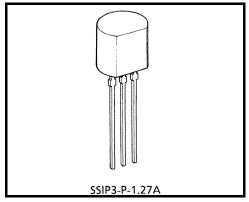
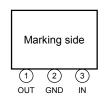
TOSHIBA Bipolar Linear Integrated Circuit Silicon Monolithic

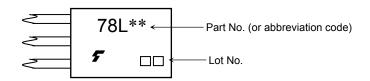

TA78L05S, TA78L07S, TA78L08S, TA78L09S, TA78L10S, TA78L12S, TA78L15S

Three-Terminal Positive Voltage Regulators 5 V, 7 V, 8 V, 9 V, 10 V, 12 V, 15 V

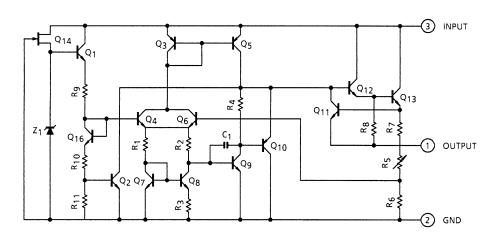
The TA78L××S series of fixed voltage monolithic integrated circuit voltage regulators is designed for a wide range of applications.


Features

- Suitable for TTL, C²MOS power supply.
- Internal short-circuit current limiting.
- Internal thermal overload protection.
- Maximum output current of 100 mA (T_j = 25°C).
- TO-92 package



Weight: 0.21 g (typ.)


Pin Assignment

Marking

Equivalent Circuit

Absolute Maximum Ratings (Ta = 25°C)

Characteris	Symbol	Rating	Unit		
Input voltage		V _{IN}	35	٧	
Power dissipation	pation (Ta = 25°C)		600	mW	
Operating temperature		T _{opr}	T _{opr} -30~85		
Storage temperature		T _{stg}	-55~150	°C	
Junction temperature		Tj	150	°C	
Thermal resistance		R _{th (j-a)}	208	°C/W	

Note: Using continuously under heavy loads (e.g. the application of high temperature/current/voltage and the significant change in temperature, etc.) may cause this product to decrease in the reliability significantly even if the operating conditions (i.e. operating temperature/current/voltage, etc.) are within the absolute maximum ratings and the operating ranges.

Please design the appropriate reliability upon reviewing the Toshiba Semiconductor Reliability Handbook ("Handling Precautions"/Derating Concept and Methods) and individual reliability data (i.e. reliability test report and estimated failure rate, etc).

TA78L05S Electrical Characteristics (Unless otherwise specified, V_{IN} = 10 V, I_{OUT} = 40 mA, C_{IN} = 0.33 μ F, C_{OUT} = 0.1 μ F, 0° C \leq T_{j} \leq 125 $^{\circ}$ C)

Characteristics	Symbol	Test Circuit		Test Condition		Тур.	Max	Unit
Output voltage	V _{OUT}	1	T _j = 25°C		4.8	5.0	5.2	V
Line regulation	Reg·line	1	T _i = 25°C	7.0 V ≤ V _{IN} ≤ 20 V	_	55	150	mV
Line regulation	Regille	'	1j - 25 C	8.0 V ≤ V _{IN} ≤ 20 V	_	45	100	IIIV
Load regulation	Reg·load	1	T _i = 25°C	1.0 mA ≤ I _{OUT} ≤ 100 mA	_	11	60	mV
Load regulation	Regiload	'	1j - 25 C	1.0 mA ≤ I _{OUT} ≤ 40 mA	_	5.0	30	IIIV
Output voltage	Vout	1	1 T _j = 25°C	7.0 V ≤ V _{IN} ≤ 20 V, 1.0 mA ≤ I _{OUT} ≤ 40 mA	4.75	_	5.25	V
				1.0 mA ≤ I _{OUT} ≤ 70 mA	4.75	_	5.25	
Quiaccent current	1-	T _j = 25°	T _j = 25°C	= 25°C		3.1	6.0	mA
Quiescent current	I _B	1	T _j = 125°C	T _j = 125°C		_	5.5	IIIA
Quissaant aurrant ahanga	Δ1-	1	T 25°C	8.0 V ≤ V _{IN} ≤ 20 V	_	_	1.5	- mA
Quiescent current change	Δl _B	1	T _j = 25°C	1.0 mA ≤ I _{OUT} ≤ 40 mA	_	_	0.1	IIIA
Output noise voltage	V _{NO}	2	Ta = 25°C	, 10 Hz ≤ f ≤ 100 kHz	_	40	_	μV _{rms}
Long term stability	ΔV _{OUT} /Δt	1		_	_	12	_	mV/kh
Ripple rejection	R.R.	3	f = 120 Hz, 8 V ≤ V _{IN} ≤ 18 V, T _j = 25°C		41	49	_	dB
Dropout voltage	V _D	1	T _j = 25°C		_	1.7	_	V
Average temperature coefficient of output voltage	T _{CVO}	1	I _{OUT} = 5 n	nA	_	-0.6	_	mV/°C

TA78L07S Electrical Characteristics (Unless otherwise specified, V_{IN} = 12 V, I_{OUT} = 40 mA, C_{IN} = 0.33 μ F, C_{OUT} = 0.1 μ F, 0° C \leq T_i \leq 125 $^{\circ}$ C)

Characteristics	Symbol	Test Circuit		Test Condition	Min	Тур.	Max	Unit
Output voltage	V _{OUT}	1	T _j = 25°C		6.72	7.0	7.28	V
Line regulation	Dog line	1	T _i = 25°C	9.2 V ≤ V _{IN} ≤ 22 V	_	50	160	mV
Line regulation	Reg·line	'	1j - 25 C	10 V ≤ V _{IN} ≤ 22 V	_	45	115	IIIV
Load regulation	Poguland	1	T _i = 25°C	1.0 mA ≤ I _{OUT} ≤ 100 mA	_	13	75	mV
Load regulation	Reg·load	'	1j - 25 C	1.0 mA ≤ I _{OUT} ≤ 40 mA	_	6.0	40	IIIV
Output voltage	Vout	1	1 T _j = 25°C	9.2 V ≤ V _{IN} ≤ 22 V, 1.0 mA ≤ I _{OUT} ≤ 40 mA	6.65	_	7.35	V
				1.0 mA ≤ I _{OUT} ≤ 70 mA	6.65	_	7.35	
Quiescent current	1_	1 T _j = 2	T _j = 25°C	Γ _j = 25°C		3.1	6.5	- mA
Quiescent current	I _B	'	T _j = 125°C	T _j = 125°C		_	6.0	IIIA
Quiescent current change	Δ1	1	T _i = 25°C	10 V ≤ V _{IN} ≤ 22 V	_	_	1.5	mA
Quiescent current change	Δl _B	'	1j - 25 C	1.0 mA ≤ I _{OUT} ≤ 40 mA	_	_	0.1	IIIA
Output noise voltage	V _{NO}	2	Ta = 25°C	, 10 Hz ≤ f ≤ 100 kHz	_	50	_	μV_{rms}
Long term stability	ΔV _{OUT} /Δt	1		_	_	17	_	mV/kh
Ripple rejection	R.R.	3	f = 120 Hz, 10 V ≤ V _{IN} ≤ 20 V, T _j = 25°C		37	46	_	dB
Dropout voltage	V_{D}	1	T _j = 25°C, I _{OUT} = 100 mA		_	1.7	_	V
Average temperature coefficient of output voltage	T _{CVO}	1	I _{OUT} = 5 n	nA	_	-0.84		mV/°C

TA78L08S Electrical Characteristics (Unless otherwise specified, V_{IN} = 14 V, I_{OUT} = 40 mA, C_{IN} = 0.33 μ F, C_{OUT} = 0.1 μ F, 0° C \leq T_{j} \leq 125 $^{\circ}$ C)

Characteristics	Symbol	Test Circuit		Test Condition		Тур.	Max	Unit
Output voltage	V _{OUT}	1	T _j = 25°C		7.7	8.0	8.3	V
Line regulation	Dog line	1	T _i = 25°C	10.5 V ≤ V _{IN} ≤ 23 V	_	20	175	mV
Line regulation	Reg·line	'	1j - 25 C	11 V ≤ V _{IN} ≤ 23 V	_	12	125	IIIV
Lond regulation	Poguland	1	T _i = 25°C	1.0 mA ≤ I _{OUT} ≤ 100 mA	_	15	80	mV
Load regulation	Reg·load	'	1j - 25 C	1.0 mA ≤ I _{OUT} ≤ 40 mA	_	7.0	40	IIIV
Output voltage	Vout	1	1 T _j = 25°C	10.5 V ≤ V _{IN} ≤ 23 V, 1.0 mA ≤ I _{OUT} ≤ 40 mA	7.6	_	8.4	V
				1.0 mA ≤ I _{OUT} ≤ 70 mA	7.6	_	8.4	
Quiescent current	I-	T _j = 25°C		_	3.1	6.5	mA	
Quiescent current	I _B	1	T _j = 125°C	T _j = 125°C		_	6.0	IIIA
Quigagent gurrent change	Δ1-	1	T _i = 25°C	11 V ≤ V _{IN} ≤ 23 V	_	_	1.5	mA
Quiescent current change	Δl _B	'	1j - 25 C	1.0 mA ≤ I _{OUT} ≤ 40 mA	_	_	0.1	IIIA
Output noise voltage	V _{NO}	2	Ta = 25°C	, 10 Hz ≤ f ≤ 100 kHz	_	60	_	μV_{rms}
Long term stability	ΔV _{OUT} /Δt	1		_	_	20	_	mV/kh
Ripple rejection	R.R.	3	f = 120 Hz, 12 V ≤ V _{IN} ≤ 23 V, T _j = 25°C		37	45	_	dB
Dropout voltage	V _D	1	T _j = 25°C, I _{OUT} = 100 mA		_	1.7	_	V
Average temperature coefficient of output voltage	T _{CVO}	1	I _{OUT} = 5 r	nA	_	-0.97	_	mV/°C

TA78L09S Electrical Characteristics (Unless otherwise specified, V_{IN} = 15 V, I_{OUT} = 40 mA, C_{IN} = 0.33 μ F, C_{OUT} = 0.1 μ F, 0° C \leq T_{j} \leq 125 $^{\circ}$ C)

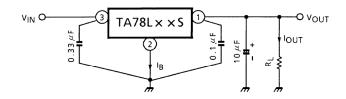
Characteristics	Symbol	Test Circuit		Test Condition	Min	Тур.	Max	Unit
Output voltage	V _{OUT}	1	T _j = 25°C		8.64	9.0	9.36	V
Line regulation	Reg·line	1	T _i = 25°C	11.4 V ≤ V _{IN} ≤ 24 V	_	80	200	mV
Line regulation	Regilile	'	1j - 25 C	12 V ≤ V _{IN} ≤ 24 V	_	20	160	IIIV
Load regulation	Poguland	1	T _i = 25°C	1.0 mA ≤ I _{OUT} ≤ 100 mA	_	17	90	mV
Load regulation	Reg·load	'	1j - 25 C	1.0 mA ≤ I _{OUT} ≤ 40 mA	_	8.0	45	IIIV
Output voltage	Vout	1	1 T _j = 25°C	11.4 V ≤ V _{IN} ≤ 24 V, 1.0 mA ≤ I _{OUT} ≤ 40 mA	8.55	_	9.45	V
				1.0 mA ≤ I _{OUT} ≤ 70 mA	8.55	_	9.45	
Quiescent current	1-	1 T _j = 25	T _j = 25°C	T _j = 25°C		3.2	6.5	mA
Quiescent current	I _B	'	T _j = 125°C	T _j = 125°C		_	6.0	IIIA
Quiocoent current change	Δ1	1	T _i = 25°C	12 V ≤ V _{IN} ≤ 24 V	_	_	1.5	- mA
Quiescent current change	Δl _B	'	1j - 25 C	1.0 mA ≤ I _{OUT} ≤ 40 mA	_	_	0.1	IIIA
Output noise voltage	V _{NO}	2	Ta = 25°C	, 10 Hz ≤ f ≤ 100 kHz	_	65	_	μV_{rms}
Long term stability	ΔV _{OUT} /Δt	1		_	_	21	_	mV/kh
Ripple rejection	R.R.	3	f = 120 Hz, 12 V ≤ V _{IN} ≤ 24 V, T _j = 25°C		36	44	_	dB
Dropout voltage	V_{D}	1	T _j = 25°C, I _{OUT} = 100 mA		_	1.7	_	V
Average temperature coefficient of output voltage	T _{CVO}	1	I _{OUT} = 5 n	nA	_	-1.09		mV/°C

TA78L10S Electrical Characteristics (Unless otherwise specified, V_{IN} = 16 V, I_{OUT} = 40 mA, C_{IN} = 0.33 μ F, C_{OUT} = 0.1 μ F, 0° C \leq T_{j} \leq 125 $^{\circ}$ C)

Characteristics	Symbol	Test Circuit		Test Condition	Min	Тур.	Max	Unit
Output voltage	V _{OUT}	1	T _j = 25°C		9.6	10	10.4	V
Line regulation	Dog line	1	T 25°C	12.5 V ≤ V _{IN} ≤ 25 V	_	80	230	mV
Line regulation	Reg·line	'	T _j = 25°C	13 V ≤ V _{IN} ≤ 25 V	_	30	170	IIIV
Load regulation	Poguland	1	T _i = 25°C	1.0 mA ≤ I _{OUT} ≤ 100 mA	_	18	90	mV
Load regulation	Reg·load	'	1 - 25 C	1.0 mA ≤ I _{OUT} ≤ 40 mA	_	8.5	45	IIIV
Output voltage	Vout	1	1 T _j = 25°C	12.5 V ≤ V _{IN} ≤ 25 V, 1.0 mA ≤ I _{OUT} ≤ 40 mA	9.5	_	10.5	V
				1.0 mA ≤ I _{OUT} ≤ 70 mA	9.5	_	10.5	
Quiescent current	1-	1 T _j = 25	T _j = 25°C	T _j = 25°C		3.2	6.5	- mA
Quiescent current	I _B	'	T _j = 125°C	T _j = 125°C		_	6.0	IIIA
Quiescent current change	A.I.	1	T _i = 25°C	13 V ≤ V _{IN} ≤ 25 V	_	_	1.5	- mA
Quiescent current change	Δl _B	'	1 - 25 C	1.0 mA ≤ I _{OUT} ≤ 40 mA	_	_	0.1	IIIA
Output noise voltage	V _{NO}	2	Ta = 25°C	, 10 Hz ≤ f ≤ 100 kHz	_	70	_	μV_{rms}
Long term stability	ΔV _{OUT} /Δt	1		_	_	22	_	mV/kh
Ripple rejection	R.R.	3	f = 120 Hz, 13 V ≤ V _{IN} ≤ 24 V, T _j = 25°C		36	43	_	dB
Dropout voltage	V _D	1	T _j = 25°C, I _{OUT} = 100 mA		_	1.7	_	V
Average temperature coefficient of output voltage	T _{CVO}	1	I _{OUT} = 5 n	nA	_	-1.21		mV/°C

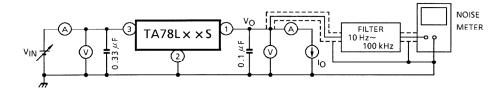
TA78L12S Electrical Characteristics (Unless otherwise specified, V_{IN} = 19 V, I_{OUT} = 40 mA, C_{IN} = 0.33 μ F, C_{OUT} = 0.1 μ F, 0° C \leq T_{j} \leq 125 $^{\circ}$ C)

Characteristics	Symbol	Test Circuit		Test Condition	Min	Тур.	Max	Unit
Output voltage	V _{OUT}	1	T _j = 25°C		11.5	12	12.5	V
Line regulation	Reg·line	1	T _i = 25°C	14.5 V ≤ V _{IN} ≤ 27 V	_	120	250	mV
Line regulation	Regilile	'	1j - 25 C	16 V ≤ V _{IN} ≤ 27 V	_	100	200	IIIV
Load regulation	Poguland	1	T _i = 25°C	1.0 mA ≤ I _{OUT} ≤ 100 mA	_	20	100	mV
Load regulation	Reg·load	'	1j - 25 C	1.0 mA ≤ I _{OUT} ≤ 40 mA	_	10	50	IIIV
Output voltage	Vout	1	1 T _j = 25°C	14.5 V ≤ V _{IN} ≤ 27 V, 1.0 mA ≤ I _{OUT} ≤ 40 mA	11.4	_	12.6	V
				1.0 mA ≤ I _{OUT} ≤ 70 mA	11.4	_	12.6	
Quiescent current	1-	1 T _j :	T _j = 25°C	$T_j = 25^{\circ}C$		3.2	6.5	mA.
Quiescent current	I _B	'	T _j = 125°C	T _j = 125°C		_	6.0	IIIA
Quiescent current change	Δ1	1	T _i = 25°C	16 V ≤ V _{IN} ≤ 27 V	_	_	1.5	- mA
Quiescent current change	Δl _B	'	1j - 25 C	1.0 mA ≤ I _{OUT} ≤ 40 mA	_	_	0.1	IIIA
Output noise voltage	V _{NO}	2	Ta = 25°C	, 10 Hz ≤ f ≤ 100 kHz	_	80	_	μV_{rms}
Long term stability	ΔV _{OUT} /Δt	1		_	_	24	_	mV/kh
Ripple rejection	R.R.	3	f = 120 Hz, 15 V ≤ V _{IN} ≤ 25 V, T _j = 25°C		36	41	_	dB
Dropout voltage	V_{D}	1	T _j = 25°C, I _{OUT} = 100 mA		_	1.7	_	V
Average temperature coefficient of output voltage	T _{CVO}	1	I _{OUT} = 5 n	nA	_	-1.45		mV/°C

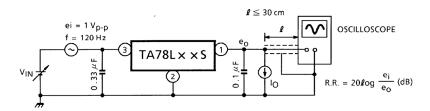


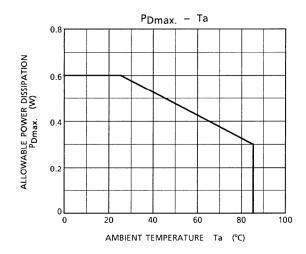
TA78L15S Electrical Characteristics (Unless otherwise specified, V_{IN} = 23 V, I_{OUT} = 40 mA, C_{IN} = 0.33 μ F, C_{OUT} = 0.1 μ F, 0° C \leq T_{j} \leq 125 $^{\circ}$ C)

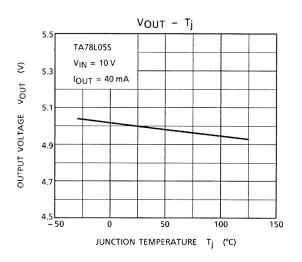
Characteristics	Symbol	Test Circuit		Test Condition		Тур.	Max	Unit
Output voltage	V _{OUT}	1	T _j = 25°C		14.4	15	15.6	V
Line regulation	Reg·line	1	T _i = 25°C	17.5 V ≤ V _{IN} ≤ 30 V	_	130	300	mV
Line regulation	Regime	'	1 - 25 C	20 V ≤ V _{IN} ≤ 30 V	_	110	250	IIIV
Load regulation	Reg·load	1	T _i = 25°C	1.0 mA ≤ I _{OUT} ≤ 100 mA	_	25	150	mV
Load regulation	Regiload	'	1 - 25 C	1.0 mA ≤ I _{OUT} ≤ 40 mA	_	12	75	IIIV
Output voltage	Vout	1	1 T _j = 25°C	17.5 V ≤ V _{IN} ≤ 30 V, 1.0 mA ≤ I _{OUT} ≤ 40 mA	14.25	_	15.75	V
				1.0 mA ≤ I _{OUT} ≤ 70 mA	14.25	_	15.75	
Quiescent current	1-	T _j = 25°C		_	3.3	6.5	mA	
Quiescent current	I _B	1	T _j = 125°C	Γ _j = 125°C		_	6.0	IIIA
Quiescent current change	Δ1	1	T _i = 25°C	20 V ≤ V _{IN} ≤ 30 V	_	_	1.5	mA
Quiescent current change	Δl _B	'	1 - 25 C	1.0 mA ≤ I _{OUT} ≤ 40 mA	_	_	0.1	IIIA
Output noise voltage	V _{NO}	2	Ta = 25°C	, 10 Hz ≤ f ≤ 100 kHz	_	90	_	μV_{rms}
Long term stability	ΔV _{OUT} /Δt	1		_	_	30	_	mV/kh
Ripple rejection	R.R.	3	f = 120 Hz, 18.5 V ≤ V _{IN} ≤ 28.5 V, T _j = 25°C		34	40	_	dB
Dropout voltage	V _D	1	T _j = 25°C, I _{OUT} = 100 mA		_	1.7	_	V
Average temperature coefficient of output voltage	T _{CVO}	1	I _{OUT} = 5 n	nA	_	-1.82	_	mV/°C

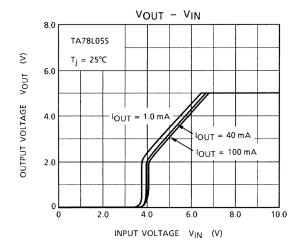


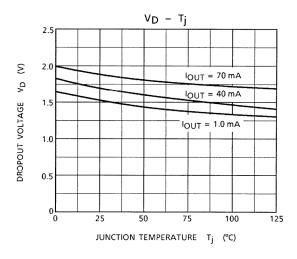
Test Circuit 1/Standard Application

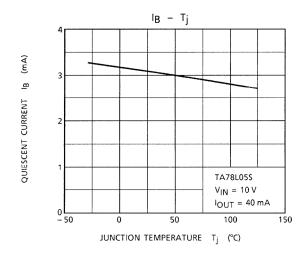

Test Circuit 2

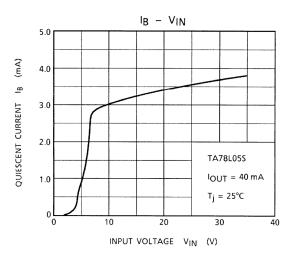

 V_{NO}

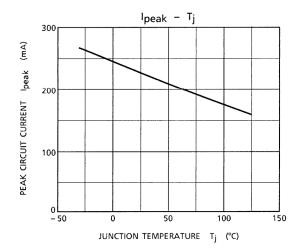


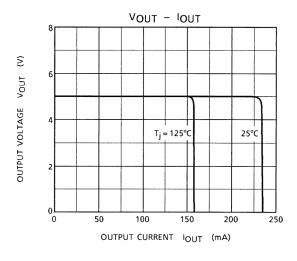

Test Circuit 3

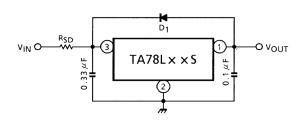

R.R.









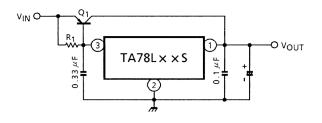


Precautions for Use

Destruction of the IC may occur if high voltage in excess of the IC output voltage (typ. value) is applied to the IC output terminal. Where this possibility exists, connect a Zener diode between the output terminal and GND to prevent any application of excessive voltage. In particular, in a current boosting circuit such as that shown in Application Circuit Example (2), if the input voltage is suddenly applied by stages and, furthermore, load is light, excessive voltage may be applied transiently to the output terminal of the IC. In such a case, it may become necessary to increase the capacity of the output capacitor as appropriate, use a smaller R_1 (a resistor for bypassing IC bias current) or gradually raise the input voltage, in addition to using a Zener diode as mentioned above.

Application Circuits

(1) Standard Application

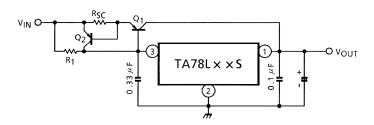

D₁ : IC protective diode

When surge voltage is applied to IC output terminal or $V_{IN} < V_{OUT}$ at the time of power ON/OFF, always connect the high speed switching diode D_1 .

R_{SD}: Power limiting resistor

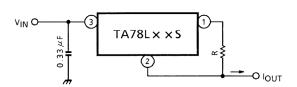
If $V_{\mbox{\scriptsize IN}}$ is too high, always connect $R_{\mbox{\scriptsize SD}}$ in order to reduce power consumption of IC.

(2) A. Current Boost Voltage Regulator



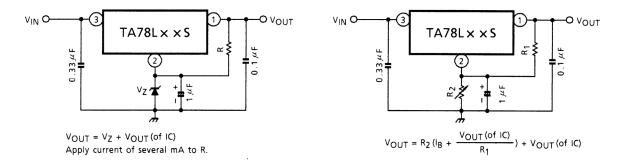
Use a required radiation plate for Q₁.

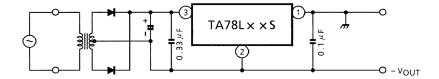
$$\mathsf{R}_1 \leq \frac{\mathsf{V}_{\mathsf{BE}1}}{\mathsf{I}_{\mathsf{B}}\;\mathsf{MAX}}$$

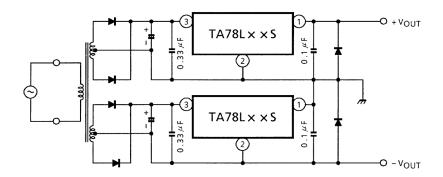

where, $v_{BE\,1} \quad : \ v_{BE} \ of \ external \ transistor \ Q_1.$ $I_B \ MAX \ : \ Max. \ bias \ current \ of \ IC.$

B. Short-Circuit Protection

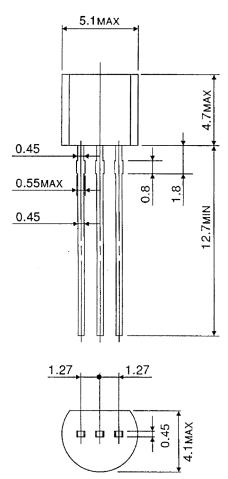
$$R_{SC} = \frac{v_{BE2}}{|_{SC}}$$
where, I_{SC} : Short-Circuit current


(3) Current Regulator


$$I_{OUT} = \frac{V_{OUT}}{R} + I_{B}$$


(4) Voltage Boost Regulator

(5) Negative Regulator



(6) Positive and Negative Regulator

Package Dimensions

SSIP3-P-1.27A Unit: mm

14

Weight: 0.21 g (Typ.)

RESTRICTIONS ON PRODUCT USE

20070701-EN

- The information contained herein is subject to change without notice.
- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc.
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in his document shall be made at the customer's own risk.
- The products described in this document shall not be used or embedded to any downstream products of which manufacture, use and/or sale are prohibited under any applicable laws and regulations.
- The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA for any infringements of patents or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any patents or other rights of TOSHIBA or the third parties.
- Please contact your sales representative for product-by-product details in this document regarding RoHS
 compatibility. Please use these products in this document in compliance with all applicable laws and regulations
 that regulate the inclusion or use of controlled substances. Toshiba assumes no liability for damage or losses
 occurring as a result of noncompliance with applicable laws and regulations.