
SURFACE MOUNT 1.5 AMP HIGH VOLTAGE NEGATIVE ADJUSTABLE REGULATOR

Three Terminal, High Voltage, Precision Adjustable Negative Voltage Regulator In Hermetic Surface Mount Package

FEATURES

- Hermetic Surface Mount Package
- Adjustable Output Voltage
- Built-In Thermal Overload Protection
- Short Circuit Current Limiting
- Product Is Available Hi-Rel Screened
- Electrically Similar To Industry Standard Type LM137HV

DESCRIPTION

This three terminal negative regulator is supplied in a hermetically sealed surface mount package. All protective features are designed into the circuit, including thermal shutdown, current limiting and safe-area control. With heat sinking, they can deliver over 1.0 amp of output current. This unit features output voltages that can be trimmed using external resistors, from -1.2 volts to -47 volts.

ABSOLUTE MAXIMUM RATINGS @ 25°C

Input to Output Voltage Differential	50 V
Operating Junction Temperature Range	55°C to + 150°C
Storage Temperature Range	55°C to + 150°C
Typical Power/Thermal Characteristics:	
Rated Power:	
T _C	17.5 W
$T_A^{\check{u}}$	3 W
Thermal Resistance:	
$ heta_{ ext{JC}}.\dots$	
$ heta_{JA}$	42 °C/W
Lead Temperature at Case (5 sec)	225 °C

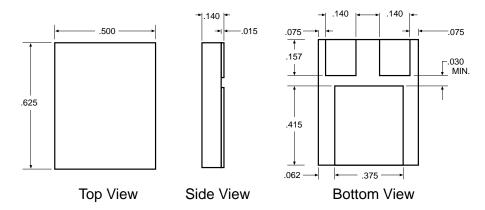
PIN CONNECTION

3

Pin 1: Adjust Pin 2: V_{OUT} Pin 3: V_{IN}

Omnire

3 5


ELECTRICAL CHARACTERISTICS -55°C T_A 125°C, I_L = 8mA (unless otherwise specified)

Parameter	Symbol	Test Conditions		Min.	Max.	Unit
Reference Voltage	V _{REF}	V _{DIFF} 3.0V, T _A = 25°C		-1.275	-1.225	
		V _{DIFF} = 3V	•	-1.30	-1.20	V
		V _{DIFF} = 50V, T _A = 25°C		-1.275	-1.225	
		V _{DIFF}	•	-1.30	-1.20	
Line Regulation	R _{LINE}	3.0 V V _{DIFF} 50V, T _A = 25°C		-10	10	mV
(Note 1)			•	-25	25	
Load Regulation	R _{LOAD}	V _{DIFF} = 50V, 8mA I _L 110mA		-25	25	
(Note 1)		T _A = 25°C				
		$ V_{DIFF} = 5V, 8mA I_L 1.5A, T_A = 25^{\circ}C$		-25	25	mV
			•	-45	45	
Thermal Regulation	V _{RTH}	V _{IN} = -14.6V, I _L = 1.5A		-5	5	\/
		P _d = 20 Watts, t = 10 ms, T _A = 25°C				mV
Ripple Rejection	R _N	f = 120 Hz, V _{OUT} = V _{ref}	•	66		dD
(Note 2)		$C_{Adj} = 10 \mu F, I_{OUT} = 100 \text{ mA}$				dB
Adjustment Pin Current	I _{Adj}	V _{DIFF} = 3.0V	•		100	
		V _{DIFF}	•		100	μA
		V _{DIFF} = 50V	•		100	
Adjustment Pin	I _{Adj}	V _{DIFF} = 5V, 8mA OUT 1.5A	•	-5	5	
Current Change		3V V _{DIFF} 50V	•	-6	6	μA
Miminum Load Current	I _{Lmin}	$ V_{DIFF} = 3.0V, V_{OUT} = -1.4V \text{ (forced)}$	•		3.0	
		$ V_{DIFF} = 10V, V_{OUT} = -1.4V$ (forced)	•		3.0	mA
		$ V_{DIFF} = 40V$, $V_{OUT} = -1.4V$ (forced)	•		5.0	
		$ V_{DIFF} = 50V$, $V_{OUT} = -1.4V$ (forced)	•		5.0	
Current Limit	I _{CL}	V _{DIFF} = 5V	•	1.5	3.5	А
(Note 2)		V _{DIFF} = 50V, T _A = 25°C		0.2	1.0	

Notes

- 1. Load and Line Regulation are specified at a constant junction temperature. Pulse testing with low duty cycle is used. Changes in output voltage due to heating effects must be taken into account separately.
- 2. If not tested, shall be guaranteed to the specified limits.
- 3. The denotes the specifications which apply over the full operating temperature range.

MECHANICAL OUTLINE

3.5