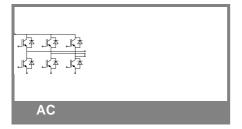
SKiiP 11AC12T4V1

3-phase bridge inverter

SKiiP 11AC12T4V1

Target Data


Features

- Trench 4 IGBT's
- Robust and soft freewheeling diodes in CAL technology
- Highly reliable spring contacts for electrical connections
- UL recognised file no. E63532

Typical Applications

Absolute Maximum Ratings T _c = 25 °C, unless otherwise specified								
Symbol	Conditions		Values	Units				
IGBT								
V_{CES}	T _j = 25 °C		1200	V				
I _C	T _j = 175 °C	T _c = 25 °C	12	Α				
		$T_c = 70 ^{\circ}C$	12	Α				
I _{CRM}	$I_{CRM} = 3xI_{Cnom}$		24	Α				
V_{GES}			±20	V				
t _{psc}	V_{CC} = 600 V; $V_{GE} \le 20$ V; $V_{CES} < 1200$ V	T _j = 150 °C	10	μs				
Inverse D	Inverse Diode							
I _F	T _j = 175 °C	$T_c = 25 ^{\circ}C$	15	Α				
		$T_c = 70 ^{\circ}C$	13	Α				
I _{FRM}	$I_{CRM} = 3xI_{Cnom}$		24	Α				
Module								
I _{t(RMS)}			20	Α				
T_{vj}			-40+175	°C				
T _{stg}			-40+125	°C				
V _{isol}	AC, 1 min.		2500	V				

Characteristics $T_c =$		25 °C, unless otherwise specified				
Symbol	Conditions		min.	typ.	max.	Units
IGBT						
$V_{GE(th)}$	$V_{GE} = V_{CE}$, $I_C = mA$		5	5,8	6,5	V
I _{CES}	$V_{GE} = V, V_{CE} = V_{CES}$	T _j = °C				mA
V _{CE0}		T _j = 25 °C		1,1	1,3	V
		T _j = 150 °C		1	1,2	V
r _{CE}	V _{GE} = 15 V	T _j = 25°C		94	94	mΩ
		T _j = 150°C		156	156	$m\Omega$
V _{CE(sat)}	I _{Cnom} = 8 A, V _{GE} = 15 V	T _j = 25°C _{chiplev.}		1,85	2,05	V
		$T_j = 150^{\circ}C_{chiplev}$		2,25	2,45	V
C _{ies}						nF
C _{oes}	$V_{CE} = , V_{GE} = V$	f = MHz				nF
C _{res}						nF
R _{Gint}	T _j = 25 °C			0		Ω
t _{d(on)}						ns
t _r	R _{Gon} =	V _{CC} = 600V		0.00		ns
E _{on}	D	I _{Cnom} = 8A		0,96		mJ
t _{d(off)}	R _{Goff} =	T _j = 150 °C				ns
t _f		$V_{GE} = \pm 15V$		0.64		ns
E _{off}				0,64		mJ
$R_{th(j-s)}$	per IGBT			1,55		K/W

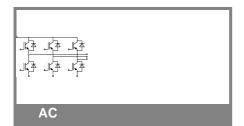
SKiiP 11AC12T4V1

3-phase bridge inverter

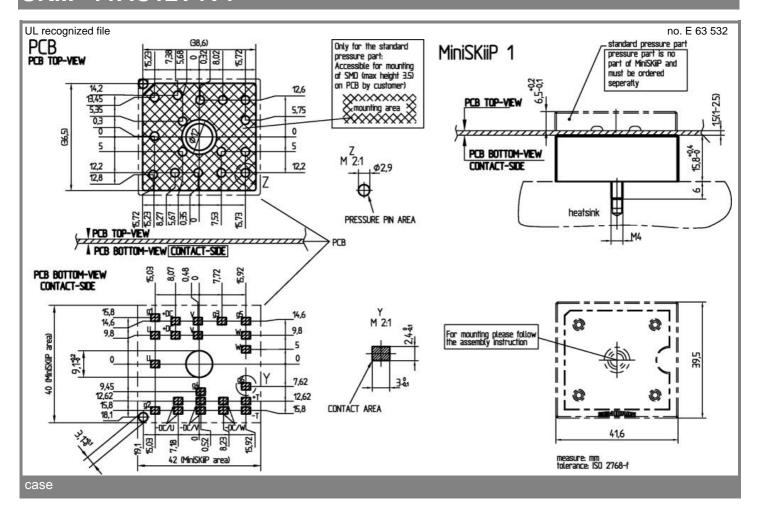
SKiiP 11AC12T4V1

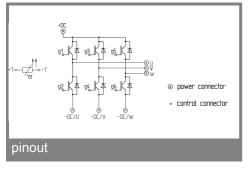
Target Data

Features


- · Trench 4 IGBT's
- Robust and soft freewheeling diodes in CAL technology
- Highly reliable spring contacts for electrical connections
- UL recognised file no. E63532

Typical Applications


Characteristics									
Symbol	Conditions		min.	typ.	max.	Units			
Inverse D	Inverse Diode								
$V_F = V_{EC}$	I_{Fnom} = 8 A; V_{GE} = 15 V	$T_j = 25 ^{\circ}C_{\text{chiplev.}}$		2,4	2,75	V			
		T_j = 150 °C _{chiplev} .		2,45	2,8	V			
V_{F0}		T _j = 25 °C		1,3	1,5	V			
		T _j = 150 °C		0,9	1,1	V			
r _F		T _j = 25 °C		138	156	mΩ			
		T _j = 150 °C		194	213	mΩ			
I _{RRM}	I _{Fnom} = A	T _j = °C				Α			
Q_{rr}						μC			
E _{rr}	V _{GE} = ±15V			0,6		mJ			
$R_{th(j-s)}$	per diode			2,33		K/W			
M _s	to heat sink		2		2,5	Nm			
w				35		g			
Temperat	ture sensor								
R _{ts}	3%,Tr=25°C			1000		Ω			
R_{ts}	3%,Tr=100°C			1670		Ω			


This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.

SKiiP 11AC12T4V1

3 15-10-2007 LAN © by SEMIKRON