SKiiP 03NAC066V1

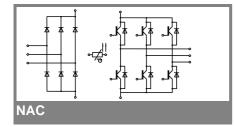
MiniSKiiP® 0

3-phase bridge rectifier + 3-phase bridge inverter

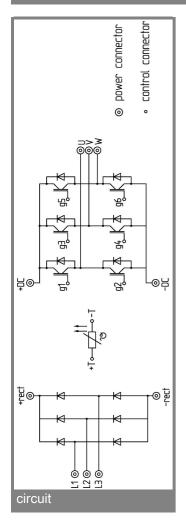
SKiiP 03NAC066V1

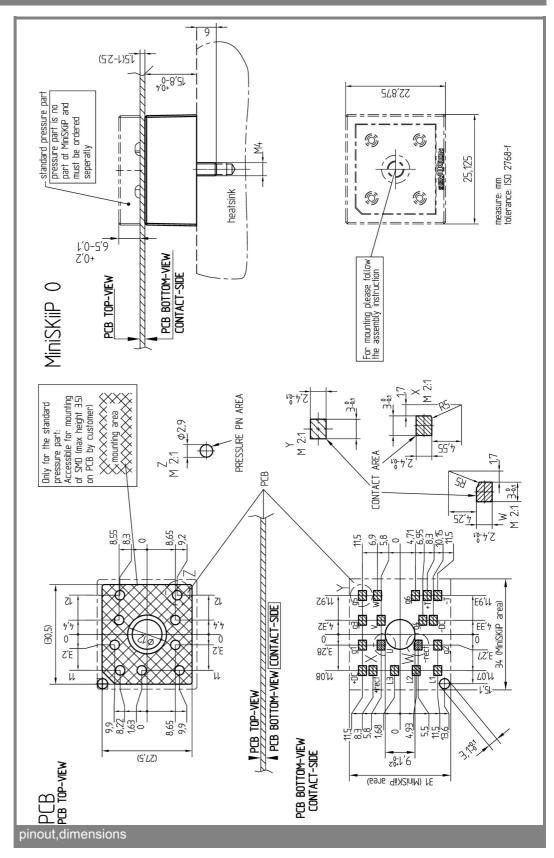
Target Data

Features


- Trench IGBTs
- Robust and soft freewheeling diodes in CAL technology
- Highly reliable spring contacts for electrical connections
- UL recognised file no. E63532

Typical Applications


- Inverter up to 5,6 kVA
- Typical motor power 3,0 kW


Absolute Maximum Ratings		T _s = 25 °C, unless otherwise specified					
Symbol	Conditions	Values	Units				
IGBT - Inverter, Chopper							
V_{CES}		600	V				
I _C	T _s = 25 (70) °C	22 (17)	Α				
I _{CRM}	$T_s = 25 (70) ^{\circ}C, t_p \le 1 \text{ms}$	23 (19)	Α				
V_{GES}		± 20	V				
T_j		- 40 + 175	°C				
Diode - Inverter, Chopper							
I _F	$T_s = 25 (70) ^{\circ}C$	20 (15)	Α				
I _{FRM}	$T_s = 25 (70) ^{\circ}C, t_p \le 1 \text{ ms}$	22 (18)	Α				
T _j		- 40 + 175	°C				
Diode - Rectifier							
V_{RRM}		800	V				
I _F	$T_s = 70 ^{\circ}C$	35	Α				
I _{FSM}	$t_p = 10 \text{ ms, sin } 180 ^{\circ}, T_j = 25 ^{\circ}\text{C}$	220	Α				
i²t	$t_p = 10 \text{ ms, sin } 180 ^{\circ}, T_j = 25 ^{\circ}\text{C}$	240	A²s				
T _j		- 40 + 150	°C				
I _{tRMS}	per power terminal (20 A / spring)	20	Α				
T _{stg}	$T_{op} \le T_{stg}$	- 40 + 125	°C				
V _{isol}	AC, 1 min.	2500	V				

Characte	ristics	T _s = 25 °C	s = 25 °C, unless otherwise specified						
Symbol	Conditions	min.	typ.	max.	Units				
IGBT - Inverter, Chopper									
V_{CEsat}	$I_C = 15 \text{ A}, T_i = 25 (125) ^{\circ}\text{C}$	1,1	1,45 (1,65)	1,85 (2,05)	V				
$V_{GE(th)}$	$V_{GE} = V_{CE}$, $I_C = 1 \text{ mA}$		5,8		V				
V _{CE(TO)}	T _j = 25 (150) °C		0,9 (0,85)	1 (0,9)	V				
r _T	$T_j = 25 (150) ^{\circ}C$		40 (57)	60 (80)	mΩ				
C _{ies}	$V_{CE} = 25 \text{ V}, V_{GE} = 0 \text{ V}, f = 1 \text{ MHz}$		0,86		nF				
C _{oes}	$V_{CE} = 25 \text{ V}, V_{GE} = 0 \text{ V}, f = 1 \text{ MHz}$		0,18		nF				
C _{res}	$V_{CE} = 25 \text{ V}, V_{GE} = 0 \text{ V}, f = 1 \text{ MHz}$		0,12		nF				
R _{th(j-s)}	per IGBT		1,78		K/W				
$t_{d(on)}$	under following conditions		20		ns				
t _r	$V_{CC} = 300 \text{ V}, V_{GE} = \pm 15 \text{ V}$		30		ns				
t _{d(off)}	$I_C = 15 \text{ A}, T_j = 125 ^{\circ}\text{C}$		155		ns				
t _f	$R_{Gon} = R_{Goff} = 22 \Omega$		40		ns				
E _{on}	inductive load		0,55		mJ				
E _{off}			0,24		mJ				
Diode - Ir	Diode - Inverter, Chopper								
$V_F = V_{EC}$	I _F = 15 A, T _i = 25 (125) °C		1,4 (1,4)	1,7 (1,7)	V				
V _(TO)	T _i = 25 (150) °C		1 (0,9)	1,1 (1)	V				
r _T	$T_j = 25 (150) ^{\circ}C$		27 (33)	40 (47)	mΩ				
$R_{th(j-s)}$	per diode		2,46		K/W				
I _{RRM}	under following conditions		20		Α				
Q_{rr}	I _F = 15 A, V _R = 300 V		1,8		μC				
E _{rr}	$V_{GE} = 0 \text{ V}, T_j = 125 \text{ °C}$		0,45		mJ				
	$di_F/dt = 930 A/\mu s$								
Diode - Rectifier									
V_{F}	I _F = 15 A, T _j = 25 °C		1,1		V				
V _(TO)	T _j = 150 °C		0,8		V				
r _T	$T_j = 150 ^{\circ}C$		20		mΩ				
$R_{th(j-s)}$	per diode		1,5		K/W				
Temperature Sensor									
R _{ts}	3 %, T _r = 25 (100) °C		1000(1670)		Ω				
Mechanical Data									
w			35		g				
M_s	Mounting torque	2		2,5	Nm				

SKiiP 03NAC066V1

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.