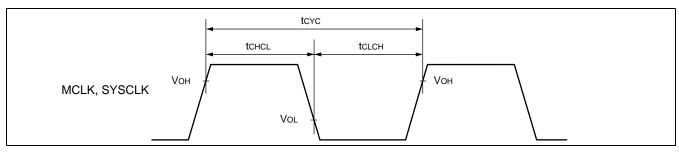

^{*1 :} When using the PLL, the clock frequency should be around 12.5 MHz to 16.5 MHz.

^{*2:} The values shown represent a minimum clock frequency of 12.5 MHz input at the X0 pin, using the oscillator circuit PLL and a gear ratio of 1/16.


•Clock timing measurement conditions:

Warranted operating range

• External/internal clock setting range


Notes: • When using the PLL, the external clock input should be around 16.5 MHz.

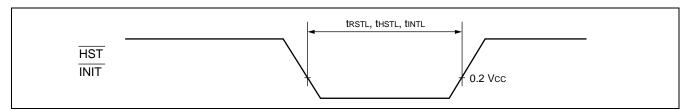
- Set PLL oscillator stabilization time > 300 μs.
- The internal clock gear setting should be within the values shown in (1) clock timing standards.

(2) Clock Output Timing

(Vcc = 3.0 V to 3.6 V , Vss = AVss = 0 V, TA = 0 °C to +70 °C)

Parameter S	Symbol	Pin name	Conditions -	Va	Unit	Remarks	
	Syllibol	Tin name		Min	Max	Onne	Remarks
Cycle time	tcyc	MCLK, SYSCLK		t cpt		ns	*1
MCLK↑→MCLK↓ SYSCLK↑→SYSCLK↓	t chcl	MCLK, SYSCLK	_	1/2 × tcyc - 3	1/2 × tcyc + 3	ns	*2
MCLK↓→MCLK↑ SYSCLK↓→SYSCLK↑	tclcl	MCLK, SYSCLK		1/2 × tcyc - 3	1/2 × tcyc + 3	ns	*3

- *1 : teye represents the frequency of one clock cycle including the gear period.
- *2 : The values shown represent standards for \times 1 gear period. For gear period settings of 1/2, 1/4, 1/8, use the following formula replacing n with the value 1/2, 1/4, 1/8 respectively.


 $(1/2 \times 1/n) \times t$ cyc -10

*3 : The values shown represent standards for \times 1 gear period.

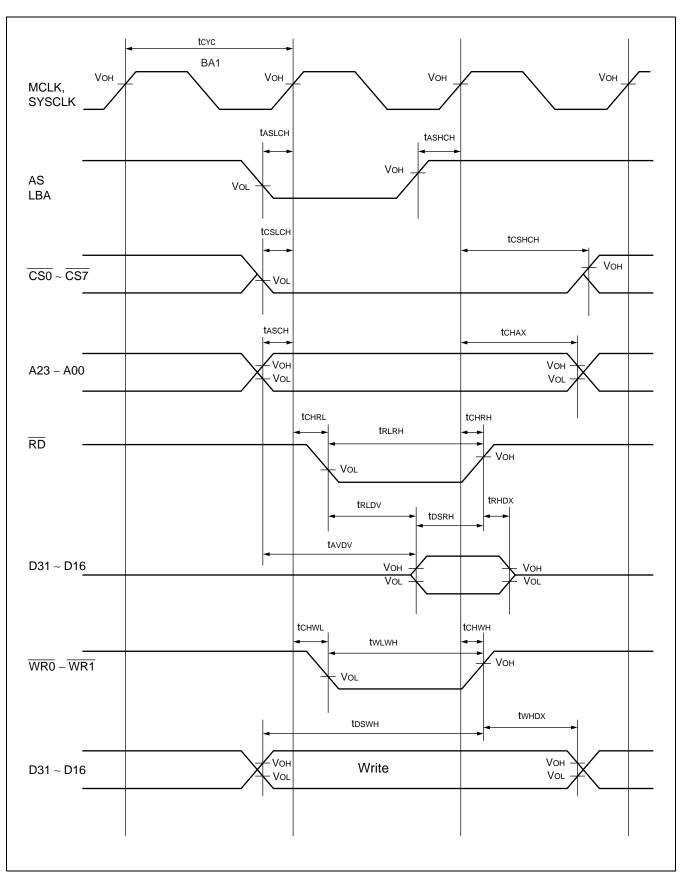
(3) Reset and Hardware Standby Input Standards

(Vcc = 3.0 V to 3.6 V, Vss = AVss = 0 V, T_A = 0 °C to +70 °C)

Parameter	Symbol	Pin name	Conditions	Value		Unit	Remarks
				Min	Max	Oill	Remarks
Hardware standby input time	t HSTL	HST	_	$t_{\text{CP}} \times 5$	_	ns	
INIT input time (power-on)	t intl	ĪNIT		*	_	ns	
INIT input time (other than power-on)				tcp × 5	_	ns	

*: INIT input time (at power-on)

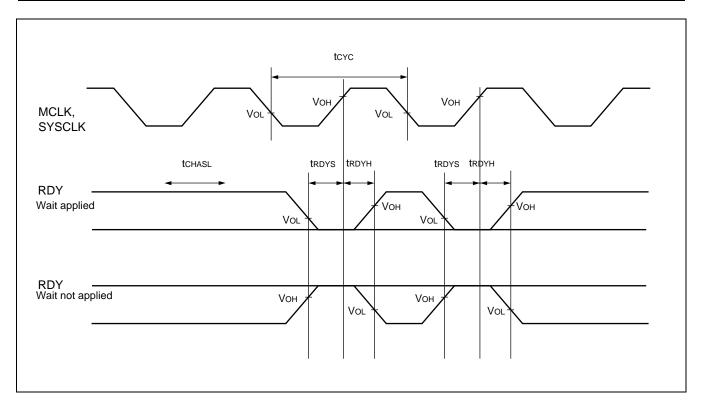
FAR, Ceralock: $\phi \times 2^{15}$ or greater recommended Crystal: $\phi \times 2^{21}$ or greater recommended


 $\varphi: Power \ on \rightarrow X0/X1 \ period \ \times 2$

(4) Normal Bus Access Read/Write Operation

(Vcc = 3.0 V to 3.6 V , Vss = AVss = 0 V, $T_A = 0$ °C to +70 °C)

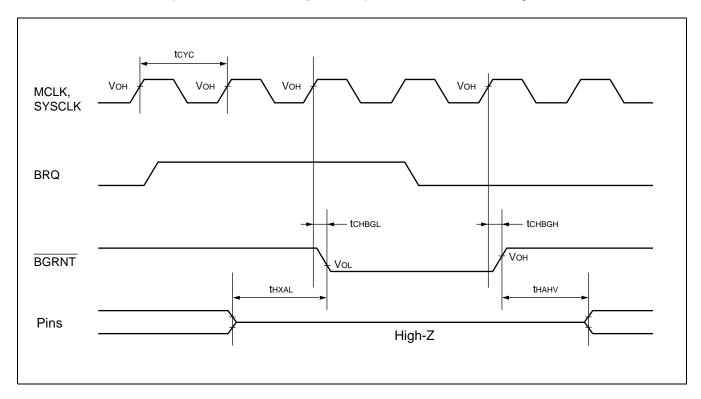
Parameter	Symbol	Pin name	Condition -	Value		Unit	Damarka
Parameter		Pili liaille		Min	Max	Unit	Remarks
CS0 to CS7 setup	t cslch	MCLK, SYSCLK,		3	_	ns	
CS0 to CS7 hold	tсsнсн	CS0 to CS7	_	3	tcyc/2 + 6	ns	
Address setup	tasch	MCLK, SYSCLK, A24 to A00		3	_	ns	
Address hold	tchax	MCLK, SYSCLK, A24 to A00		3	tcyc/2 + 6	ns	
Valid address → valid data input time	t avdv	A24 to A00, D31 to D16			3/2 × tcyc – 11	ns	*
WR0 to WR1 delay time	t chwL	MCLK, SYSCLK,			6	ns	
	tснwн	WR0 to WR1		_	6	ns	
WR0 to WR1 minimum pulse width	twlwh	WR0 to WR1		tere – 3	_	ns	
Data setup→WRx↑	t DSWH	WR0 to WR1,		t cyc		ns	
WRx↑→data hold time	twhox	D31 to D16		5		ns	
RD delay time	t CHRL	MCLK, SYSCLK,			6	ns	
	t chrh	RD		_	6	ns	
RD↓→valid data input time	t rldv			_	tcyc - 10	ns	*
Data setup →RD↑time	tosrh	RD D31 to D16		10	_	ns	
RD↑→data hold time	t RHDX			0	_	ns	
RD minimum pulse width	t rlrh	RD		tcyc – 3	_	ns	
AS setup	t aslch	MCLK, SYSCLK,		3	_	ns	
AS hold	t ashch	ĀS		3	_	ns	


^{*:} To extend bus time by automatic wait insertion or RDY input, add to this value (tcyc × number of extended cycles).

(5) Ready Input Timing

(Vcc = 3.0 V to 3.6 V , Vss = AVss = 0 V, TA = 0 °C to +70 °C)

Parameter	Symbol Pin na	Pin name	Condition	Va	lue	Unit	Remarks
Farameter	Syllibol	Filitianie	Condition	Min	Max		
RDY setup time \rightarrow MCLK \uparrow , SYSCLK \uparrow	t RDYS	MCLK, SYSCLK, RDY		10	_	ns	
MCLK↑, SYSCLK↑ RDY hold time	t RDYH	MCLK, SYSCLK, RDY	_	0	_	ns	

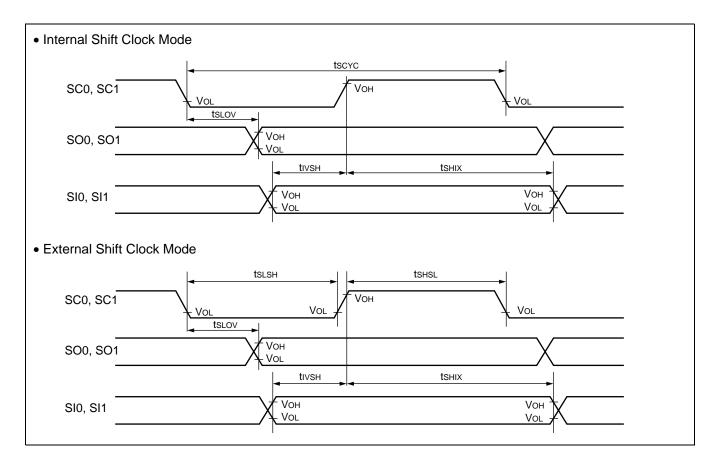


(6) Hold Timing

(Vcc = 3.0 V to 3.6 V , Vss = AVss = 0 V, $T_A = 0$ °C to +70 °C)

Parameter Symbol		Pin name	Condition	Va	lue	Unit	Remarks
raiailletei	Symbol	Fili liallie	Condition	Min	Max	Oilit	I/Cilial K2
BGRNT delay time	t CHBGL	MCLK, SYSCLK,		3	13.5	ns	
BOKINT delay time	tснвдн	BGRNT		3	13.5	ns	
Pin floating →BGRNT↓time	txhal	BGRNT	_	teye - 10	tcyc + 10	ns	
BGRNT↑→valid time	t hahv			tcyc - 10	tcyc + 10	ns	

Note: After a BRQ is accepted, a minimum of 1 cycle is required before BGRNT changes.

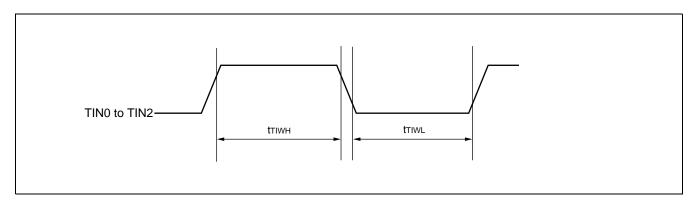

(7) UART Timing

(Vcc = 3.0 V to 3.6 V , Vss = AVss = 0 V, T_A = 0 °C to +70 °C)

Parameter	Symbol	Pin name	Condition	Va	lue	Unit	Remarks
- aramotor	Syllibol		Condition	Min	Max		Remarks
Serial clock cycle time	tscyc	SC0 to SC2		8 tcycp	_	ns	
SCLK↓ →SOUT delay time	tslov	SC0 to SC2 SO0 to SO2	Internal	-80	80	ns	
Valid SIN →SCLK↑	t ıvsh	SC0 to SC2 SI0 to SI2	shift lock mode	100	_	ns	
SCLK↑ →valid SIN hold time	t shix	SC0 to SC2 SI0 to SI2		60	_	ns	
Serial clock "H" pulse width	t shsl	SC0 to SC2		4 tcycp	_	ns	
Serial clock "L" pulse width	t slsh	SC0 to SC2		4 tcycp	_	ns	
SCLK↓ →SOUT delay time	tslov	SC0 to SC2 SO0 to SO2	External shift lock	_	150	ns	
Valid SIN→SCLK↑	tıvsh	SC0 to SC2 SI0 to SI2	mode	60		ns	
SCLK↑→valid SIN hold time	tsнıх	SC0 to SC2 SI0 to SI2		60	_	ns	

Notes: • These AC standards are for operation in CLK synchronized mode.

• tcycp is the cycle time of the peripheral system clock.

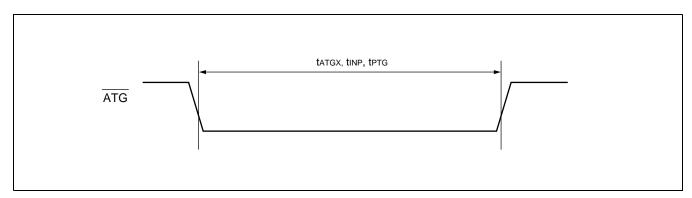


(8) Timer Clock Input Timing

(Vcc = 3.0 V to 3.6 V , Vss = AVss = 0 V, $T_A = 0$ °C to +70 °C)

Parameter	Symbol	Pin name	Pin name Condition		Value		Remarks
i didilietei	Symbol	i iii iiaiiie	Condition	Min	Max	Unit	ixemarks
Input pulse width	t тіwн t тіwL	TIN0 to TIN2	_	2 tcycp	_	ns	

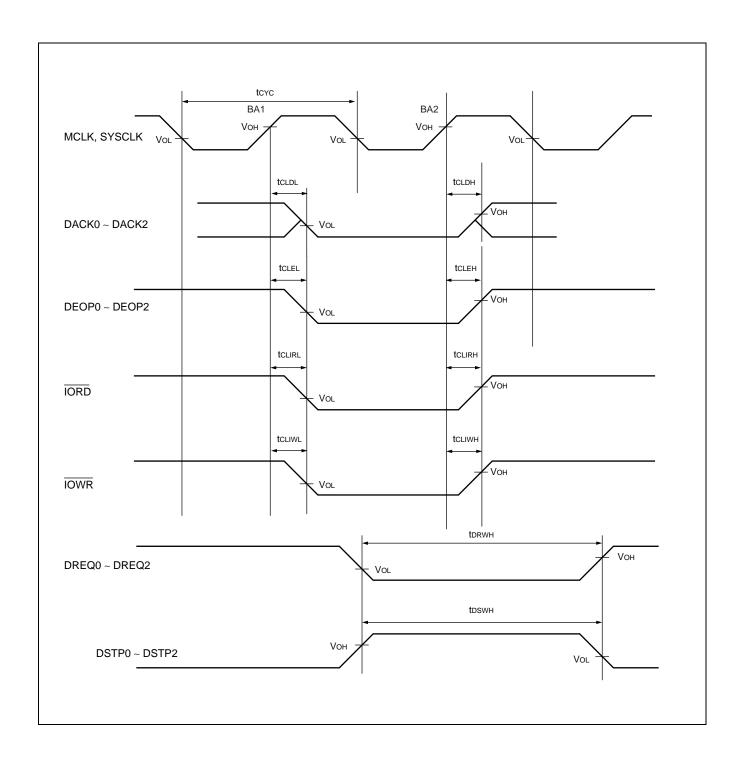
Note: tcycp is the cycle time of the peripheral system clock.



(9) Trigger Input Timing

(Vcc = 3.0 V to 3.6 V , Vss = AVss = 0 V, $T_A = 0$ °C to +70 °C)

Parameter	Symbol Pin name		Condition	Val	lue	Unit	Remarks
raidilletei	Symbol	i iii iiaiiie	Condition	Min	Max	Oill	iveillai va
A/D startup trigger input time	t atgx	ĀTG	_	5 tcycp		ns	


Note: tcycp is the cycle time of the peripheral system clock.

(10) DMA Controller Timing

(Vcc = 3.0 V to 3.6 V , Vss = AVss = 0 V, T_A = 0 $^{\circ}C$ to +70 $^{\circ}C)$

Parameter	Symbol F	Pin name	Condition	Va	lue	Unit	Remarks		
Farameter	Symbol	Fill lialile	Condition	Min	Max	Oilit			
DREQ input pulse width	t drwh	DREQ 0 to DRE2		5 tcyc	_	ns			
DSTP input pulse width	t DSWH	DSTP 0 to DSTP2		5 tcyc	_	ns			
DACK delay time	tcldl	MCLK, SYSCLK,	MCLK, SYSCLK,		_	6	ns		
DACK delay time	t CLDH	DACK0 to DACK2		_	6	113			
DEOP delay time	t CLEL	MCLK, SYSCLK,	CLK, SYSCLK,	_	6	ns			
DEOI delay time	t CLEH	DEOP 0 to DEOP2	DEOP 0 to DEOP2		_	6	113		
IORD delay time	t CLIRL	MCLK, SYSCLK	MCIK SVSCIK	MCLK SYSCLK		_	6	ns	
TOND delay time	t CLIRH			_	6	113			
IOWR delay time	tcliwL	MCLK, SYSCLK		_	6	- ns			
TOWN delay tillle	tcliwh	WICLK, STOCK			6				

5. A/D Converter Electrical Characteristics

 $(Vcc = AVcc = +3.0 \text{ V to } +3.6 \text{ V}, Vss = AVss = 0 \text{ V}, AVRH = +3.0 \text{ V to } +3.6 \text{ V}, T_A = 0 ^{\circ}C \text{ to } +70 ^{\circ}C)$

Parameter	Symbol	Din nomo		Value		Unit
Parameter	Symbol	Pin name	Min	Тур	Max	Offic
Resolution	_	_	_	10	10	BIT
Total error	_	_	_	_	± 10	LSB
Linear error	_	_	_	_	± 3.0	LSB
Differential linear error	_	_	_	_	± 2.5	LSB
Zero transition error	Vот	AN0 to AN3	– 10	+ 0.5	+ 10	LSB
Full scale transition error	V _{FST}	AN0 to AN3	AVRH – 10	AVRH – 1.5	AVRH + 10	LSB
Conversion time	_	_	5.4 *1	_	_	μs
Analog port input current	lain	AN0 to AN3	_	0.1	10	μΑ
Analog input voltage	Vain	AN0 to AN3	AVss	_	AVRH	V
Reference voltage	_	AVRH	AVss	_	AVcc	V
Supply current	lΑ	AVcc	_	600	_	μΑ
Зарріу сапені	Іан	AVCC	_	_	10 *2	μΑ
Reference voltage supply current	I R	AVRH	_	600	_	μΑ
Treference voltage supply current	I RH	AVNII	_	_	10 *2	μΑ
Inter-channel variation		AN0 to AN3			5	LSB

^{*1 :} At Vcc = AVcc = 3.0 V to 3.6 V, machine clock 33 MHz.

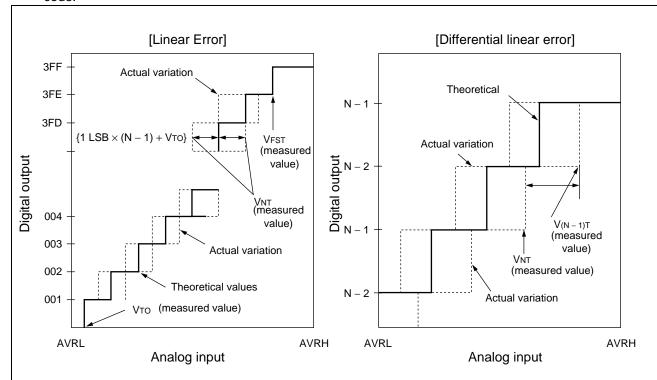
Notes: • The relative error increases as AVRH is reduced.

• The output impedance on the external analog input circuit should be used as follows.

External circuit output impedance $< 7 \text{ k}\Omega$ (provisional value)

If the output impedance on the external circuit is too great, the analog voltage sampling time may be insufficient.

^{*2 :} Current in CPU stop mode with A/D converter not operating (Vcc = AVcc = AVRH = 3.6 V)


Definition of A/D Converter Terms

- Resolution
 - Indicates the ability of the A/D converter to discriminate analog variation
- · Linear error

Expresses the deviation between actual conversion characteristics and a straight line connecting the device's zero transition point (00 0000 0000 \leftarrow 00 0000 0001) and full scale transition point (11 1111 1110 \leftarrow 11 1111 1111)

• Differential linear error

Expresses the deviation of the logical value of input voltage required to create a variation of 1 LSB in output code

Linear error in digital output N

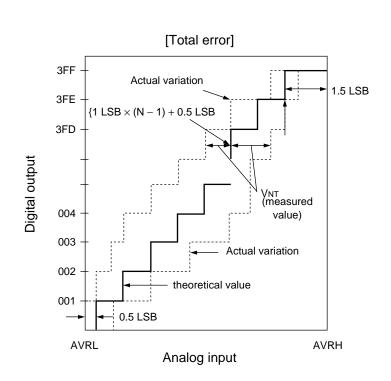
$$= \frac{V_{NT} - \{1 \text{ LSB} \times (N-1) + V_{OT}\}}{1 \text{ LSB}} \text{ [LSB]}$$

Differential linear error in digital output $N = \frac{V(N+1)T - VNT}{1LSB} - 1$ [LSB]

$$1 LSB = \frac{V_{FST} - V_{OT}}{1022} [V]$$

$$1 LSB" = \frac{AVRH - AVRL}{1024} [V]$$
 (theoretical value)

Voт: Voltage at which the digital output transitions from (000) н to (001) н.


V_{FST}: Voltage at which the digital output transitions from (3FE) н to (3FF) н.

V_{NT}: Voltage at which the digital output transitions from (N-1) to N.

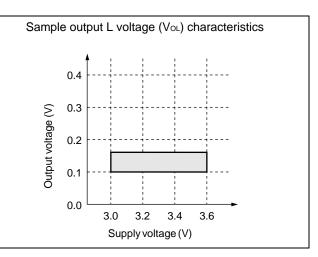
• Total error

Expresses the difference between actual and theoretical values as error, including zero transition error, full-

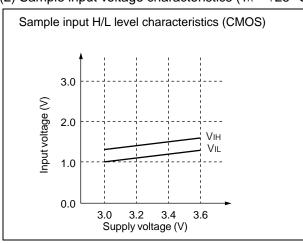
scale error, and linearity error.

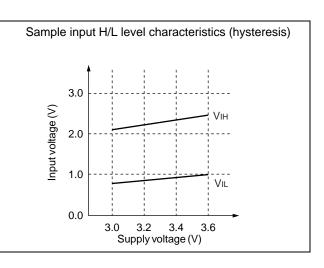
Total error in digital output N =
$$\frac{V_{NT} - \{1 \text{ LSB"} \times (N-1) + 0.5 \text{ LSB"}\}}{1 \text{ LSB"}} [LSB]$$

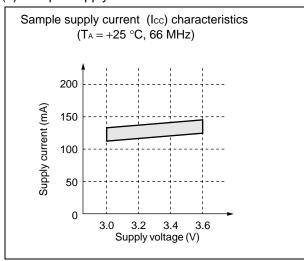

Vot" (theoretical value) = AVRL + 0.5 LSB" [V]

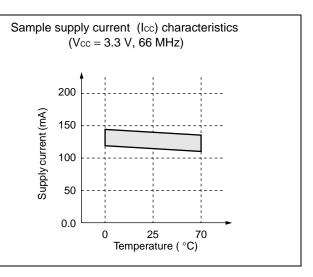

V_{FST}" (theoretical value) = AVRH - 1.5 LSB" [V]

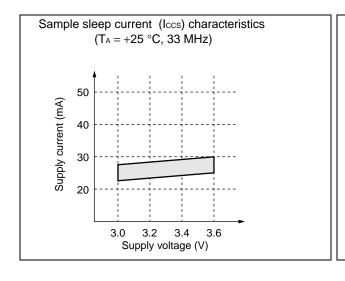
V_{NT}: Voltage at which digital output transitions from (N-1) to N.

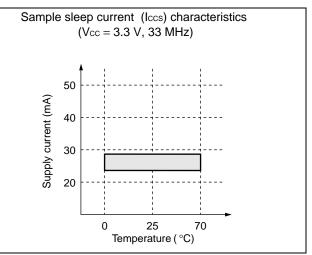

■ EXAMPLE CHARACTERISTICS

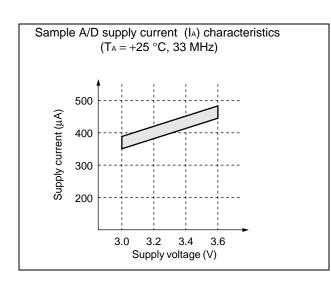

(1) Sample output voltage characteristics $(T_A = +25 \, ^{\circ}C)$

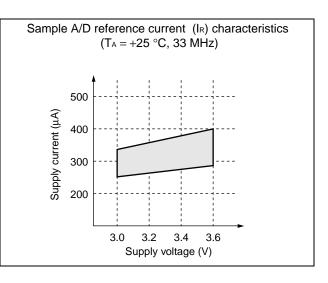



(2) Sample input voltage characteristics ($T_A = +25$ °C)

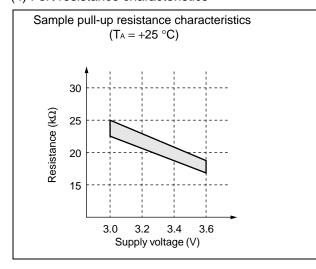

(3) Sample supply current characteristics

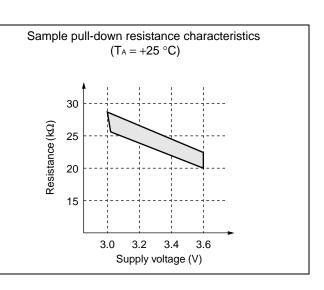




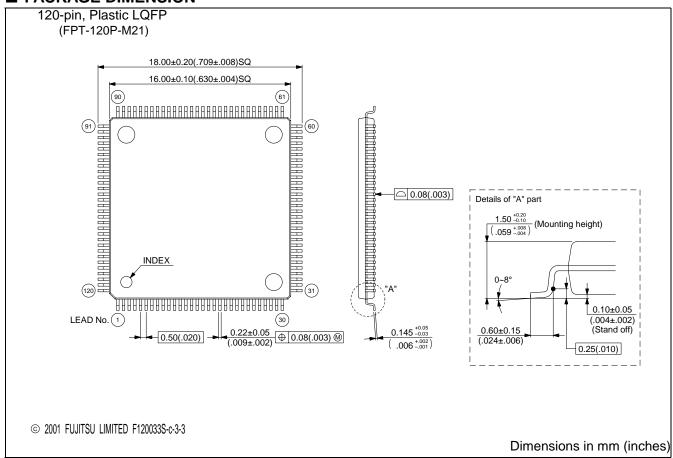

(Continued)

(Continued)





(4) Port resistance characteristics



■ ORDERING INFORMATION

Part number	Package	Remarks
MB91307BPFV	120-pin, Plastic LQFP (FPT-120P-M21)	Lead-free package
MB91V307RCR	135-pin, Ceramic PGA (PGA-135C-A02)	For development tool use

■ PACKAGE DIMENSION

FUJITSU LIMITED

All Rights Reserved.

The contents of this document are subject to change without notice. Customers are advised to consult with FUJITSU sales representatives before ordering.

The information and circuit diagrams in this document are presented as examples of semiconductor device applications, and are not intended to be incorporated in devices for actual use. Also, FUJITSU is unable to assume responsibility for infringement of any patent rights or other rights of third parties arising from the use of this information or circuit diagrams.

The products described in this document are designed, developed and manufactured as contemplated for general use, including without limitation, ordinary industrial use, general office use, personal use, and household use, but are not designed, developed and manufactured as contemplated (1) for use accompanying fatal risks or dangers that, unless extremely high safety is secured, could have a serious effect to the public, and could lead directly to death, personal injury, severe physical damage or other loss (i.e., nuclear reaction control in nuclear facility, aircraft flight control, air traffic control, mass transport control, medical life support system, missile launch control in weapon system), or (2) for use requiring extremely high reliability (i.e., submersible repeater and artificial satellite).

Please note that Fujitsu will not be liable against you and/or any third party for any claims or damages arising in connection with above-mentioned uses of the products.

Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Law of Japan, the prior authorization by Japanese government will be required for export of those products from Japan.

F0212 © FUJITSU LIMITED Printed in Japan