Low Threshold

Features

- ► Low threshold 2.0V max.
- High input impedance
- ► Low input capacitance 50pF typical
- ► Fast switching speeds
- ► Low on resistance
- Free from secondary breakdown
- Low input and output leakage
- ► Complementary N- and P-channel devices

Applications

- ► Logic level interfaces ideal for TTL and CMOS
- Solid state relays
- Battery operated systems
- Photo voltaic drives
- Analog switches
- General purpose line drivers
- ▶ Telecom switches

Absolute Maximum Ratings

Parameter	Value
Drain-to-source voltage	BV _{DSS}
Drain-to-source voltage	BV _{DGS}
Drain-to-source voltage	±20V
Operating and storage temperature	-55°C to +150°C

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied. Continuous operation of the device at the absolute rating level may affect device reliability. All voltages are referenced to device ground.

Ordering Information

Device	Order Number Die*	BV _{DSS} / BV _{DGS}	R _{DS(ON)} (max)	V _{GS(th)} (max)	l _{D(ON)} (min)
TN1504	TN1504NW	40V	3.0Ω	2.0V	2.0A
TN1506	TN1506NW	60V	3.0Ω	2.0V	2.0A
TN1510	TN1510NW	100V	3.0Ω	2.0V	2.0A

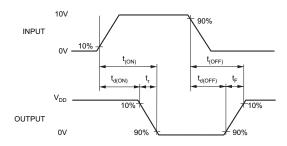
^{*} Die in wafer form.

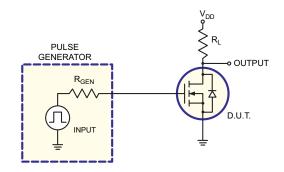
General Description

These low threshold enhancement-mode (normally-off) transistors utilize a vertical DMOS structure and Supertex's well-proven silicon-gate manufacturing process. This combination produces devices with the power handling capabilities of bipolar transistors, and with the high input impedance and positive temperature coefficient inherent in MOS devices. Characteristic of all MOS structures, these devices are free from thermal runaway and thermally-induced secondary breakdown.

Supertex's vertical DMOS FETs are ideally suited to a wide range of switching and amplifying applications where very low threshold voltage, high breakdown voltage, high input impedance, low input capacitance, and fast switching speeds are desired.

TN1504/TN1506/TN1510


Electrical Characteristics (@25°C unless otherwise specified)


Symbol	Parameter		Min	Тур	Max	Units	Conditions	
BV _{DSS} Drain-to-source break-down voltage		TN1504	40					
	TN1506	60	-	-	V V _G	$V_{GS} = 0V$, $I_D = 1.0$ mA		
	down voltage	TN1510	100					
V _{GS(th)}	Gate threshold voltage		0.6	-	2.0	V	$V_{GS} = V_{DS}$, $I_D = 0.5 \text{mA}$	
$\Delta V_{GS(th)}$	Change in V _{GS(th)} with temperature		-	-3.8	-5.0	mV/°C	$V_{GS} = V_{DS}$, $I_D = 1.0 \text{mA}$	
I _{GSS}	Gate body leakage		-	0.1	100	nA	$V_{GS} = \pm 20V, V_{DS} = 0V$	
			-	-	10		V _{GS} =0V, V _{DS} = Max Rating	
I _{DSS} Zero gate voltage drain cu	rrent	500			μA	$V_{GS} = 0V$, $V_{DS} = 0.8$ Max Rating $T_A = 125$ °C		
I _{D(ON)} ON-state drain currer	011 / / / /		-	1.4	-	_	V _{GS} = 5V, V _{DS} = 25V	
	ON-state drain current		-	3.4	-	A	V _{GS} = 10V, V _{DS} = 25V	
В	Static drain-to-source ON-sta	l-state	-	2.0	4.5		V _{GS} = 4.5V, I _D = 250mA	
R _{DS(ON)}	resistance		-	1.6	3.0	Ω	V _{GS} = 10V, I _D = 500mA	
$\Delta R_{DS(ON)}$	Change in R _{DS(ON)} with temperature		_	0.6	1.1	%/°C	V _{GS} = 10V, I _D = 0.5A	
G _{FS}	Forward transconductance		225	400	-	mmho	$V_{DS} = 25V, I_{D} = 500mA$	
C _{ISS}	Input capacitance		-	50	60			
C _{oss}	Common source output capacitance		-	25	35	pF	V _{GS} = 0V, V _{DS} = 25V f = 1 MHz	
C _{RSS}	Reverse transfer capacitar	nce	-	4.0	8.05			
t _{d(ON)}	Turn-ON delay time		-	2.0	5.0			
t _r	Rise time		-	3.0	5.0	ns	V _{DD} = 25V, I _D = 1.0A	
t _{d(OFF)}	Turn-OFF delay time		-	6.0	7.0	115	$R_{GEN} = 25\Omega$	
t _f	Fall time		-	3.0	6.0			
V _{SD}	Diode forward voltage drop	o	-	1.0	1.5	V	V _{GS} = 0V, I _{SD} = 0.5A	
t _{rr}	Reverse recovery time		-	400	-	ns	V _{GS} = 0V, I _{SD} = 0.5A	

Notes:

- 1. All D.C. parameters 100% tested at 25°C unless otherwise stated. (Pulse test: 300µs pulse, 2% duty cycle.)
- 2. All A.C. parameters sample tested.

Switching Waveforms and Test Circuit

Supertex inc. does not recommend the use of its products in life support applications, and will not knowingly sell its products for use in such applications, unless it receives an adequate "product liability indemnification insurance agreement". **Supertex** does not assume responsibility for use of devices described and limits its liability to the replacement of the devices determined defective due to workmanship. No responsibility is assumed for possible omissions or inaccuracies. Circuitry and specifications are subject to change without notice. For the latest product specifications, refer to the **Supertex** website: http://www.supertex.com.

©2007 **Supertex inc.** All rights reserved. Unauthorized use or reproduction is prohibited.

Supertex inc.