TOSHIBA

8 Bit Microcontroller TLCS-870/C Series

TMP86CM72FG

TOSHIBA CORPORATION

The information contained herein is subject to change without notice. 021023_D

TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress.

It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property.

In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications.

Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc. 021023_A

The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.).

These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk. 021023_B

The products described in this document shall not be used or embedded to any downstream products of which manufacture, use and/or sale are prohibited under any applicable laws and regulations. $060106 \, \, \mathrm{O}$

The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA for any infringements of patents or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any patents or other rights of TOSHIBA or the third parties. 070122_C

The products described in this document are subject to foreign exchange and foreign trade control laws. 060925 E

For a discussion of how the reliability of microcontrollers can be predicted, please refer to Section 1.3 of the chapter entitled Quality and Reliability Assurance/Handling Precautions. 030619_S

Revision History

Date	Revision	
2007/10/4	1	First Release

Table of Contents

T	MP86CM72FG	
	1.1 Features 1.2 Pin Assignment 1.3 Block Diagram 1.4 Pin Names and Functions	. 3 . 4
2.	Operational Description	
	2.1 CPU Core Functions 9 2.1.1 Memory Address Map	
	2.2 System Clock Controller 10 2.2.1 Clock Generator 10 2.2.2 Timing Generator 12 2.2.2.1 Configuration of timing generator 12 2.2.2.2 Machine cycle 13 2.2.3.1 Single-clock mode 13 2.2.3.2 Dual-clock mode 12 2.2.3.3 STOP mode 18 2.2.4.1 STOP mode 18 2.2.4.2 IDLE1/2 mode and SLEEP1/2 mode 18 2.2.4.3 IDLE0 and SLEEP0 modes (IDLE0, SLEEP0) 18 2.2.4.4 SLOW mode 2.2.4.4 SLOW mode 2.3.1 External Reset Input 31 2.3.2 Address trap reset 32 2.3.3 Watchdog timer reset 32 2.3.4 System clock reset 32	31
3.	Interrupt Control Circuit	
	3.1 Interrupt latches (IL15 to IL2) 3.2 Interrupt enable register (EIR) 3.2.1 Interrupt master enable flag (IMF) 3.2.2 Individual interrupt enable flags (EF15 to EF4) 3.3.3.3 Individual interrupt enable flags (EF15 to EF4)	
	3.3 Interrupt Source Selector (INTSEL). 3.4 Interrupt Sequence	39 39
	3.4.3 Interrupt return 42 3.5 Software Interrupt (INTSW) 3.5.1 Address error detection 43 3.5.2 Debugging 43	43

	3.6 Undefined Instruction Interrupt (INTUNDEF)	43
4.	Program Patch Logic	
	4.1 Configuration	48
5.	Special Function Register (SFR)	
	5.1 SFR	
6.	I/O Ports	
	6.1 Port P1 (P17 to P10)	66 67 69
	Watchdog Timer (WDT)	
	7.1 Watchdog Timer Configuration 7.2 Watchdog Timer Control 7.2.1 Malfunction Detection Methods Using the Watchdog Timer 7.2.2 Watchdog Timer Enable 7.2.3 Watchdog Timer Disable 7.2.4 Watchdog Timer Interrupt (INTWDT)	71 72
	7.2.5 Watchdog Timer Reset 75 7.3 Address Trap 7.3.1 Selection of Address Trap in Internal RAM (ATAS) 76 7.3.2 Selection of Operation at Address Trap (ATOUT) 76 7.3.3 Address Trap Interrupt (INTATRAP) 76 7.3.4 Address Trap Reset 77	76
8.	Time Base Timer (TBT)	
	8.1 Time Base Timer 8.1.1 Configuration 8.1.2 Control	79

8.1.3 Function 80 8.2 Divider Output (DVO) 8.2.1 Configuration 81 8.2.2 Control 81	81
9. 16-Bit Timer/Counter2 (TC2) 9.1 Configuration 9.2 Control 9.3 Function 9.3.1 Timer mode 9.3.2 Event counter mode 9.3.3 Window mode	84
10. 8-Bit TimerCounter 3 (TC3) 10.1 Configuration	91
11. 8-Bit TimerCounter 4 (TC4) 11.1 Configuration	98
12.2 Control. 12.3 Function. 12.3.1 Serial clock	105 106 108

13. Asynchronous Serial interface (UART)	
13.1 Configuration 13.2 Control 13.3 Transfer Data Format 13.4 Transfer Rate 13.5 Data Sampling Method 13.6 STOP Bit Length 13.7 Parity 13.8 Transmit/Receive Operation 13.8.1 Data Transmit Operation 130 13.8.2 Data Receive Operation 130 13.9 Status Flag 131 13.9.2 Framing Error 131 13.9.3 Overrun Error 131 13.9.4 Receive Data Buffer Full 132 13.9.5 Transmit Data Buffer Empty 132 13.9.6 Transmit End Flag 133	125 126 128 129 130 130 131
14. Serial Bus Interface(I2C Bus) VerD (SBI)	
14.1 Control 14.2 Control 14.3 Software Reset 14.4 The Data Format in the I2C Bus Mode 14.5 I2C Bus Control 14.5.1 Acknowledgment mode (ACK = "1") 14.5.1.1 Acknowledgment mode (ACK = "0") 14.5.2 Number of transfer bits 140 14.5.3 Serial clock 140 14.5.3.1 Clock source 14.5.3.1 Clock source 14.5.4 Slave address and address recognition mode specification 141 14.5.5 Master/slave selection 141 14.5.6 Transmitter/receiver selection 141 14.5.7 Start/stop condition generation 142 14.5.8 Interrupt service request and cancel 142 14.5.9 Setting of I2C bus mode 143 14.5.10 Arbitration lost detection monitor 143 14.5.11 Slave address match detection monitor 144 14.5.12 GENERAL CALL detection monitor 144 14.5.13 Last received bit monitor 144 14.6.1 Device initialization 145	135 135 136 137
15. 8-Bit AD Converter (ADC)	
15.1 Configuration	151

15.2 Control 15.3 Function 15.3.1 AD Conveter Operation 154 15.3.2 AD Converter Operation 154 15.3.3 STOP and SLOW Mode during AD Conversion 155 15.3.4 Analog Input Voltage and AD Conversion Result 156 15.4 Precautions about AD Converter 157 15.4.1 Analog input pin voltage range 157 15.4.2 Analog input shared pins 157 15.4.3 Noise countermeasure 157	152 154 157
16. Key-on Wakeup (KWU)	
16.1 Configuration 16.2 Control 16.3 Function	159 159 159
17. Vacuum Fluorescent Tube (VFT) Driver Circuit	
17.1 Functions 17.2 Configuration 17.3 Control 17.3.1 Setting of Display mode 166	161 162 163
17.3.2 Display data setting 166 17.4 Display Operation 17.5 Example of Display Operation 17.5.1 For Conventional type VFT 168 17.5.2 For Grid scan type VFT 169	167 168
17.6.2 Port Glid Scarrype VF1	170
18. Input/Output Circuitry	
18.1 Control Pins	171 172
19. Electrical Characteristics	
 19.1 Absolute Maximum Ratings	175 176 177
+ Normal output port loss + VFT driver loss	178
19.5 AD Characteristics	180 181

	HSIO AC Characteristics	
Note	2:	10.
	2:	
19.8	Recommended Oscillating Conditions	183
19.9	Handling Precaution	183

20. Package Dimensions

This is a technical document that describes the operating functions and electrical specifications of the 8-bit microcontroller series TLCS-870/C (LSI).

CMOS 8-Bit Microcontroller

TMP86CM72FG

Product No.	ROM (MaskROM)	RAM	Package	OTP MCU	Emulation Chip
TMP86CM72FG	32768 bytes	1024 bytes	QFP64-P-1414-0.80C	TMP86PM72FG	TMP86C972XB

1.1 **Features**

1. 8-bit single chip microcomputer TLCS-870/C series

- Instruction execution time:

0.25 µs (at 16 MHz)

122 μs (at 32.768 kHz)

- 132 types & 731 basic instructions

2. 19interrupt sources (External: 6 Internal: 13)

3. Input / Output ports (54 pins)

Large current output: 2pins (Typ. 20mA), LED direct drive

- 4. Watchdog Timer
- 5. Prescaler
 - Time base timer
 - Divider output function
- 6. 16-bit timer counter: 1 ch
 - Timer, Event counter, Window modes
- 7. 8-bit timer counter: 1 ch
 - Timer, Event counter, Capture modes
- 8. 8-bit timer counter: 1 ch
 - Timer, Event counter, Pulse width modulation (PWM) output,

Programmable divider output (PDO) modes

- 9. Serial Interface
 - 8-bit SIO:1 channel (32 bytes Buffer)

- The information contained herein is subject to change without notice. 021023_D
 TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc. 021023_A
 The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instrume
- The products described in this document shall not be used or embedded to any downstream products of which manufacture, use and/or
- sale are prohibited under any applicable laws and regulations. 060106_Q
 The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA for any infringements of patents or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any patents or other rights of TOSHIBA or the third parties. 070122_C
- The products described in this document are subject to foreign exchange and foreign trade control laws. 060925_E
- For a discussion of how the reliability of microcontrollers can be predicted, please refer to Section 1.3 of the chapter entitled Quality and Reliability Assurance/Handling Precautions. 030619_S

1.1 Features TMP86CM72FG

- 10. 8-bit UART: 1 ch
- 11. Serial Bus Interface(I²C Bus): 1ch
- 12. 8-bit successive approximation type AD converter (with sample hold)

Analog inputs: 6ch

- 13. Key-on wakeup: 4 ch
- 14. Vacuum flouorescent tube driver (automatic display)
 - Programmable grid scan
 - High breakdown voltage ports(MAX 40 V \times 37 bits)
- 15. Clock operation

Single clock mode

Dual clock mode

16. Low power consumption operation

STOP mode: Oscillation stops. (Battery/Capacitor back-up.)

SLOW1 mode: Low power consumption operation using low-frequency clock.(High-frequency clock stop.)

SLOW2 mode: Low power consumption operation using low-frequency clock.(High-frequency clock oscillate.)

IDLE0 mode: CPU stops, and only the Time-Based-Timer(TBT) on peripherals operate using high frequency clock. Release by falling edge of the source clock which is set by TBTCR<TBTCK>.

IDLE1 mode: CPU stops and peripherals operate using high frequency clock. Release by interruputs(CPU restarts).

IDLE2 mode: CPU stops and peripherals operate using high and low frequency clock. Release by interruputs. (CPU restarts).

SLEEP0 mode: CPU stops, and only the Time-Based-Timer(TBT) on peripherals operate using low frequency clock. Release by falling edge of the source clock which is set by TBTCR<TBTCK>.

SLEEP1 mode: CPU stops, and peripherals operate using low frequency clock. Release by interruput.(CPU restarts).

SLEEP2 mode: CPU stops and peripherals operate using high and low frequency clock. Release by interruput.

17. Wide operation voltage:

4.5 V to 5.5 V at 16MHz /32.768 kHz 2.7 V to 5.5 V at 8 MHz /32.768 kHz

1.2 Pin Assignment

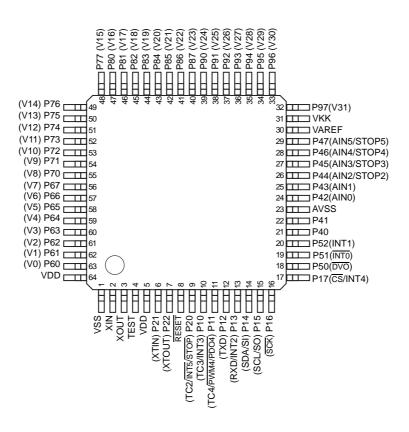


Figure 1-1 Pin Assignment

1.3 Block Diagram TMP86CM72FG

1.3 Block Diagram

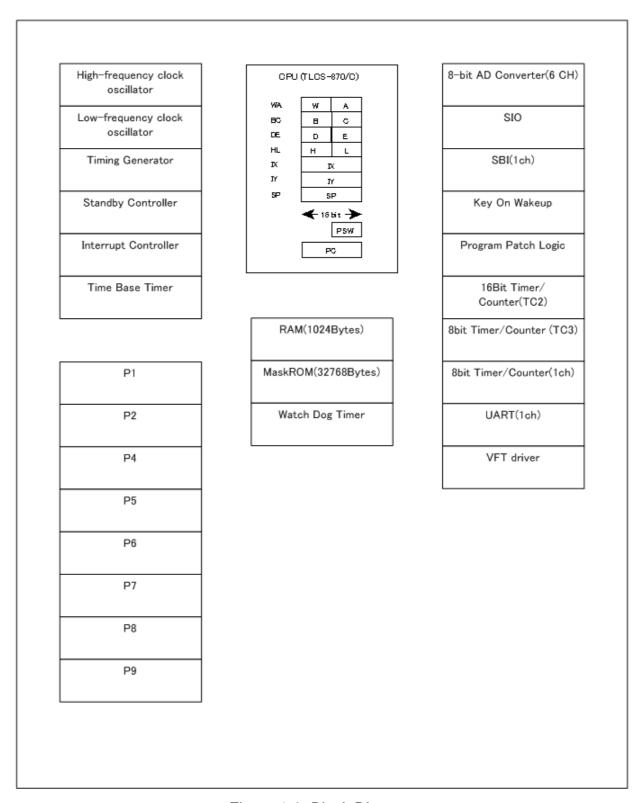


Figure 1-2 Block Diagram

1.4 Pin Names and Functions

Table 1-1 Pin Names and Functions(1/3)

Pin Name	Pin Number	Input/Output	Functions
P17 CS INT4	17	10 1	PORT17 SIO chip select input External interrupt 4 input
P16 SCK	16	IO IO	PORT16 Serial clock input/output
P15 SO SCL	15	IO O O	PORT15 Serial data output I2C bus clock
P14 SI SDA	14	IO I	PORT14 Serial data input I2C bus data
P13 INT2 RXD	13	IO I	PORT13 External interrupt 2 input UART data input
P12 TXD	12	IO O	PORT12 UART data output
P11 PWM4/PDO4 TC4	11	IO O I	PORT11 PWM4/PDO4 output TC4 input
P10 INT3 TC3	10	IO I	PORT10 External interrupt 3 input TC3 pin input
P22 XTOUT	7	IO O	PORT22 Resonator connecting pins(32.768kHz) for inputting external clock
P21 XTIN	6	IO I	PORT21 Resonator connecting pins(32.768kHz) for inputting external clock
P20 STOP INT5 TC2	9	IO I I	PORT20 STOP mode release signal input External interrupt 5 input TC2 input
P47 AIN5 STOP5	29	IO I	PORT47 AD converter analog input 5 STOP5 input
P46 AIN4 STOP4	28	IO I	PORT46 AD converter analog input 4 STOP4 input
P45 AIN3 STOP3	27	IO I	PORT45 AD converter analog input 3 STOP3 input
P44 AIN2 STOP2	26	IO I	PORT44 AD converter analog input 2 STOP2 input
P43 AIN1	25	IO I	PORT43 AD converter analog input 1
P42 AIN0	24	IO I	PORT42 AD converter analog input 0

1.4 Pin Names and Functions

Table 1-1 Pin Names and Functions(2/3)

Pin Name	Pin Number	Input/Output	Functions
P41	22	Ю	PORT41
P40	21	IO	PORT40
P52 INT1	20	_ 0	PORT52 External interrupt 1 input
P51 INT0	19	IO I	PORT51 External interrupt 0 input
P50	18	IO	PORT50
DVO		O	Divider Output
P67	56	IO	PORT67
V7		O	Grid output7
P66	57	IO	PORT66
V6		O	Grid output6
P65	58	IO	PORT65
V5		O	Grid output5
P64	59	IO	PORT64
V4		O	Grid output4
P63	60	IO	PORT63
V3		O	Grid output3
P62	61	IO	PORT62
V2		O	Grid output2
P61	62	IO	PORT61
V1		O	Grid output1
P60	63	IO	PORT60
V0		O	Grid output0
P77	48	IO	PORT77
V15		O	Grid output15
P76	49	IO	PORT76
V14		O	Grid output14
P75	50	IO	PORT75
V13		O	Grid output13
P74	51	IO	PORT74
V12		O	Grid output12
P73	52	IO	PORT73
V11		O	Grid output11
P72	53	IO	PORT72
V10		O	Grid output10
P71	54	IO	PORT71
V9		O	Grid output9
P70	55	IO	PORT70
V8		O	Grid output8
P87	40	IO	PORT87
V23		O	Segment output23
P86	41	10	PORT86
V22		0	Segment output22
P85	42	10	PORT85
V21		0	Segment output21

Table 1-1 Pin Names and Functions (3/3)

Pin Name	Pin Number	Input/Output	Functions
P84	43	IO	PORT84
V20		O	Segment output20
P83	44	IO	PORT83
V19		O	Segment output19
P82	45	IO	PORT82
V18		O	Segment output18
P81	46	IO	PORT81
V17		O	Segment output17
P80	47	IO	PORT80
V16		O	Segment output16
P97	32	IO	PORT97
V31		O	Segment output31
P96	33	IO	PORT96
V30		O	Segment output30
P95	34	IO	PORT95
V29		O	Segment output29
P94	35	IO	PORT94
V28		O	Segment output28
P93	36	IO	PORT93
V27		O	Segment output27
P92	37	IO	PORT92
V26		O	Segment output26
P91	38	IO	PORT91
V25		O	Segment output25
P90	39	IO	PORT90
V24		O	Segment output24
XIN	2	I	Resonator connecting pins for high-frequency clock
XOUT	3	0	Resonator connecting pins for high-frequency clock
RESET	8	I	Reset signal
TEST	4	I	Test pin for out-going test. Normally, be fixed to low.
VAREF	30	I	Analog reference voltage input (High)
AVSS	23	I	AD circuit power supply
VDD	5	I	Power Supply
VSS	1	I	0V(GND)

			_		
1.4	Pin	Names	and	Functions	:

TMP86CM72FG

2. Operational Description

2.1 CPU Core Functions

The CPU core consists of a CPU, a system clock controller, and an interrupt controller.

This section provides a description of the CPU core, the program memory, the data memory, and the reset circuit.

2.1.1 Memory Address Map

The TMP86CM72FG memory is composed MaskROM, RAM, DBR(Data buffer register) and SFR(Special function register). They are all mapped in 64-Kbyte address space. Figure 2-1 shows the TMP86CM72FG memory address map.

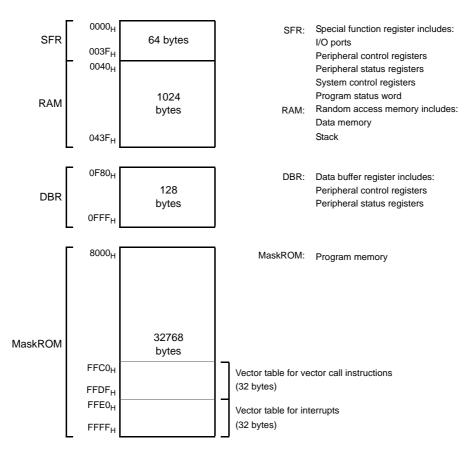


Figure 2-1 Memory Address Map

2.1.2 Program Memory (MaskROM)

The TMP86CM72FG has a 32768 bytes (Address 8000H to FFFFH) of program memory (MaskROM).

2.1.3 Data Memory (RAM)

The TMP86CM72FG has 1024bytes (Address 0040H to 043FH) of internal RAM. The first 192 bytes (0040H to 00FFH) of the internal RAM are located in the direct area; instructions with shorten operations are available against such an area.

The data memory contents become unstable when the power supply is turned on; therefore, the data memory should be initialized by an initialization routine.

Example: Clears RAM to "00H". (TMP86CM72FG)

	LD	HL, 0040H	; Start address setup
	LD	A, H	; Initial value (00H) setup
	LD	BC, 03FFH	
SRAMCLR:	LD	(HL), A	
	INC	HL	
	DEC	BC	
	JRS	F, SRAMCLR	

2.2 System Clock Controller

The system clock controller consists of a clock generator, a timing generator, and a standby controller.

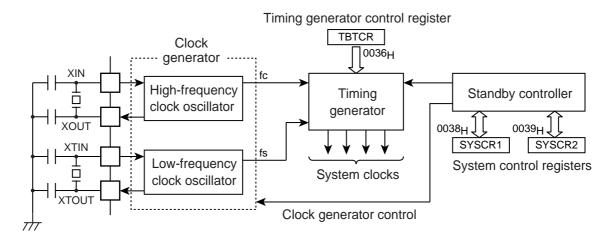


Figure 2-2 System Colck Control

2.2.1 Clock Generator

The clock generator generates the basic clock which provides the system clocks supplied to the CPU core and peripheral hardware. It contains two oscillation circuits: One for the high-frequency clock and one for the low-frequency clock. Power consumption can be reduced by switching of the standby controller to low-power operation based on the low-frequency clock.

The high-frequency (fc) clock and low-frequency (fs) clock can easily be obtained by connecting a resonator between the XIN/XOUT and XTIN/XTOUT pins respectively. Clock input from an external oscillator is also possible. In this case, external clock is applied to XIN/XTIN pin with XOUT/XTOUT pin not connected.

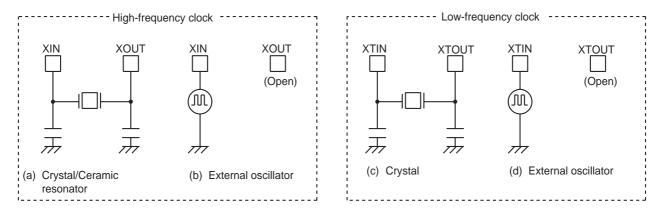


Figure 2-3 Examples of Resonator Connection

Note: The function to monitor the basic clock directly at external is not provided for hardware, however, with disabling all interrupts and watchdog timers, the oscillation frequency can be adjusted by monitoring the pulse which the fixed frequency is outputted to the port by the program.

The system to require the adjustment of the oscillation frequency should create the program for the adjustment in advance.

2.2.2 Timing Generator

The timing generator generates the various system clocks supplied to the CPU core and peripheral hardware from the basic clock (fc or fs). The timing generator provides the following functions.

- 1. Generation of main system clock
- 2. Generation of divider output (DVO) pulses
- 3. Generation of source clocks for time base timer
- 4. Generation of source clocks for watchdog timer
- 5. Generation of internal source clocks for timer/counters
- 6. Generation of warm-up clocks for releasing STOP mode

2.2.2.1 Configuration of timing generator

The timing generator consists of a 2-stage prescaler, a 21-stage divider, a main system clock generator, and machine cycle counters.

An input clock to the 7th stage of the divider depends on the operating mode, SYSCR2<SYSCK> and TBTCR<DV7CK>, that is shown in Figure 2-4. As reset and STOP mode started/canceled, the prescaler and the divider are cleared to "0".

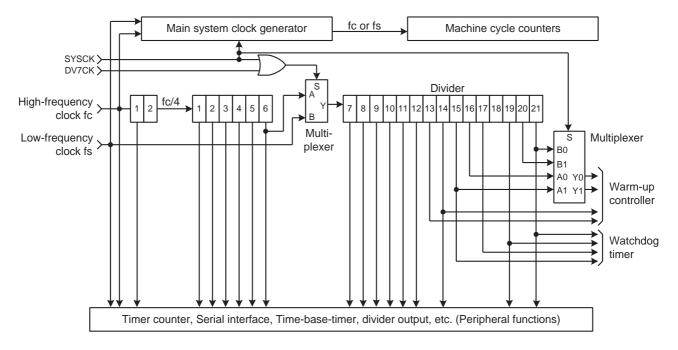
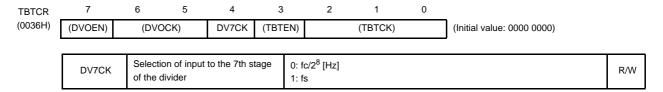



Figure 2-4 Configuration of Timing Generator

Timing Generator Control Register

- Note 1: In single clock mode, do not set DV7CK to "1".
- Note 2: Do not set "1" on DV7CK while the low-frequency clock is not operated stably.
- Note 3: fc: High-frequency clock [Hz], fs: Low-frequency clock [Hz], *: Don't care
- Note 4: In SLOW1/2 and SLEEP1/2 modes, the DV7CK setting is ineffective, and fs is input to the 7th stage of the divider.
- Note 5: When STOP mode is entered from NORMAL1/2 mode, the DV7CK setting is ineffective during the warm-up period after release of STOP mode, and the 6th stage of the divider is input to the 7th stage during this period.

2.2.2.2 Machine cycle

Instruction execution and peripheral hardware operation are synchronized with the main system clock.

The minimum instruction execution unit is called an "machine cycle". There are a total of 10 different types of instructions for the TLCS-870/C Series: Ranging from 1-cycle instructions which require one machine cycle for execution to 10-cycle instructions which require 10 machine cycles for execution. A machine cycle consists of 4 states (S0 to S3), and each state consists of one main system clock.

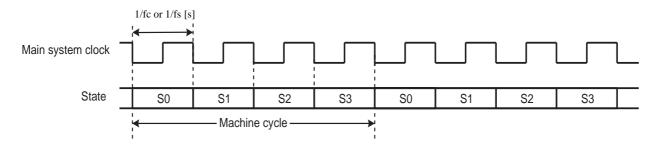


Figure 2-5 Machine Cycle

2.2.3 Operation Mode Control Circuit

The operation mode control circuit starts and stops the oscillation circuits for the high-frequency and low-frequency clocks, and switches the main system clock. There are three operating modes: Single clock mode, dual clock mode and STOP mode. These modes are controlled by the system control registers (SYSCR1 and SYSCR2). Figure 2-6 shows the operating mode transition diagram.

2.2.3.1 Single-clock mode

Only the oscillation circuit for the high-frequency clock is used, and P21 (XTIN) and P22 (XTOUT) pins are used as input/output ports. The main-system clock is obtained from the high-frequency clock. In the single-clock mode, the machine cycle time is 4/fc [s].

(1) NORMAL1 mode

In this mode, both the CPU core and on-chip peripherals operate using the high-frequency clock. The TMP86CM72FG is placed in this mode after reset.

(2) IDLE1 mode

In this mode, the internal oscillation circuit remains active. The CPU and the watchdog timer are halted; however on-chip peripherals remain active (Operate using the high-frequency clock).

IDLE1 mode is started by SYSCR2<IDLE> = "1", and IDLE1 mode is released to NORMAL1 mode by an interrupt request from the on-chip peripherals or external interrupt inputs. When the IMF (Interrupt master enable flag) is "1" (Interrupt enable), the execution will resume with the acceptance of the interrupt, and the operation will return to normal after the interrupt service is completed. When the IMF is "0" (Interrupt disable), the execution will resume with the instruction which follows the IDLE1 mode start instruction.

(3) IDLE0 mode

In this mode, all the circuit, except oscillator and the timer-base-timer, stops operation.

This mode is enabled by SYSCR2<TGHALT> = "1".

When IDLE0 mode starts, the CPU stops and the timing generator stops feeding the clock to the peripheral circuits other than TBT. Then, upon detecting the falling edge of the source clock selected with TBTCR<TBTCK>, the timing generator starts feeding the clock to all peripheral circuits.

When returned from IDLE0 mode, the CPU restarts operating, entering NORMAL1 mode back again. IDLE0 mode is entered and returned regardless of how TBTCR<TBTEN> is set. When IMF = "1", EF7 (TBT interrupt individual enable flag) = "1", and TBTCR<TBTEN> = "1", interrupt processing is performed. When IDLE0 mode is entered while TBTCR<TBTEN> = "1", the INTTBT interrupt latch is set after returning to NORMAL1 mode.

2.2.3.2 Dual-clock mode

Both the high-frequency and low-frequency oscillation circuits are used in this mode. P21 (XTIN) and P22 (XTOUT) pins cannot be used as input/output ports. The main system clock is obtained from the high-frequency clock in NORMAL2 and IDLE2 modes, and is obtained from the low-frequency clock in SLOW and SLEEP modes. The machine cycle time is 4/fc [s] in the NORMAL2 and IDLE2 modes, and 4/fs [s] (122 μ s at fs = 32.768 kHz) in the SLOW and SLEEP modes.

The TLCS-870/C is placed in the signal-clock mode during reset. To use the dual-clock mode, the low-frequency oscillator should be turned on at the start of a program.

(1) NORMAL2 mode

In this mode, the CPU core operates with the high-frequency clock. On-chip peripherals operate using the high-frequency clock and/or low-frequency clock.

(2) SLOW2 mode

In this mode, the CPU core operates with the low-frequency clock, while both the high-frequency clock and the low-frequency clock are operated. As the SYSCR2<SYSCK> becomes "1", the hardware changes into SLOW2 mode. As the SYSCR2<SYSCK> becomes "0", the hardware changes into NORMAL2 mode. As the SYSCR2<XEN> becomes "0", the hardware changes into SLOW1 mode. Do not clear SYSCR2<XTEN> to "0" during SLOW2 mode.

(3) SLOW1 mode

This mode can be used to reduce power-consumption by turning off oscillation of the high-frequency clock. The CPU core and on-chip peripherals operate using the low-frequency clock.

Switching back and forth between SLOW1 and SLOW2 modes are performed by SYSCR2<XEN>. In SLOW1 and SLEEP modes, the input clock to the 1st stage of the divider is stopped; output from the 1st to 6th stages is also stopped.

(4) IDLE2 mode

In this mode, the internal oscillation circuit remain active. The CPU and the watchdog timer are halted; however, on-chip peripherals remain active (Operate using the high-frequency clock and/or the low-frequency clock). Starting and releasing of IDLE2 mode are the same as for IDLE1 mode, except that operation returns to NORMAL2 mode.

(5) SLEEP1 mode

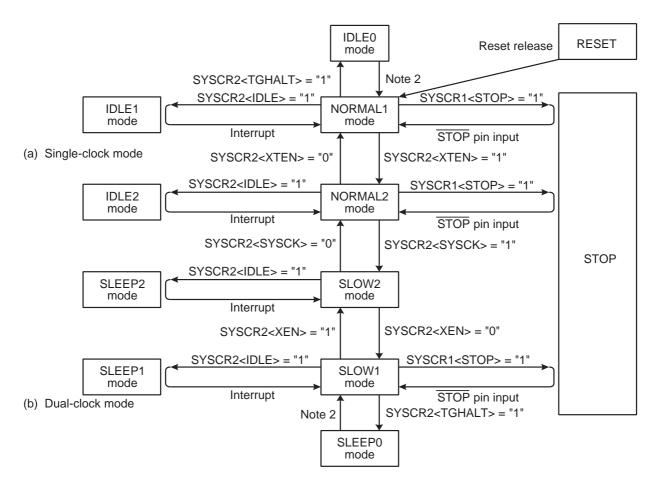
In this mode, the internal oscillation circuit of the low-frequency clock remains active. The CPU, the watchdog timer, and the internal oscillation circuit of the high-frequency clock are halted; however, on-chip peripherals remain active (Operate using the low-frequency clock). Starting and releasing of SLEEP mode are the same as for IDLE1 mode, except that operation returns to SLOW1 mode. In SLOW1 and SLEEP1 modes, the input clock to the 1st stage of the divider is stopped; output from the 1st to 6th stages is also stopped.

(6) SLEEP2 mode

The SLEEP2 mode is the idle mode corresponding to the SLOW2 mode. The status under the SLEEP2 mode is same as that under the SLEEP1 mode, except for the oscillation circuit of the high-frequency clock.

(7) SLEEP0 mode

In this mode, all the circuit, except oscillator and the timer-base-timer, stops operation. This mode is enabled by setting "1" on bit SYSCR2<TGHALT>.


When SLEEP0 mode starts, the CPU stops and the timing generator stops feeding the clock to the peripheral circuits other than TBT. Then, upon detecting the falling edge of the source clock selected with TBTCR<TBTCK>, the timing generator starts feeding the clock to all peripheral circuits.

When returned from SLEEP0 mode, the CPU restarts operating, entering SLOW1 mode back again. SLEEP0 mode is entered and returned regardless of how TBTCR<TBTEN> is set. When IMF = "1", EF7 (TBT interrupt individual enable flag) = "1", and TBTCR<TBTEN> = "1", interrupt processing is performed. When SLEEP0 mode is entered while TBTCR<TBTEN> = "1", the INTTBT interrupt latch is set after returning to SLOW1 mode.

2.2.3.3 STOP mode

In this mode, the internal oscillation circuit is turned off, causing all system operations to be halted. The internal status immediately prior to the halt is held with a lowest power consumption during STOP mode.

STOP mode is started by the system control register 1 (SYSCR1), and STOP mode is released by a inputting (Either level-sensitive or edge-sensitive can be programmably selected) to the $\overline{\text{STOP}}$ pin. After the warm-up period is completed, the execution resumes with the instruction which follows the STOP mode start instruction.

Note 1: NORMAL1 and NORMAL2 modes are generically called NORMAL; SLOW1 and SLOW2 are called SLOW; IDLE0, IDLE1 and IDLE2 are called IDLE; SLEEP0, SLEEP1 and SLEEP2 are called SLEEP.

Note 2: The mode is released by falling edge of TBTCR<TBTCK> setting.

Figure 2-6 Operating Mode Transition Diagram

Table 2-1 Operating Mode and Conditions

Operating Mode		Oscillator				Other	Machine Cycle
		High Frequency	Low Frequency	CPU Core	TBT	Peripherals	Time
	RESET			Reset	Reset	Reset	
	NORMAL1	Oscillation		Operate		Operate	4/fc [s]
Single clock	IDLE1	Oscillation	Stop		Operate	Operate	4/10 [5]
	IDLE0			Halt		Halt	
	STOP	Stop			Halt		-
	NORMAL2	- Oscillation	Oscillation	Operate with high frequency	Operate	Operate	4/fc [s]
	IDLE2			Halt			
	SLOW2			Operate with low frequency			4/fs [s]
Dual clock	SLEEP2			Halt			
	SLOW1			Operate with low frequency			
	SLEEP1	Stop					
	SLEEP0			Halt		Halt	
	STOP		Stop		Halt	Hait	

System Control Register 1

SYSCR1	7	6	5	4	3	2	1	0	
(0038H)	STOP	RELM	RETM	OUTEN	WI	JT			(Initial value: 0000 00**)

STOP	STOP mode start		0: CPU core and peripherals remain active 1: CPU core and peripherals are halted (Start STOP mode)				
RELM	Release method for STOP mode		0: Edge-sensitive release 1: Level-sensitive release				
RETM	Operating mode after STOP mode	0: Return to NORMAL1/2 mode 1: Return to SLOW1 mode					
OUTEN	Port output during STOP mode	0: High impedance 1: Output kept					
			Return to NORMAL mode	Return to SLOW mode			
WUT	Warm-up time at releasing STOP mode	00 01 10 11	3 x 2 ¹⁶ /fc 2 ¹⁶ /fc 3 x 2 ¹⁴ /fc 2 ¹⁴ /fc	3 x 2 ¹³ /fs 2 ¹³ /fs 3 x 2 ⁶ /fs 2 ⁶ /fs	R/W		

- Note 1: Always set RETM to "0" when transiting from NORMAL mode to STOP mode. Always set RETM to "1" when transiting from SLOW mode to STOP mode.
- Note 2: When STOP mode is released with RESET pin input, a return is made to NORMAL1 regardless of the RETM contents.
- Note 3: fc: High-frequency clock [Hz], fs: Low-frequency clock [Hz], *; Don't care
- Note 4: Bits 1 and 0 in SYSCR1 are read as undefined data when a read instruction is executed.
- Note 5: As the hardware becomes STOP mode under OUTEN = "0", input value is fixed to "0"; therefore it may cause external interrupt request on account of falling edge.
- Note 6: When the key-on wakeup is used, RELM should be set to "1".
- Note 7: Port P20 is used as STOP pin. Therefore, when stop mode is started, OUTEN does not affect to P20, and P20 becomes High-Z mode.
- Note 8: The warmig-up time should be set correctly for using oscillator. $\label{eq:correctly}$

System Control Register 2

SYSCR2	7	6	5	4	3	2	1	0	
(0039H)	XEN	XTEN	SYSCK	IDLE		TGHALT			(Initial value: 1000 *0**)

XEN	High-frequency oscillator control	Turn off oscillation Turn on oscillation	
XTEN	Low-frequency oscillator control	Turn off oscillation Turn on oscillation	R/W
SYSCK	Main system clock select (Write)/main system clock monitor (Read)	0: High-frequency clock (NORMAL1/NORMAL2/IDLE1/IDLE2) 1: Low-frequency clock (SLOW1/SLOW2/SLEEP1/SLEEP2)	
IDLE	CPU and watchdog timer control (IDLE1/2 and SLEEP1/2 modes)	CPU and watchdog timer remain active CPU and watchdog timer are stopped (Start IDLE1/2 and SLEEP1/2 modes)	
TGHALT	TG control (IDLE0 and SLEEP0 modes)	Feeding clock to all peripherals from TG Stop feeding clock to peripherals except TBT from TG. (Start IDLE0 and SLEEP0 modes)	R/W

- Note 1: A reset is applied if both XEN and XTEN are cleared to "0", XEN is cleared to "0" when SYSCK = "0", or XTEN is cleared to "0" when SYSCK = "1".
- Note 2: *: Don't care, TG: Timing generator, *; Don't care
- Note 3: Bits 3, 1 and 0 in SYSCR2 are always read as undefined value.
- Note 4: Do not set IDLE and TGHALT to "1" simultaneously.
- Note 5: Because returning from IDLE0/SLEEP0 to NORMAL1/SLOW1 is executed by the asynchronous internal clock, the period of IDLE0/SLEEP0 mode might be shorter than the period setting by TBTCR<TBTCK>.
- Note 6: When IDLE1/2 or SLEEP1/2 mode is released, IDLE is automatically cleared to "0".
- Note 7: When IDLE0 or SLEEP0 mode is released, TGHALT is automatically cleared to "0".
- Note 8: Before setting TGHALT to "1", be sure to stop peripherals. If peripherals are not stopped, the interrupt latch of peripherals may be set after IDLE0 or SLEEP0 mode is released.

2.2.4 Operating Mode Control

2.2.4.1 STOP mode

STOP mode is controlled by the system control register 1, the STOP pin input and key-on wakeup input (STOP5Å`STOP2) which is controlled by the STOP mode release control register (STOPCR). The STOP pin is also used both as a port P20 and an INT5 (external interrupt input 5) pin. STOP mode is started by setting SYSCR1<STOP> to "1". During STOP mode, the following status is maintained.

- 1. Oscillations are turned off, and all internal operations are halted.
- 2. The data memory, registers, the program status word and port output latches are all held in the status in effect before STOP mode was entered.
- 3. The prescaler and the divider of the timing generator are cleared to "0".
- 4. The program counter holds the address 2 ahead of the instruction (e.g., [SET (SYSCR1).7]) which started STOP mode.

STOP mode includes a level-sensitive mode and an edge-sensitive mode, either of which can be selected with the SYSCR1<RELM>. Do not use any key-on wakeup input (STOP5Å`STOP2) for releasing STOP mode in edge-sensitive mode.

Note 1: The STOP mode can be released by either the STOP or key-on wakeup pin (STOP5Å`STOP2). However, because the STOP pin is different from the key-on wakeup and can not inhibit the release input, the STOP pin must be used for releasing STOP mode.

Note 2: During STOP period (from start of STOP mode to end of warm up), due to changes in the external interrupt pin signal, interrupt latches may be set to "1" and interrupts may be accepted immediately after STOP mode is released. Before starting STOP mode, therefore, disable interrupts. Also, before enabling interrupts after STOP mode is released, clear unnecessary interrupt latches.

(1) Level-sensitive release mode (RELM = "1")

In this mode, STOP mode is released by setting the STOP pin high or setting the STOP5Å`STOP2 pin input which is enabled by STOPCR. This mode is used for capacitor backup when the main power supply is cut off and long term battery backup.

Even if an instruction for starting STOP mode is executed while $\overline{\text{STOP}}$ pin input is high or STOP5 \sim STOP2 input is low, STOP mode does not start but instead the warm-up sequence starts immediately. Thus, to start STOP mode in the level-sensitive release mode, it is necessary for the program to first confirm that the $\overline{\text{STOP}}$ pin input is low or STOP5Å'STOP2 input is high. The following two methods can be used for confirmation.

- 1. Testing a port.
- 2. Using an external interrupt input INT5 (INT5 is a falling edge-sensitive input).

Example 1 :Starting STOP mode from NORMAL mode by testing a port P20.

	LD	(SYSCR1), 01010000B	; Sets up the level-sensitive release mode
SSTOPH:	TEST	(P2PRD). 0	; Wait until the STOP pin input goes low level
	JRS	F, SSTOPH	
	DI		; IMF \leftarrow 0
	SET	(SYSCR1). 7	; Starts STOP mode

Example 2 :Starting STOP mode from NORMAL mode with an INT5 interrupt.

PINT5:	TEST	(P2PRD). 0	; To reject noise, STOP mode does not start if
	JRS	F, SINT5	port P20 is at high
	LD	(SYSCR1), 01010000B	; Sets up the level-sensitive release mode.
	DI		; IMF \leftarrow 0
	SET	(SYSCR1). 7	; Starts STOP mode
SINT5:	RETI		

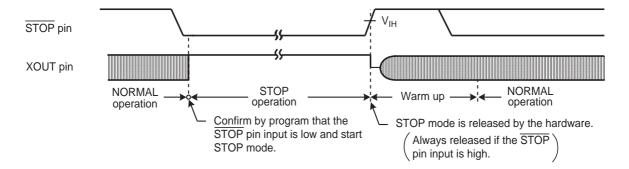


Figure 2-7 Level-sensitive Release Mode

Note 1: Even if the STOP pin input is low after warm-up start, the STOP mode is not restarted.

Note 2: In this case of changing to the level-sensitive mode from the edge-sensitive mode, the release mode is not switched until a rising edge of the STOP pin input is detected.

(2) Edge-sensitive release mode (RELM = "0")

In this mode, STOP mode is released by a rising edge of the $\overline{\text{STOP}}$ pin input. This is used in applications where a relatively short program is executed repeatedly at periodic intervals. This periodic signal (for example, a clock from a low-power consumption oscillator) is input to the $\overline{\text{STOP}}$ pin. In the edge-sensitive release mode, STOP mode is started even when the $\overline{\text{STOP}}$ pin input is high level. Do not use any STOP5Å`STOP2 pin input for releasing STOP mode in edge-sensitive release mode.

Example: Starting STOP mode from NORMAL mode

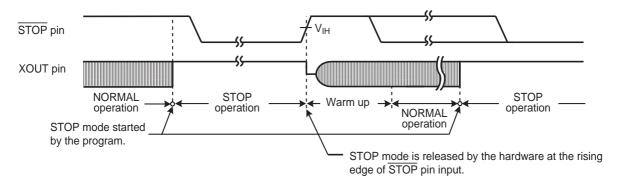


Figure 2-8 Edge-sensitive Release Mode

STOP mode is released by the following sequence.

- In the dual-clock mode, when returning to NORMAL2, both the high-frequency and low-frequency clock oscillators are turned on; when returning to SLOW1 mode, only the low-frequency clock oscillator is turned on. In the single-clock mode, only the high-frequency clock oscillator is turned on.
- 2. A warm-up period is inserted to allow oscillation time to stabilize. During warm up, all internal operations remain halted. Four different warm-up times can be selected with the SYSCR1<WUT> in accordance with the resonator characteristics.
- 3. When the warm-up time has elapsed, normal operation resumes with the instruction following the STOP mode start instruction.
- Note 1: When the STOP mode is released, the start is made after the prescaler and the divider of the timing generator are cleared to "0".
- Note 2: STOP mode can also be released by inputting low level on the RESET pin, which immediately performs the normal reset operation.
- Note 3: When STOP mode is released with a low hold voltage, the following cautions must be observed. The power supply voltage must be at the operating voltage level before releasing STOP mode. The RESET pin input must also be "H" level, rising together with the power supply voltage. In this case, if an external time constant circuit has been connected, the RESET pin input voltage will increase at a slower pace than the power supply voltage. At this time, there is a danger that a reset may occur if input voltage level of the RESET pin drops below the non-inverting high-level input voltage (Hysteresis input).

Table 2-2 Warm-up Time Example (at fc = 16.0 MHz, fs = 32.768 kHz)

WUT	Warm-up Time [ms]				
WOT	Return to NORMAL Mode	Return to SLOW Mode			
00	12.288	750			
01	4.096	250			
10	3.072	5.85			
11	1.024	1.95			

Note 1: The warm-up time is obtained by dividing the basic clock by the divider. Therefore, the warm-up time may include a certain amount of error if there is any fluctuation of the oscillation frequency when STOP mode is released. Thus, the warm-up time must be considered as an approximate value.

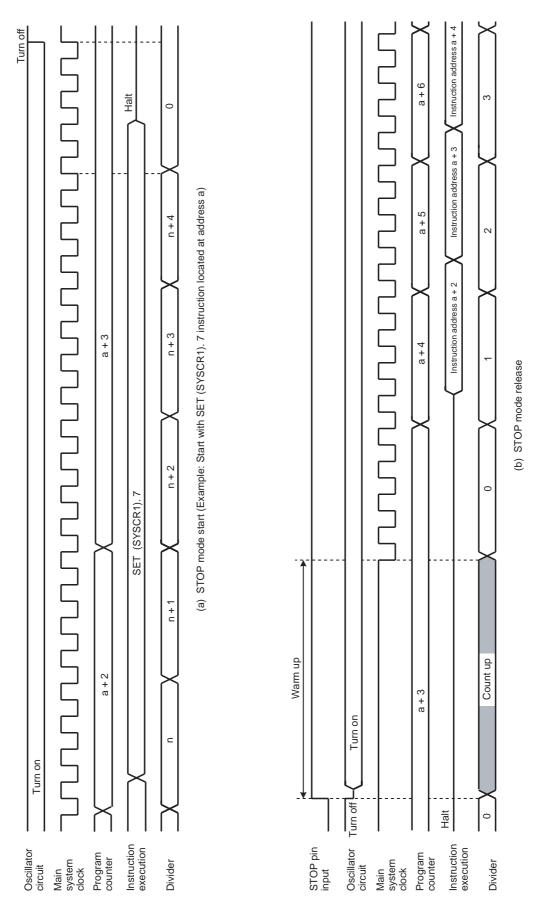


Figure 2-9 STOP Mode Start/Release

2.2.4.2 IDLE1/2 mode and SLEEP1/2 mode

IDLE1/2 and SLEEP1/2 modes are controlled by the system control register 2 (SYSCR2) and maskable interrupts. The following status is maintained during these modes.

- 1. Operation of the CPU and watchdog timer (WDT) is halted. On-chip peripherals continue to operate.
- 2. The data memory, CPU registers, program status word and port output latches are all held in the status in effect before these modes were entered.
- 3. The program counter holds the address 2 ahead of the instruction which starts these modes.

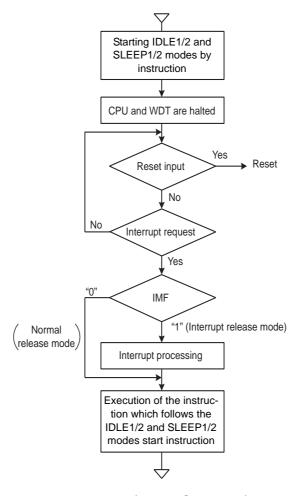


Figure 2-10 IDLE1/2 and SLEEP1/2 Modes

• Start the IDLE1/2 and SLEEP1/2 modes

After IMF is set to "0", set the individual interrupt enable flag (EF) which releases IDLE1/2 and SLEEP1/2 modes. To start IDLE1/2 and SLEEP1/2 modes, set SYSCR2<IDLE> to "1".

• Release the IDLE1/2 and SLEEP1/2 modes

IDLE1/2 and SLEEP1/2 modes include a normal release mode and an interrupt release mode. These modes are selected by interrupt master enable flag (IMF). After releasing IDLE1/2 and SLEEP1/2 modes, the SYSCR2<IDLE> is automatically cleared to "0" and the operation mode is returned to the mode preceding IDLE1/2 and SLEEP1/2 modes.

IDLE1/2 and SLEEP1/2 modes can also be released by inputting low level on the $\overline{\text{RESET}}$ pin. After releasing reset, the operation mode is started from NORMAL1 mode.

(1) Normal release mode (IMF = "0")

IDLE1/2 and SLEEP1/2 modes are released by any interrupt source enabled by the individual interrupt enable flag (EF). After the interrupt is generated, the program operation is resumed from the instruction following the IDLE1/2 and SLEEP1/2 modes start instruction. Normally, the interrupt latches (IL) of the interrupt source used for releasing must be cleared to "0" by load instructions.

(2) Interrupt release mode (IMF = "1")

IDLE1/2 and SLEEP1/2 modes are released by any interrupt source enabled with the individual interrupt enable flag (EF) and the interrupt processing is started. After the interrupt is processed, the program operation is resumed from the instruction following the instruction, which starts IDLE1/2 and SLEEP1/2 modes.

Note: When a watchdog timer interrupts is generated immediately before IDLE1/2 and SLEEP1/2 modes are started, the watchdog timer interrupt will be processed but IDLE1/2 and SLEEP1/2 modes will not be started.

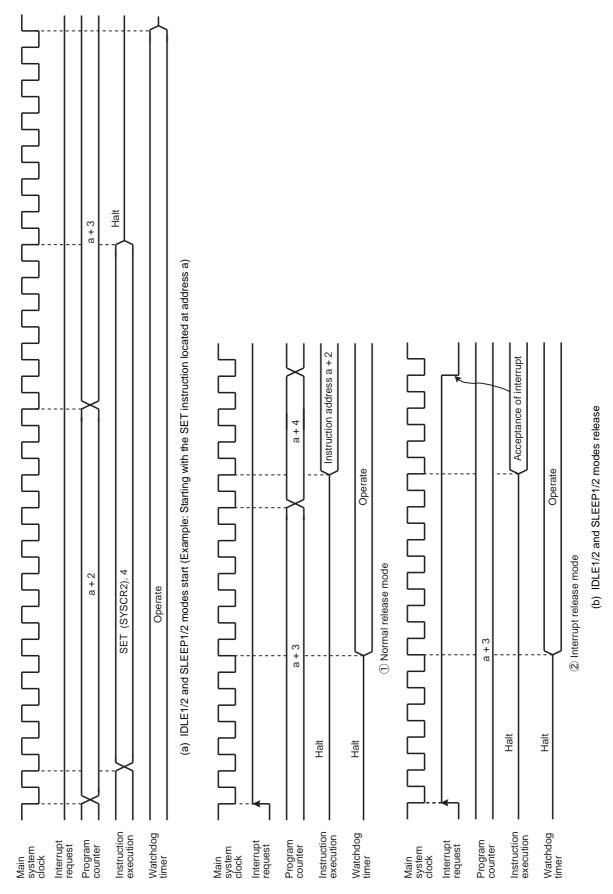


Figure 2-11 IDLE1/2 and SLEEP1/2 Modes Start/Release

2.2.4.3 IDLE0 and SLEEP0 modes (IDLE0, SLEEP0)

IDLE0 and SLEEP0 modes are controlled by the system control register 2 (SYSCR2) and the time base timer control register (TBTCR). The following status is maintained during IDLE0 and SLEEP0 modes.

- 1. Timing generator stops feeding clock to peripherals except TBT.
- 2. The data memory, CPU registers, program status word and port output latches are all held in the status in effect before IDLE0 and SLEEP0 modes were entered.
- 3. The program counter holds the address 2 ahead of the instruction which starts IDLE0 and SLEEP0 modes.

Note: Before starting IDLE0 or SLEEP0 mode, be sure to stop (Disable) peripherals.

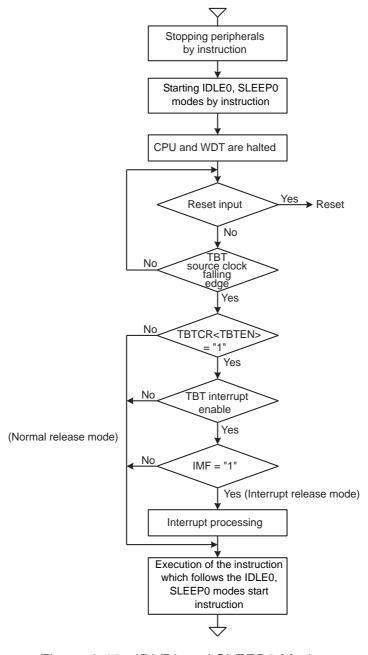


Figure 2-12 IDLE0 and SLEEP0 Modes

· Start the IDLE0 and SLEEP0 modes

Stop (Disable) peripherals such as a timer counter.

To start IDLE0 and SLEEP0 modes, set SYSCR2<TGHALT> to "1".

Release the IDLE0 and SLEEP0 modes

IDLE0 and SLEEP0 modes include a normal release mode and an interrupt release mode.

These modes are selected by interrupt master flag (IMF), the individual interrupt enable flag of TBT and TBTCR<TBTEN>.

After releasing IDLE0 and SLEEP0 modes, the SYSCR2<TGHALT> is automatically cleared to "0" and the operation mode is returned to the mode preceding IDLE0 and SLEEP0 modes. Before starting the IDLE0 or SLEEP0 mode, when the TBTCR<TBTEN> is set to "1", INTTBT interrupt latch is set to "1".

IDLE0 and SLEEP0 modes can also be released by inputting low level on the $\overline{\text{RESET}}$ pin. After releasing reset, the operation mode is started from NORMAL1 mode.

Note: IDLE0 and SLEEP0 modes start/release without reference to TBTCR<TBTEN> setting.

(1) Normal release mode (IMF•EF7•TBTCR<TBTEN> = "0")

IDLE0 and SLEEP0 modes are released by the source clock falling edge, which is setting by the TBTCR<TBTCK>. After the falling edge is detected, the program operation is resumed from the instruction following the IDLE0 and SLEEP0 modes start instruction. Before starting the IDLE0 or SLEEP0 mode, when the TBTCR<TBTEN> is set to "1", INTTBT interrupt latch is set to "1".

(2) Interrupt release mode (IMF•EF7•TBTCR<TBTEN> = "1")

IDLE0 and SLEEP0 modes are released by the source clock falling edge, which is setting by the TBTCR<TBTCK> and INTTBT interrupt processing is started.

- Note 1: Because returning from IDLE0, SLEEP0 to NORMAL1, SLOW1 is executed by the asynchronous internal clock, the period of IDLE0, SLEEP0 mode might be the shorter than the period setting by TBTCR<TBTCK>.
- Note 2: When a watchdog timer interrupt is generated immediately before IDLE0/SLEEP0 mode is started, the watchdog timer interrupt will be processed but IDLE0/SLEEP0 mode will not be started.

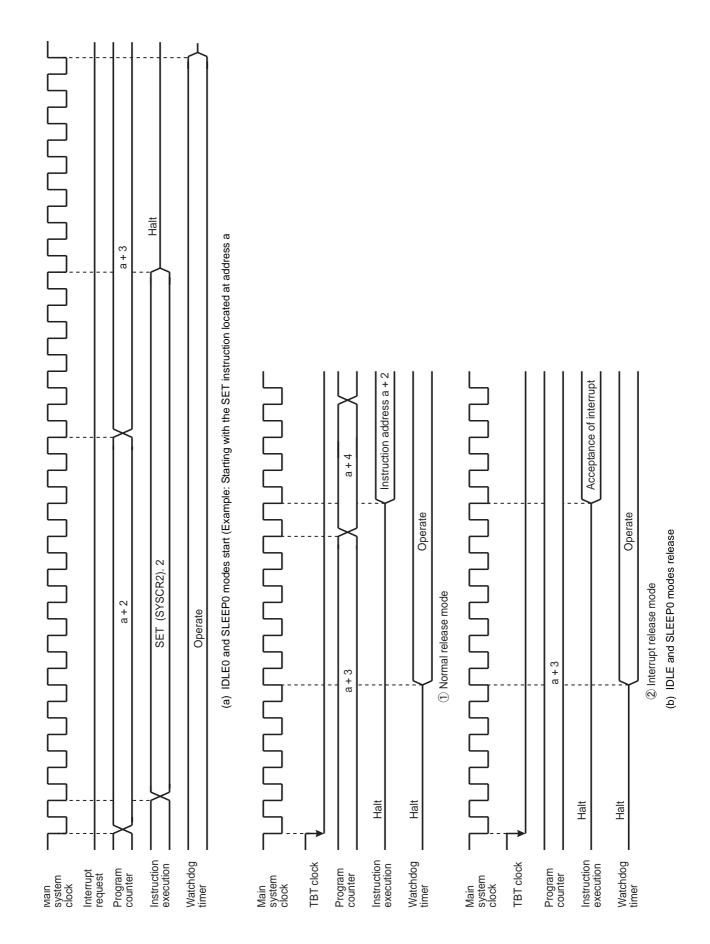


Figure 2-13 IDLE0 and SLEEP0 Modes Start/Release

2.2.4.4 SLOW mode

SLOW mode is controlled by the system control register 2 (SYSCR2).

The following is the methods to switch the mode with the warm-up counter.

(1) Switching from NORMAL2 mode to SLOW1 mode

First, set SYSCR2<SYSCK> to switch the main system clock to the low-frequency clock for SLOW2 mode. Next, clear SYSCR2<XEN> to turn off high-frequency oscillation.

(Turns off high-frequency oscillation)

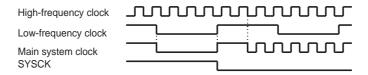
Note: The high-frequency clock can be continued oscillation in order to return to NORMAL2 mode from SLOW mode quickly. Always turn off oscillation of high-frequency clock when switching from SLOW mode to stop mode.

Example 1: Switching from NORMAL2 mode to SLOW1 mode.

SET (SYSCR2). 5 ; SYSCR2<SYSCK> \leftarrow 1 (Switches the main system clock to the low-frequency clock for SLOW2)

CLR (SYSCR2). 7 ; SYSCR2<XEN> \leftarrow 0

Example 2: Switching to the SLOW1 mode after low-frequency clock has stabilized.


SET (SYSCR2). 6 ; SYSCR2<XTEN> ← 1 (TC2CR), 14H LD ; Sets mode for TC2 (fs for source) LDW (TC2DRL), 8000H ; Sets warm-up time (Depend on oscillator accompanied) DI ; IMF \leftarrow 0 SET (EIRH). 6 ; Enables INTTC2 ΕI ; IMF \leftarrow 1 SET (TC2CR). 5 ; Starts TC2 PINTTC2: CLR (TC2CR). 5 ; Stops TC2 SET (SYSCR2). 5 : SYSCR2<SYSCK> ← 1 (Switches the main system clock to the low-frequency clock) CLR (SYSCR2). 7 ; SYSCR2<XEN> \leftarrow 0 (Turns off high-frequency oscillation) RFTI VINTTC2: PINTTC2 DW ; INTTC2 vector table

(2) Switching from SLOW1 mode to NORMAL2 mode

First, set SYSCR2<XEN> to turn on the high-frequency oscillation. When time for stabilization (Warm up) has been taken by the timer/counter (TC2), clear SYSCR2<SYSCK> to switch the main system clock to the high-frequency clock.

SLOW mode can also be released by inputting low level on the RESET pin. After releasing reset, the operation mode is started from NORMAL1 mode.

Note: After SYSCK is cleared to "0", executing the instructions is continued by the low-frequency clock for the period synchronized with low-frequency and high-frequency clocks.

Example :Switching from the SLOW1 mode to the NORMAL2 mode (fc = 16 MHz, warm-up time is 4.0 ms).

	SET	(SYSCR2). 7	; SYSCR2 <xen> ← 1 (Starts high-frequency oscillation)</xen>
	LD	(TC2CR), 10H	; Sets mode for TC2 (fc for source)
	LD	(TC2DRH), 0F8H	; Sets warm-up time
	DI		; IMF ← 0
	SET	(EIRH). 6	; Enables INTTC2
	EI		; IMF ← 1
	SET	(TC2CR). 5	; Starts TC2
	:		
PINTTC2:	CLR	(TC2CR). 5	; Stops TC2
	CLR	(SYSCR2). 5	; SYSCR2 <sysck> \leftarrow 0 (Switches the main system clock to the high-frequency clock)</sysck>
	RETI		
	:		
VINTTC2:	DW	PINTTC2	; INTTC2 vector table

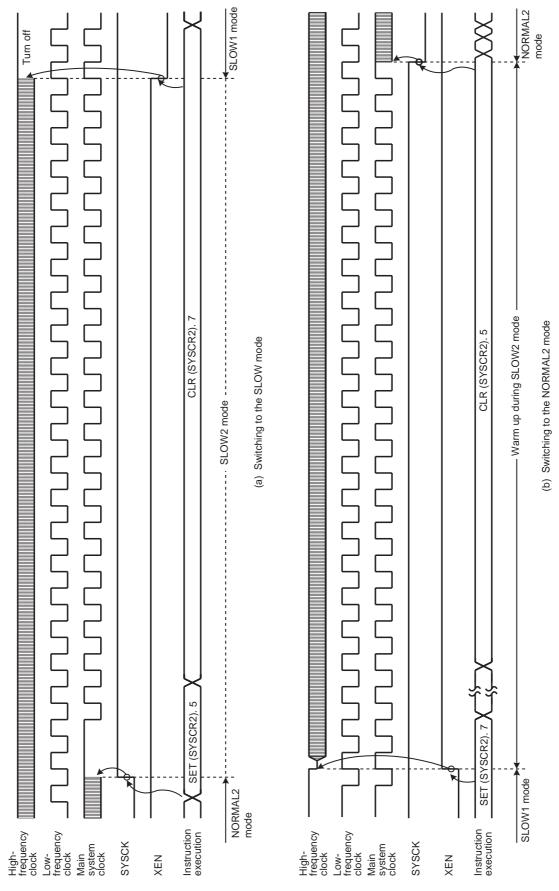


Figure 2-14 Switching between the NORMAL2 and SLOW Modes

2.3 Reset Circuit

The TMP86CM72FG has four types of reset generation procedures: An external reset input, an address trap reset, a watchdog timer reset and a system clock reset. Of these reset, the address trap reset, the watchdog timer and the system clock reset are a malfunction reset. When the malfunction reset request is detected, reset occurs during the maximum 24/fc[s].

The malfunction reset circuit such as watchdog timer reset, address trap reset and system clock reset is not initialized when power is turned on. Therefore, reset may occur during maximum 24/fc[s] (1.5 μ s at 16.0 MHz) when power is turned on.

Table 2-3 shows on-chip hardware initialization by reset action.

On-chip Hardware		Initial Value	On-chip Hardware	Initial Value	
Program counter	(PC)	(FFFEH)			
Stack pointer	(SP)	Not initialized	Prescaler and divider of timing generator	0	
General-purpose registers (W, A, B, C, D, E, H, L, IX, IY	·)	Not initialized	33		
Jump status flag	(JF)	Not initialized	Watchdog timer	Enable	
Zero flag	(ZF)	Not initialized			
Carry flag	(CF)	Not initialized		Refer to I/O port circuitry	
Half carry flag	(HF)	Not initialized	Output latabas of I/O norts		
Sign flag	(SF)	Not initialized	Output latches of I/O ports		
Overflow flag (Not initialized			
Interrupt master enable flag	(IMF)	0			
Interrupt individual enable flags	(EF)	0	Control registers	Refer to each of control	

Control registers

register

Not initialized

Table 2-3 Initializing Internal Status by Reset Action

2.3.1 External Reset Input

Interrupt latches

The RESET pin contains a Schmitt trigger (Hysteresis) with an internal pull-up resistor.

RAM

0

(IL)

When the RESET pin is held at "L" level for at least 3 machine cycles (12/fc [s]) with the power supply voltage within the operating voltage range and oscillation stable, a reset is applied and the internal state is initialized.

When the RESET pin input goes high, the reset operation is released and the program execution starts at the vector address stored at addresses FFFEH to FFFFH.

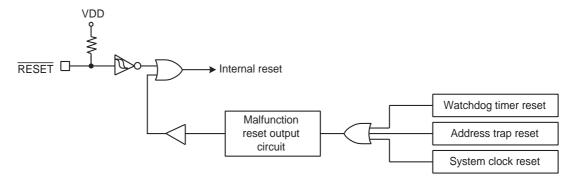
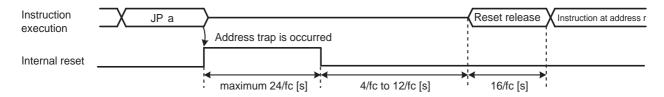



Figure 2-15 Reset Circuit

2.3.2 Address trap reset

If the CPU should start looping for some cause such as noise and an attempt be made to fetch an instruction from the on-chip RAM (when WDTCR1<ATAS> is set to "1"), DBR or the SFR area, address trap reset will be generated. The reset time is maximum 24/fc[s] (1.5 μ s at 16.0 MHz).

Note: The operating mode under address trapped is alternative of reset or interrupt. The address trap area is alternative.

- Note 1: Address "a" is in the SFR, DBR or on-chip RAM (WDTCR1<ATAS> = "1") space.
- Note 2: During reset release, reset vector "r" is read out, and an instruction at address "r" is fetched and decoded.

Figure 2-16 Address Trap Reset

2.3.3 Watchdog timer reset

Refer to Section "Watchdog Timer".

2.3.4 System clock reset

If the condition as follows is detected, the system clock reset occurs automatically to prevent dead lock of the CPU. (The oscillation is continued without stopping.)

- In case of clearing SYSCR2<XEN> and SYSCR2<XTEN> simultaneously to "0".
- In case of clearing SYSCR2<XEN> to "0", when the SYSCR2<SYSCK> is "0".
- In case of clearing SYSCR2<XTEN> to "0", when the SYSCR2<SYSCK> is "1".

The reset time is maximum 24/fc (1.5 μs at 16.0 MHz).

2. Operational Description 2.3 Reset Circuit

TMP86CM72FG

3. Interrupt Control Circuit

The TMP86CM72FG has a total of 19 interrupt sources excluding reset, of which 3 source levels are multiplexed. Interrupts can be nested with priorities. Four of the internal interrupt sources are non-maskable while the rest are maskable.

Interrupt sources are provided with interrupt latches (IL), which hold interrupt requests, and independent vectors. The interrupt latch is set to "1" by the generation of its interrupt request which requests the CPU to accept its interrupts. Interrupts are enabled or disabled by software using the interrupt master enable flag (IMF) and interrupt enable flag (EF). If more than one interrupts are generated simultaneously, interrupts are accepted in order which is dominated by hardware. However, there are no prioritized interrupt factors among non-maskable interrupts.

	Interrupt Factors	Enable Condition	Interrupt Latch	Vector Address	Priority
Internal/External	(Reset)	Non-maskable	-	FFFE	1
Internal	INTSWI (Software interrupt)	Non-maskable	-	FFFC	2
Internal	INTUNDEF (Executed the undefined instruction interrupt)	Non-maskable	-	FFFC	2
Internal	INTATRAP (Address trap interrupt)	Non-maskable	IL2	FFFA	2
Internal	INTWDT (Watchdog timer interrupt)	Non-maskable	IL3	FFF8	2
External	ĪNT0	IMF• EF4 = 1, INT0EN = 1	IL4	FFF6	5
Internal	INTRXD	IMF• EF5 = 1	IL5	FFF4	6
External	INT1	IMF• EF6 = 1	IL6	FFF2	7
Internal	INTTBT	IMF• EF7 = 1	IL7	FFF0	8
Internal	INTTC3	IMF• EF8 = 1	IL8	FFEE	9
Internal	INTSIO	IMF• EF9 = 1, IL9ER = 0	IL9	FFEC	10
Internal	INTI2C	IMF• EF9 = 1, IL9ER = 1			
Internal	INTTC4	IMF• EF10 = 1	IL10	FFEA	11
External	INT3	IMF• EF11 = 1	IL11	FFE8	12
External	INT4	IMF• EF12 = 1	IL12	FFE6	13
Internal	INTTXD	IMF• EF13 = 1	IL13	FFE4	14
Internal	INTTC2	IMF• EF14 = 1, IL14ER = 0	IL14	FFE2	15
External	ĪNT5	IMF• EF14 = 1, IL14ER = 1	1		
Internal	INTADC	IMF• EF15 = 1, IL15ER = 0	IL15	FFE0	16
External	INT2	IMF• EF15 = 1, IL15ER = 1	1		

- Note 1: The INTSEL register is used to select the interrupt source to be enabled for each multiplexed source level (see 3.3 Interrupt Source Selector (INTSEL)).
- Note 2: To use the address trap interrupt (INTATRAP), clear WDTCR1<ATOUT> to "0" (It is set for the "reset request" after reset is cancelled). For details, see "Address Trap".
- Note 3: To use the watchdog timer interrupt (INTWDT), clear WDTCR1<WDTOUT> to "0" (It is set for the "Reset request" after reset is released). For details, see "Watchdog Timer".

3.1 Interrupt latches (IL15 to IL2)

An interrupt latch is provided for each interrupt source, except for a software interrupt and an executed the undefined instruction interrupt. When interrupt request is generated, the latch is set to "1", and the CPU is requested to accept the interrupt if its interrupt is enabled. The interrupt latch is cleared to "0" immediately after accepting interrupt. All interrupt latches are initialized to "0" during reset.

The interrupt latches are located on address 003CH and 003DH in SFR area. Each latch can be cleared to "0" individually by instruction. However, IL2 and IL3 should not be cleared to "0" by software. For clearing the interrupt latch, load instruction should be used and then IL2 and IL3 should be set to "1". If the read-modify-write instructions such as bit manipulation or operation instructions are used, interrupt request would be cleared inadequately if interrupt is requested while such instructions are executed.

Interrupt latches are not set to "1" by an instruction.

Since interrupt latches can be read, the status for interrupt requests can be monitored by software.

Note: In main program, before manipulating the interrupt enable flag (EF) or the interrupt latch (IL), be sure to clear IMF to "0" (Disable interrupt by DI instruction). Then set IMF newly again as required after operating on the EF or IL (Enable interrupt by EI instruction)

In interrupt service routine, because the IMF becomes "0" automatically, clearing IMF need not execute normally on interrupt service routine. However, if using multiple interrupt on interrupt service routine, manipulating EF or IL should be executed before setting IMF="1".

Example 1 :Clears interrupt latches

DI ; IMF \leftarrow 0

LDW (ILL), 1110100000111111B ; IL12, IL10 to IL6 \leftarrow 0

EI ; IMF \leftarrow 1

Example 2: Reads interrupt latchess

LD WA, (ILL) ; $W \leftarrow ILH$, $A \leftarrow ILL$

Example 3: Tests interrupt latches

TEST (ILL). 7 ; if IL7 = 1 then jump

JR F, SSET

3.2 Interrupt enable register (EIR)

The interrupt enable register (EIR) enables and disables the acceptance of interrupts, except for the non-maskable interrupts (Software interrupt, undefined instruction interrupt, address trap interrupt and watchdog interrupt). Non-maskable interrupt is accepted regardless of the contents of the EIR.

The EIR consists of an interrupt master enable flag (IMF) and the individual interrupt enable flags (EF). These registers are located on address 003AH and 003BH in SFR area, and they can be read and written by an instructions (Including read-modify-write instructions such as bit manipulation or operation instructions).

3.2.1 Interrupt master enable flag (IMF)

The interrupt enable register (IMF) enables and disables the acceptance of the whole maskable interrupt. While IMF = "0", all maskable interrupts are not accepted regardless of the status on each individual interrupt enable flag (EF). By setting IMF to "1", the interrupt becomes acceptable if the individuals are enabled. When an interrupt is accepted, IMF is cleared to "0" after the latest status on IMF is stacked. Thus the maskable interrupts which follow are disabled. By executing return interrupt instruction [RETI/RETN], the stacked data, which was the status before interrupt acceptance, is loaded on IMF again.

The IMF is located on bit0 in EIRL (Address: 003AH in SFR), and can be read and written by an instruction. The IMF is normally set and cleared by [EI] and [DI] instruction respectively. During reset, the IMF is initialized to "0".

3.2.2 Individual interrupt enable flags (EF15 to EF4)

Each of these flags enables and disables the acceptance of its maskable interrupt. Setting the corresponding bit of an individual interrupt enable flag to "1" enables acceptance of its interrupt, and setting the bit to "0" disables acceptance. During reset, all the individual interrupt enable flags (EF15 to EF4) are initialized to "0" and all maskable interrupts are not accepted until they are set to "1".

Note: In main program, before manipulating the interrupt enable flag (EF) or the interrupt latch (IL), be sure to clear IMF to "0" (Disable interrupt by DI instruction). Then set IMF newly again as required after operating on the EF or IL (Enable interrupt by EI instruction)

In interrupt service routine, because the IMF becomes "0" automatically, clearing IMF need not execute nor-

TMP86CM72FG

mally on interrupt service routine. However, if using multiple interrupt on interrupt service routine, manipulating EF or IL should be executed before setting IMF="1".

Example 1: Enables interrupts individually and sets IMF

```
DI ; IMF \leftarrow 0 
LDW (EIRL), 1110100010100000B ; EF15 to EF13, EF11, EF7, EF5 \leftarrow 1 
Note: IMF should not be set. 
: EI ; IMF \leftarrow 1
```

Example 2: C compiler description example

Interrupt Latches

(Initial value: 00000000 000000**)

15 14 13 12 11 10 8 6 0 ILH,ILL (003DH, 003CH) IL6 IL5 IL15 IL14 IL13 IL12 IL11 IL10 IL9 IL8 IL7 IL4 IL3 IL2

ILH (003DH) ILL (003CH)

		at RD	at WR	
IL15 to IL2	Interrupt latches	0: No interrupt request	0: Clears the interrupt request	R/W
		1: Interrupt request	1: (Interrupt latch is not set.)	

Note 1: To clear any one of bits IL7 to IL4, be sure to write "1" into IL2 and IL3.

Note 2: In main program, before manipulating the interrupt enable flag (EF) or the interrupt latch (IL), be sure to clear IMF to "0" (Disable interrupt by DI instruction). Then set IMF newly again as required after operating on the EF or IL (Enable interrupt by EI instruction)

In interrupt service routine, because the IMF becomes "0" automatically, clearing IMF need not execute normally on interrupt service routine. However, if using multiple interrupt on interrupt service routine, manipulating EF or IL should be executed before setting IMF="1".

Note 3: Do not clear IL with read-modify-write instructions such as bit operations.

Interrupt Enable Registers

(Initial value: 00000000 0000***0)

EIRH,EIRL	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
(003BH, 003AH)	EF15	EF14	EF13	EF12	EF11	EF10	EF9	EF8	EF7	EF6	EF5	EF4				IMF
EIRH (003BH)										EIRL (003AH)					

EF15 to EF4	Individual-interrupt enable flag (Specified for each bit)	0: 1:	Disables the acceptance of each maskable interrupt. Enables the acceptance of each maskable interrupt.	R/W
IMF	Interrupt master enable flag	0: 1:	Disables the acceptance of all maskable interrupts Enables the acceptance of all maskable interrupts	1000

Note 1: *: Don't care

Note 2: Do not set IMF and the interrupt enable flag (EF15 to EF4) to "1" at the same time.

Note 3: In main program, before manipulating the interrupt enable flag (EF) or the interrupt latch (IL), be sure to clear IMF to "0" (Disable interrupt by DI instruction). Then set IMF newly again as required after operating on the EF or IL (Enable interrupt by EI instruction)

In interrupt service routine, because the IMF becomes "0" automatically, clearing IMF need not execute normally on interrupt service routine. However, if using multiple interrupt on interrupt service routine, manipulating EF or IL should be executed before setting IMF="1".

3.3 Interrupt Source Selector (INTSEL)

Each interrupt source that shares the interrupt source level with another interrupt source is allowed to enable the interrupt latch only when it is selected in the INTSEL register. The interrupt controller does not hold interrupt requests corresponding to interrupt sources that are not selected in the INTSEL register. Therefore, the INTSEL register must be set appropriately before interrupt requests are generated.

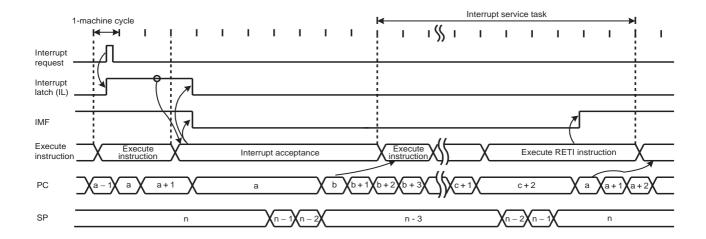
The following interrupt sources share their interrupt source level; the source is selected onnthe register INTSEL.

- 1. INTSIO and INTI2C share the interrupt source level whose priority is 10.
- 2. INTTC2 and $\overline{\text{INT5}}$ share the interrupt source level whose priority is 15.
- 3. INTADC and INT2 share the interrupt source level whose priority is 16.

Interrupt source selector

INTSEL	7	6	5	4	3	2	1	0	
(003EH)	-	IL9ER	-	-	-	-	IL14ER	IL15ER	(Initial value: *0** **00)

IL9ER	Selects INTSIO or INTI2C	0: INTSIO 1: INTI2C	R/W
IL14ER	Selects INTTC2 or INT5	0: INTTC2 1: INT5	R/W
IL15ER	Selects INTADC or INT2	0: INTADC 1: INT2	R/W


3.4 Interrupt Sequence

An interrupt request, which raised interrupt latch, is held, until interrupt is accepted or interrupt latch is cleared to "0" by resetting or an instruction. Interrupt acceptance sequence requires 8 machine cycles (2 μ s @16 MHz) after the completion of the current instruction. The interrupt service task terminates upon execution of an interrupt return instruction [RETI] (for maskable interrupts) or [RETN] (for non-maskable interrupts). Figure 3-1 shows the timing chart of interrupt acceptance processing.

3.4.1 Interrupt acceptance processing is packaged as follows.

- a. The interrupt master enable flag (IMF) is cleared to "0" in order to disable the acceptance of any following interrupt.
- b. The interrupt latch (IL) for the interrupt source accepted is cleared to "0".
- c. The contents of the program counter (PC) and the program status word, including the interrupt master enable flag (IMF), are saved (Pushed) on the stack in sequence of PSW + IMF, PCH, PCL. Meanwhile, the stack pointer (SP) is decremented by 3.
- d. The entry address (Interrupt vector) of the corresponding interrupt service program, loaded on the vector table, is transferred to the program counter.
- e. The instruction stored at the entry address of the interrupt service program is executed.

Note: When the contents of PSW are saved on the stack, the contents of IMF are also saved.

Note 1: a: Return address entry address, b: Entry address, c: Address which RETI instruction is stored

Note 2: On condition that interrupt is enabled, it takes 38/fc [s] or 38/fs [s] at maximum (If the interrupt latch is set at the first machine cycle on 10 cycle instruction) to start interrupt acceptance processing since its interrupt latch is set.

Figure 3-1 Timing Chart of Interrupt Acceptance/Return Interrupt Instruction

Example: Correspondence between vector table address for INTTBT and the entry address of the interrupt service program

Figure 3-2 Vector table address, Entry address

A maskable interrupt is not accepted until the IMF is set to "1" even if the maskable interrupt higher than the level of current servicing interrupt is requested.

In order to utilize nested interrupt service, the IMF is set to "1" in the interrupt service program. In this case, acceptable interrupt sources are selectively enabled by the individual interrupt enable flags.

To avoid overloaded nesting, clear the individual interrupt enable flag whose interrupt is currently serviced, before setting IMF to "1". As for non-maskable interrupt, keep interrupt service shorten compared with length between interrupt requests; otherwise the status cannot be recovered as non-maskable interrupt would simply nested.

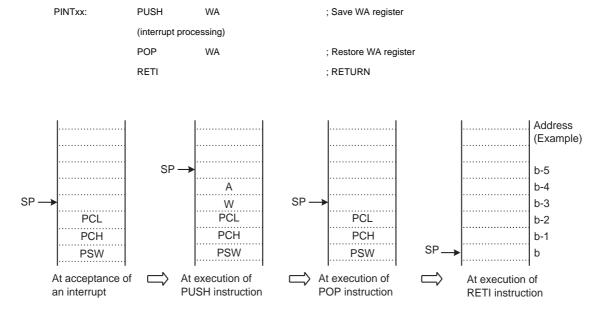
3.4.2 Saving/restoring general-purpose registers

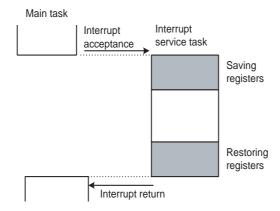
During interrupt acceptance processing, the program counter (PC) and the program status word (PSW, includes IMF) are automatically saved on the stack, but the accumulator and others are not. These registers are saved by software if necessary. When multiple interrupt services are nested, it is also necessary to avoid using the same data memory area for saving registers. The following methods are used to save/restore the general-purpose registers.

3.4.2.1 Using PUSH and POP instructions

If only a specific register is saved or interrupts of the same source are nested, general-purpose registers can be saved/restored using the PUSH/POP instructions.

Example :Save/store register using PUSH and POP instructions




Figure 3-3 Save/store register using PUSH and POP instructions

3.4.2.2 Using data transfer instructions

To save only a specific register without nested interrupts, data transfer instructions are available.

Example :Save/store register using data transfer instructions

PINTxx:	LD	(GSAVA), A	; Save A register
	(interrupt	processing)	
	LD	A, (GSAVA)	; Restore A register
	RETI		; RETURN

Saving/Restoring general-purpose registers using PUSH/POP data transfer instruction

Figure 3-4 Saving/Restoring General-purpose Registers under Interrupt Processing

3.4.3 Interrupt return

Interrupt return instructions [RETI]/[RETN] perform as follows.

[RETI]/[RETN] Interrupt Return

1. Program counter (PC) and program status word
(PSW, includes IMF) are restored from the stack.

2. Stack pointer (SP) is incremented by 3.

As for address trap interrupt (INTATRAP), it is required to alter stacked data for program counter (PC) to restarting address, during interrupt service program.

Note: If [RETN] is executed with the above data unaltered, the program returns to the address trap area and INTATRAP occurs again. When interrupt acceptance processing has completed, stacked data for PCL and PCH are located on address (SP + 1) and (SP + 2) respectively.

Example 1: Returning from address trap interrupt (INTATRAP) service program

PINTxx:

POP WA ; Recover SP by 2

LD WA, Return Address ;

PUSH WA ; Alter stacked data (interrupt processing)

RETN ; RETURN

Example 2: Restarting without returning interrupt

(In this case, PSW (Includes IMF) before interrupt acceptance is discarded.)

 PINTxx:
 INC
 SP
 ; Recover SP by 3

 INC
 SP
 ;

 INC
 SP
 ;

 (interrupt processing)
 LD
 EIRL, data
 ; Set IMF to "1" or clear it to "0"

 JP
 Restart Address
 ; Jump into restarting address

Interrupt requests are sampled during the final cycle of the instruction being executed. Thus, the next interrupt can be accepted immediately after the interrupt return instruction is executed.

Note 1: It is recommended that stack pointer be return to rate before INTATRAP (Increment 3 times), if return interrupt instruction [RETN] is not utilized during interrupt service program under INTATRAP (such as Example 2).

Note 2: When the interrupt processing time is longer than the interrupt request generation time, the interrupt service task is performed but not the main task.

3.5 Software Interrupt (INTSW)

Executing the SWI instruction generates a software interrupt and immediately starts interrupt processing (INTSW is highest prioritized interrupt).

Use the SWI instruction only for detection of the address error or for debugging.

3.5.1 Address error detection

FFH is read if for some cause such as noise the CPU attempts to fetch an instruction from a non-existent memory address during single chip mode. Code FFH is the SWI instruction, so a software interrupt is generated and an address error is detected. The address error detection range can be further expanded by writing FFH to unused areas of the program memory. Address trap reset is generated in case that an instruction is fetched from RAM, DBR or SFR areas.

3.5.2 Debugging

Debugging efficiency can be increased by placing the SWI instruction at the software break point setting address.

3.6 Undefined Instruction Interrupt (INTUNDEF)

Taking code which is not defined as authorized instruction for instruction causes INTUNDEF. INTUNDEF is generated when the CPU fetches such a code and tries to execute it. INTUNDEF is accepted even if non-maskable interrupt is in process. Contemporary process is broken and INTUNDEF interrupt process starts, soon after it is requested.

Note: The undefined instruction interrupt (INTUNDEF) forces CPU to jump into vector address, as software interrupt (SWI) does.

3.7 Address Trap Interrupt (INTATRAP)

Fetching instruction from unauthorized area for instructions (Address trapped area) causes reset output or address trap interrupt (INTATRAP). INTATRAP is accepted even if non-maskable interrupt is in process. Contemporary process is broken and INTATRAP interrupt process starts, soon after it is requested.

Note: The operating mode under address trapped, whether to be reset output or interrupt processing, is selected on watchdog timer control register (WDTCR).

3.8 External Interrupts

The TMP86CM72FG has 6 external interrupt inputs. These inputs are equipped with digital noise reject circuits (Pulse inputs of less than a certain time are eliminated as noise).

Edge selection is also possible with INT1 to INT4. The INT0/p51 pin can be configured as either an external interrupt input pin or an input/output port, and is configured as an input port during reset.

Edge selection, noise reject control and INT0/p51 pin function selection are performed by the external interrupt control register (EINTCR).

Source	Pin	Enable Conditions	Release Edge (level)	Digital Noise Reject
INT0	ĪNT0	IMF • EF4 • INT0EN=1	Falling edge	Pulses of less than 2/fc [s] are eliminated as noise. Pulses of 7/fc [s] or more are considered to be signals. In the SLOW or the SLEEP mode, pulses of less than 1/fs [s] are eliminated as noise. Pulses of 3.5/fs [s] or more are considered to be signals.
INT1	INT1	IMF • EF6 = 1	Falling edge or Rising edge	Pulses of less than 15/fc or 63/fc [s] are eliminated as noise. Pulses of 49/fc or 193/fc [s] or more are considered to be signals. In the SLOW or the SLEEP mode, pulses of less than 1/fs [s] are eliminated as noise. Pulses of 3.5/fs [s] or more are considered to be signals.
INT2	INT2	IMF • EF15 = 1 and IL15ER=1	Falling edge or Rising edge	Pulses of less than 7/fc [s] are eliminated as noise. Pulses of 25/fc [s] or more are considered to be signals. In the SLOW or the SLEEP mode, pulses of less than 1/fs [s] are eliminated as noise. Pulses of 3.5/fs [s] or more are considered to be signals.
INT3	INT3	IMF • EF11 = 1	Falling edge or Rising edge	Pulses of less than 7/fc [s] are eliminated as noise. Pulses of 25/fc [s] or more are considered to be signals. In the SLOW or the SLEEP mode, pulses of less than 1/fs [s] are eliminated as noise. Pulses of 3.5/fs [s] or more are considered to be signals.
INT4	INT4	IMF • EF12 = 1	Falling edge, Rising edge, Falling and Rising edge or H level	Pulses of less than 7/fc [s] are eliminated as noise. Pulses of 25/fc [s] or more are considered to be signals. In the SLOW or the SLEEP mode, pulses of less than 1/fs [s] are eliminated as noise. Pulses of 3.5/fs [s] or more are considered to be signals.
INT5	ĪNT5	IMF • EF14 = 1 and IL14ER=1	Falling edge	Pulses of less than 2/fc [s] are eliminated as noise. Pulses of 7/fc [s] or more are considered to be signals. In the SLOW or the SLEEP mode, pulses of less than 1/fs [s] are eliminated as noise. Pulses of 3.5/fs [s] or more are considered to be signals.

Note 1: In NORMAL1/2 or IDLE1/2 mode, if a signal with no noise is input on an external interrupt pin, it takes a maximum of "signal establishment time + 6/fs[s]" from the input signal's edge to set the interrupt latch.

Note 2: When INT0EN = "0", IL4 is not set even if a falling edge is detected on the $\overline{\text{INT0}}$ pin input.

Note 3: When a pin with more than one function is used as an output and a change occurs in data or input/output status, an interrupt request signal is generated in a pseudo manner. In this case, it is necessary to perform appropriate processing such as disabling the interrupt enable flag.

External Interrupt Control Register

EINTCR	7	6	5	4	3	2	1	0	
(0037H)	INT1NC	INT0EN	INT4	ES	INT3ES	INT2ES	INT1ES		(Initial value: 0000 000*)

INT1NC	Noise reject time select	0: Pulses of less than 63/fc [s] are eliminated as noise 1: Pulses of less than 15/fc [s] are eliminated as noise	R/W
INT0EN	p51/INT0 pin configuration	0: p51 input/output port 1: INTO pin (Port p51 should be set to an input mode)	R/W
INT4 ES	INT4 edge select	00: Rising edge 01: Falling edge 10: Rising edge and Falling edge 11: H level	R/W
INT3 ES	INT3 edge select	0: Rising edge 1: Falling edge	R/W
INT2 ES	INT2 edge select	0: Rising edge 1: Falling edge	R/W
INT1 ES	INT1 edge select	0: Rising edge 1: Falling edge	R/W

Note 1: fc: High-frequency clock [Hz], *: Don't care

Note 2: When the system clock frequency is switched between high and low or when the external interrupt control register (EINTCR) is overwritten, the noise canceller may not operate normally. It is recommended that external interrupts are disabled using the interrupt enable register (EIR).

Note 3: The maximum time from modifying INT1NC until a noise reject time is changed is 2^6 /fc.

Note 4: In case RESET pin is released while the state of INT4 pin keeps "H" level, the external interrupt 4 request is not generated even if the INT4 edge select is specified as "H" level. The rising edge is needed after RESET pin is released.

4. Program Patch Logic

The program patch logic provides a function to fix the program code in the on-chip ROM with a bug.

This logic has two modes of operation: address jump and data replacement. In the address jump mode, the three consecutive bytes starting at the address specified in the program correction address registers can be replaced with an absolute jump instruction. In the data replacement mode, the data at the address specified in the program correction address registers can be replaced with the specified one or two data.

The two modes of operation allow up to four memory locations to be patched.

Note 1: Before using the program patch logic, a routine for this logic must be embedded in the initial routine.

Note 2: To set the jump target in the RAM for the address jump mode, an address trap of RAM must be disabled through the WDTCR1 and WDTCR2 before setting the program correction control register (ROMCCR).

4.1 Configuration

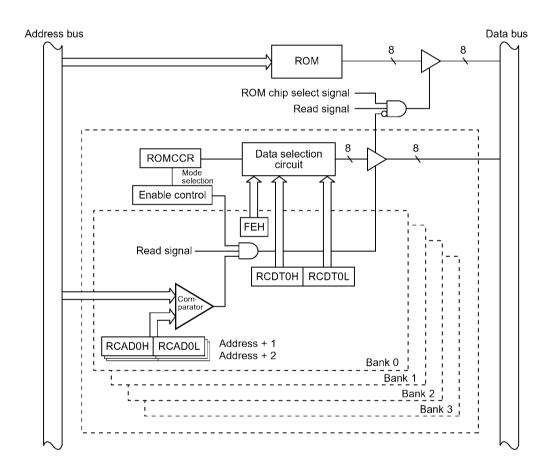


Figure 4-1 Program Patch Logic

4.2 Control

ROMCC (002FH)

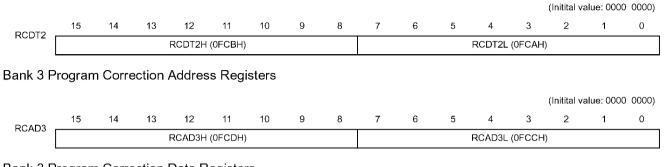
The program patch logic is controlled by the program correction control register (ROMCCR), program correction address registers (RCADxL, RCADxH), and program correction data registers (RCDTxL, RCDTxH). (x: 0 to 3)

Program Correction Control Register

CR	7	6	5	4	3	2	1	0						
⊣)	BANK3C	NT	BANK	2CNT	BANK	(1CNT	BANK	CNT	(Initital value: 0000 0000)					
	BANK3CNT Bank 3 control					00: Disable 01: Address jump mode 10: 1-byte data replacement mode 11: 2-byte data replacement mode								
,	BANK2CNT	Bank	2 control		10: 1-	ddress jump byte data re	o mode eplacement m		RA	Λ.				
	BANK1CNT	Bank	1 control		10: 1-	ddress jump byte data re	o mode eplacement m		KA	V				
,	BANK0CNT	Bank	0 control		10: 1-	ddress jump byte data re	o mode eplacement m							

Note 1: If the BANKxCNT is set to a value other than "00B" for the bank, it is impossible to write to the program correction address registers (RCADxL, RCADxH) and program correction data registers (RCDTxL, RCDTxH) (although the write instruction is executed). Thus, a mode must be selected through the ROMCCR after all these registers are set.

Note 2: The reset vectors (FFFEH, FFFFH) immediately after reset can not be replaced with a patch program because the ROM-CCR is initialized by reset.


Bank 0 Program Correction Address Registers

	-				-											
														(Initital va	alue: 0000	0 0000)
RCAD0	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
RCADO				12 RCAD0H	(0FC1H)	l						RCAD0L	. (0FC0H)		
Bank 0 P																
														(Initital va	alue: 0000	0 0000)
RCDT0	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
RCDTU	15 14 13 12 11 10 9 8 RCDT0H (0FC3H)										RCDT0L	(0FC2H)			
Bank 1 P	rogran	n Corre	ection <i>i</i>	Addres	s Reg	isters								(Initital v	alue: 0000	0 0000)
	15	14	13	12	11	10	9	8	7	6	5	4	3	•	1	0
RCAD1	15 14 13 12 11 10 9 8 RCAD1H (0FC5H)									RCAD1L	. (0FC4H)				
Bank 1 P														(Initital va	alue: 0000	0 0000)
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
RCDT1	15 14 13 12 11 10 9 8 RCDT1H (0FC7H)						RCDT1L (0FC6H)									
Bank 2 P														(Initital va	alue: 0000	0 0000)
20120	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
RCAD2				DCADOLI	(OECOLI)							DCADOL	/OF COLL	`		

RCAD2L (0FC8H)

RCAD2H (0FC9H)

Bank 2 Program Correction Data Registers

Bank 3 Program Correction Data Registers

														(initital va	alue: 0000	J 0000)
RCDT3	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
KCD13			l	RCDT3H	(0FCFH)							RCDT3L	(0FCEH)	1		

- Note 1: The program correction address registers (RCADx) can only be used for specifying addresses of the user ROM area. If they are used for specifying addresses of other areas (such as SFR, RAM, and boot ROM), the address jump or data replacement mode is not enabled even though it is selected through the ROMCCR. (x: 0 to 3)
- Note 2: Set the RCADx so the addresses of the locations that must be patched will not overlap each other in the banks. If they overlap, the program operation is unpredictable. (x: 0 to 3)
- Note 3: Do not set the RCADx to the areas which are specified in the RCADx, RCDTx, and ROMCCR, or those of the 2-byte areas following the instruction that sets the ROMCCR. If it is set to any one of these areas, the program might not be patched properly.

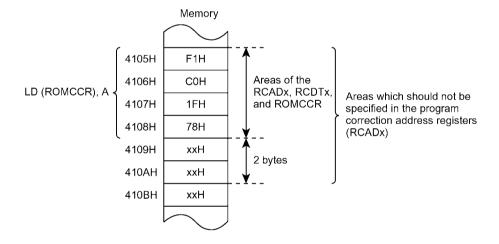


Figure 4-2 Program Correction Address Register and Data Register

4.3 Function

The program patch logic includes a total of four banks of the program correction address registers and program correction data registers. This logic can patch one memory location through a bank. Three correction modes are available for this logic: address jump, 1-byte data replacement, and 2-byte data replacement. One correction mode should be set for each bank by using the program correction control register (ROMCCR).

4.3.1 Address jump mode

In the address jump mode, any three consecutive bytes of data in ROM can be replaced with an absolute jump instruction. When this mode is enabled, the three consecutive bytes starting at the address specified in the program correction address registers are replaced with an absolute jump instruction code (FEH, (RCDTxL), (RCDTxH)). (x is defined as 0 to 3 hereinafter.)

4.3.1.1 Setting the registers

Set the first ROM address of the location that must be patched in the program correction address registers (RCADxL, RCADxH). (These two registers are called RCADx hereinafter.) Set the jump target address in the program correction data registers (RCDTxL, RCDTxH). The program patch logic enables the address jump mode when the BANKxCNT in the ROMCCR is set to "01B" after all these registers are set.

- Note 1: Be sure to specify the address of the first operation address (start address of the instruction) in the RCADx. If it is specified incorrectly, the result is unpredictable.
- Note 2: The three bytes starting at the address specified in the RCADx are replaced with an absolute jump instruction code (FEh (operation code), xxh (operand), xxh (operand)). Therefore, if a jump or CALL instruction is executed for the addresses corresponding to these replaced operands (second and third bytes), the result is unpredictable.
- Note 3: To set the jump target in the RAM for the address jump mode, an address trap of the RAM address must be disabled through the WDTCR1 and WDTCR2 before setting the ROMCCR.
- Note 4: In the address jump mode, when a read instruction is executed for the address specified in the RCADx, FEH is read from the address.

(1) Example 1: Replacing the three bytes starting at D254H with a jump instruction (JP 0300H) through the bank 0

Example:

LD	(WDTCR1), 09H	; Disable the address trap of RAM.
LD	(WDTCR2), 0D2H	; Sets the ATRAP control code to WDTCR2.
LD	HL,RCAD0L	
LDW	(HL), 0D254H	; Sets the program correction address registers.
LD	HL,RCDT0L	
LDW	(HL), 0300H	; Sets the program correction data registers.
LD	(ROMCCR), 00000001B	; Sets the program correction control register.

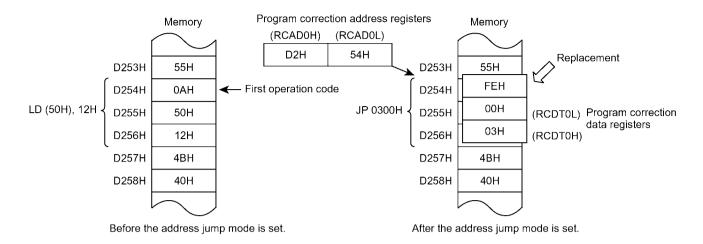


Figure 4-3 Example of Replacing the Three Byte (Address jump mode)

(2) Example 2: Setting a sequence for the program patch logic in the initial routine (in the address jump mode)

In the initial routine (Normally after reset), set the program patch logic's registers and store a patch program into the on-chip RAM as follows.

- 1. Read the flag, which indicates whether to use the program patch logic, from the external memory. (Instead of the flag, pin information can be used to determine whether to use the program patch logic.)
- 2. If the logic is not used, perform normal initial processing.
- 3. If it is used, read the ROM address that must be patched and jump target address from the external memory.
- 4. Set the ROM address that must be patched in the RCADx, and the jump target address in the RCDTxL and RCDTxH.
- 5. Read the patch program from the external memory, and store it into the on-chip RAM. (This step is not required if the jump target is within the ROM.)
- 6. Repeat steps 3. through 5. as many times as required banks.
- 7. Set the ROMCCR to address jump mode.

(3) Example 3: Executing the patch program in the RAM areas 0200H through 022FH when there is a bug in the ROM areas C020H through C085H

During the initial routine immediately after reset, read the ROM address that must be patched (C020H) and jump target address (0200H) from the external memory, and set the data in the registers. Store the patch program into the on-chip RAM, and then set the ROMCCR to address jump mode.

When the program execution reaches the instruction at address C020H, the absolute jump instruction is fetched and executed instead of the instruction at address C020H. So, program execution is transferred to the patch program. It is recommended to set the jump instruction to return to the main routine in the end of the patch program.

Example:

LD	(WDTCR1), 09H	; Disable the address trap of RAM.
LD	(WDTCR2), 0D2H	
LD	HL,RCAD0L	; Sets the ATRAP control code to WDTCR2.
LDW	(HL), 0C020H	; Sets the program correction address registers.
LD	HL,RCDT0L	
LDW	(HL), 0200H	; Sets the program correction data registers.
LD	(ROMCCR), 00000001B	; Sets the program correction control register.

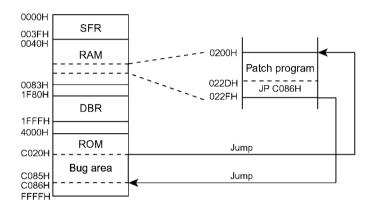
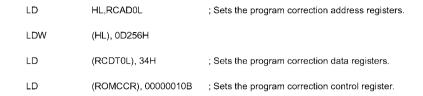


Figure 4-4 Example of Executing the Patch Program in the RAM Areas (Address Jump Mode)

4.3.2 1-byte data replacement mode

In the 1-byte data replacement mode, any one byte of data in ROM can be replaced with specified data. When this mode is enabled, the data at the address specified in the program correction address registers is replaced with the specified data (RCDTxL). The data of RCDTxH has no effect to ROM in the 1-byte data replacement mode.


Either an operation code or operand can be specified in the program correction address registers.

4.3.2.1 Setting the registers

Set the ROM address that must be patched in the program correction address registers (RCADx). Set the corrective data in the program correction data registers (RCDTxL). The program patch logic enables the 1-byte data replacement mode when the BANKxCNT in the ROMCCR is set to "10B" after all these registers are set.

(1) Example 1: Replacing the data at D256H with 34H through the bank 0

Example:

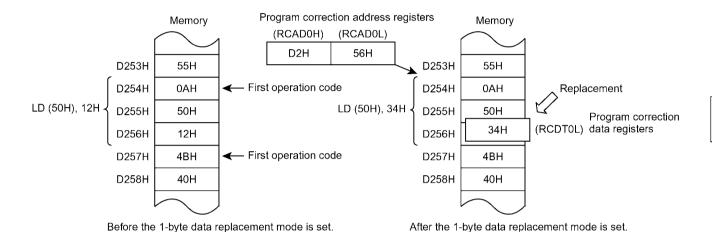


Figure 4-5 Example of Replacing the Data (1-byte data replacement mode)

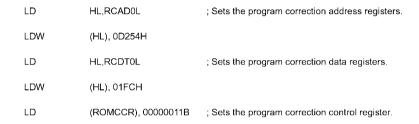
(2) Example 2: Setting a sequence for the program patch logic in the initial routine

In the initial routine (Normally after reset), set the program patch logic's registers as follows.

- 1. Read the flag, which indicates whether to use the program patch logic, from the external memory. (Instead of the flag, pin information can be used to determine whether to use the program patch logic.)
- 2. If the logic is not used, perform normal initial processing.
- 3. If it is used, read the ROM address that must be patched and corrective data from the external memory.
- 4. et the address in the RCADx, and the corrective data in the RCDTxL.
- 5. Repeat steps 3. and 4. as many times as required banks.
- 6. Set the ROMCCR to 1-byte data replacement mode.

4.3.3 2-byte data replacement mode

In the 2-byte data replacement mode, any two consecutive bytes of data in the ROM can be replaced with specified data. When this mode is enabled, the 2-byte data starting at the address specified in the program correction address registers is replaced with the specified data (RCDTxL, RCDTxH).


Either an operation code or operand can be specified in the program correction address registers.

4.3.3.1 Setting the registers

Set the first ROM address that must be patched in the program correction address registers (RCADx). Set the corrective data in the program correction data registers (RCDTxL, RCDTxH). The program patch logic enables the 2-byte data replacement mode when the BANKxCNT in the ROMCCR is set to "11B" after all these registers are set.

(1) Example 1: Skpping over the LD instruction (Ld 50H), 12H) at addresses D254H, D255H, and D256H with a JR instruction through the bank 0

Example:

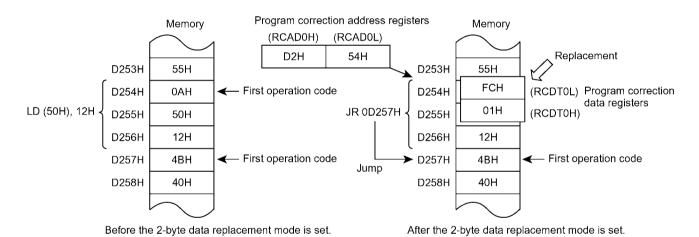
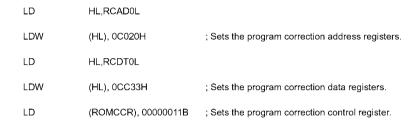


Figure 4-6 Example of Replacing the Data (2-byte data replacement mode)

Note: To change to a relative jump instruction in data replacement mode as shown above, set the jump target in the first operation code.

(2) Example 2: Setting a sequence for the program patch logic in the initial routine

In the initial routine (Normally after reset), set the program patch logic's registers as follows.


- 1. Read the flag, which indicates whether to use the program patch logic, from the external memory. (Instead of the flag, pin information can be used to determine whether to use the program patch logic.)
- 2. If the logic is not used, perform normal initial processing.
- 3. If it is used, read the ROM address that must be patched and corrective data from the external memory.
- 4. Set the address in the RCADx, and the corrective data in the RCDTxL and RCDTxH.
- 5. Repeat steps 3. and 4. as many times as required banks.
- 6. Set the ROMCCR to the 2-byte data replacement mode.

(3) Example 3: Replacing data 55H at address C020H with 33H, and replacing data AAH at address C021H with CCH

During the initial routine immediately after reset, read the first ROM address that must be patched (C020H) and the corrective data (33H and CCH) from the external memory, and set the data in the registers. Then, set the ROMCCR to the 2-byte replacement mode.

When the data is fetched or read at address C020H, 33H instead of 55H is brought into the CPU. When the data is fetched or read at address C021H, CCH instead of AAH is brought into the CPU.

Example:

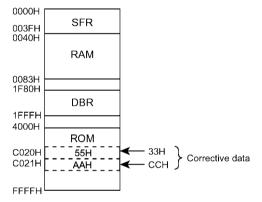


Figure 4-7 Example of Replacing the Data (2-byte data replacement mode)

4. Program Patch Logic 4.1 Configuration

Configuration TMP86CM72FG

5. Special Function Register (SFR)

The TMP86CM72FG adopts the memory mapped I/O system, and all peripheral control and data transfers are performed through the special function register (SFR) or the data buffer register (DBR). The SFR is mapped on address 0000H to 003FH, DBR is mapped on address 0F80H to 0FFFH.

This chapter shows the arrangement of the special function register (SFR) and data buffer register (DBR) for TMP86CM72FG.

5.1 SFR

Address	Read	Write				
0000H	Rese	erved				
0001H	P1DR					
0002H	P2	DR				
0003H	Rese	erved				
0004H	P4	DR				
0005H	P5	DR				
0006H	P6	DR				
0007H	P7	DR				
0008H	P8	DR				
0009H	P9	DR				
000AH	Rese	erved				
000BH	P10l	JTCR				
000CH	P40	CR1				
000DH	P5	CR				
000EH	ADCCR1					
000FH	ADCCR2					
0010H	TC3DRA					
0011H	TC3DRB	-				
0012H	TC3CR					
0013H	TC2CR					
0014H	TC-	ICR				
0015H	P1PRD	-				
0016H	P2PRD	-				
0017H	Rese	erved				
0018H	TC4	IDR				
0019H	SIO	CR1				
001AH	SIO	CR2				
001BH	SIOSR	-				
001CH	SIO	BUF				
001DH	UARTSR	UARTCR1				
001EH	-	UARTCR2				
001FH	RDBUF	TDBUF				
0020H	-	SBICRA				
0021H	SBIDBR					
0022H	-	I2CAR				
0023H	SBISRB	SBICRB				
0024H	TC2DRL					
0025H	TC2	DRH				

Read	Write				
ADCDR2	-				
ADCDR1	-				
P40	CR2				
TC3	SSEL				
VFT	CR1				
VFT	CR2				
VFT	CR3				
VFTSR	-				
Rese	erved				
ROM	ICCR				
Reserved					
-	STOPCR				
Reserved					
Reserved					
- WDTCR1					
-	WDTCR2				
TB ⁻	TCR				
EIN	TCR				
SYS	SCR1				
SYSCR2					
EIRL					
EIRH					
ILL					
ILH					
INT	SEL				
P\$	SW				
	ADCDR2 ADCDR1 P44 TC3 VFT VFT VFT VFTSR Resa ROM Resa - TB' EIN SYS SYS SYS LEI LI LI LI LI LI LI LI LI L				

Note 1: Do not access reserved areas by the program.

Note 2: -; Cannot be accessed.

Note 3: Write-only registers and interrupt latches cannot use the read-modify-write instructions (Bit manipulation instructions such as SET, CLR, etc. and logical operation instructions such as AND, OR, etc.).

5.2 DBR

Address	Read	Write		
0F80H	VFTDBR(T0,V7 to V0)			
0F81H	VFTDBR(T1,V7 to V0)			
0F82H	VFTDBR(T	2,V7 to V0)		
0F83H	VFTDBR(T	3,V7 to V0)		
0F84H	VFTDBR(T	4,V7 to V0)		
0F85H	VFTDBR(T	5,V7 to V0)		
0F86H	VFTDBR(T	6,V7 to V0)		
0F87H	VFTDBR(T	7,V7 to V0)		
0F88H	VFTDBR(T	8,V7 to V0)		
0F89H	VFTDBR(T	9,V7 to V0)		
0F8AH	VFTDBR(T	10,V7 to V0)		
0F8BH	VFTDBR(T	11,V7 to V0)		
0F8CH	VFTDBR(T	12,V7 to V0)		
0F8DH	VFTDBR(T13,V7 to V0)			
0F8EH	VFTDBR(T	14,V7 to V0)		
0F8FH	VFTDBR(T	15,V7 to V0)		
0F90H	VFTDBR(T0),V15 to V8)		
0F91H	VFTDBR(T	I,V15 to V8)		
0F92H	VFTDBR(T2	2,V15 to V8)		
0F93H	VFTDBR(T3	3,V15 to V8)		
0F94H	VFTDBR(T4	4,V15 to V8)		
0F95H	VFTDBR(T	5,V15 to V8)		
0F96H	VFTDBR(Te	5,V15 to V8)		
0F97H	VFTDBR(T7	7,V15 to V8)		
0F98H	VFTDBR(T8	3,V15 to V8)		
0F99H	VFTDBR(TS	9,V15 to V8)		
0F9AH	VFTDBR(T1	0,V15 to V8)		
0F9BH	VFTDBR(T11,V15 to V8)			
0F9CH	VFTDBR(T12,V15 to V8)			
0F9DH	VFTDBR(T1	3,V15 to V8)		
0F9EH	VFTDBR(T1	4,V15 to V8)		
0F9FH	VFTDBR(T1	5,V15 to V8)		

Address	Read	Write		
0FA0H	VFTDBR(T0),V23 to V16)		
0FA1H	VFTDBR(T1	,V23 to V16)		
0FA2H	VFTDBR(T2	2,V23 to V16)		
0FA3H	VFTDBR(T3	s,V23 to V16)		
0FA4H	VFTDBR(T4	,V23 to V16)		
0FA5H	VFTDBR(T5	i,V23 to V16)		
0FA6H	VFTDBR(T6	i,V23 to V16)		
0FA7H	VFTDBR(T7	7,V23 to V16)		
0FA8H	VFTDBR(T8	s,V23 to V16)		
0FA9H	VFTDBR(T9	,V23 to V16)		
0FAAH	VFTDBR(T10	0,V23 to V16)		
0FABH	VFTDBR(T1	1,V23 to V16)		
0FACH	VFTDBR(T12,V23 to V16)			
0FADH	VFTDBR(T13,V23 to V16)			
0FAEH	VFTDBR(T14,V23 to V16)			
0FAFH	VFTDBR(T15,V23 to V16)			
0FB0H	VFTDBR(T0,V31 to V24)			
0FB1H	VFTDBR(T1	,V31 to V24)		
0FB2H	VFTDBR(T2	2,V31 to V24)		
0FB3H	VFTDBR(T3	s,V31 to V24)		
0FB4H	VFTDBR(T4	,V31 to V24)		
0FB5H	VFTDBR(T5	s,V31 to V24)		
0FB6H	VFTDBR(T6	s,V31 to V24)		
0FB7H	VFTDBR(T7	7,V31 to V24)		
0FB8H	VFTDBR(T8	s,V31 to V24)		
0FB9H	VFTDBR(T9	,V31 to V24)		
0FBAH	VFTDBR(T10	0,V31 to V24)		
0FBBH	VFTDBR(T1	1,V31 to V24)		
0FBCH	VFTDBR(T12	2,V31 to V24)		
0FBDH	VFTDBR(T1;	3,V31 to V24)		
0FBEH	VFTDBR(T14	4,V31 to V24)		
0FBFH	VFTDBR(T15,V31 to V24)			

Address	Read	Write		
0FC0H	RC#	ADOL		
0FC1H	RCA	VD0H		
0FC2H	RCI	DTOL		
0FC3H	RCE	DT0H		
0FC4H	RC.	AD1L		
0FC5H	RCA	ND1H		
0FC6H	RCI	DT1L		
0FC7H	RCE	DT1H		
0FC8H	RCA	AD2L		
0FC9H	RCA	ND2H		
0FCAH	RCI	DT2L		
0FCBH	RCI	DT2H		
0FCCH	RCAD3L			
0FCDH	RCAD3H			
0FCEH	RCDT3L			
0FCFH	RCDT3H			
0FD0H	Reserved			
0FD1H	Rese	erved		
0FD2H	Rese	erved		
0FD3H	Rese	erved		
0FD4H	Rese	erved		
0FD5H	Rese	erved		
0FD6H	Rese	erved		
0FD7H	Rese	erved		
0FD8H	Rese	erved		
0FD9H	Rese	erved		
0FDAH	Reserved			
0FDBH	Reserved			
0FDCH	Rese	erved		
0FDDH	Rese	erved		
0FDEH	Rese	erved		
0FDFH	Reserved			

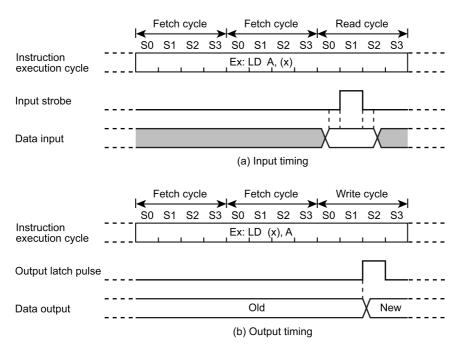
Address	Read	Write			
0FE0H	Reserved				
::	::				
0FFFH	Reserved				

Note 1: Do not access reserved areas by the program.

Note 2: -; Cannot be accessed.

Note 3: Write-only registers and interrupt latches cannot use the read-modify-write instructions (Bit manipulation instructions such as SET, CLR, etc. and logical operation instructions such as AND, OR, etc.).

6. I/O Ports


The TMP86CM72FG has 8 parallel input/output ports (54 pins) as follows.

	Primary Function	Secondary Functions
Port P1	8-bit I/O	External interrupt input, timer/counter input/output, Serial interface input/output
Port P2	3-bit I/O	Low-frequency resonator connections, external interrupt input/output, STOP mode release signal Input
Port P4	8-bit I/O	Analog input, STOP mode release signal input
Port P5	3-bit I/O	External interrupt input, DVO output
Port P6	8-bit I/O	VFT output
Port P7	8-bit I/O	VFT output
Port P8	8-bit I/O	VFT output
Port P9	8-bit I/O	VFT output

Each output port contains a latch, which holds the output data. All input ports do not have latches, so the external input data should be externally held until the input data is read from outside or reading should be performed several timer before processing. Figure 6-1 shows input/output timing examples.

External data is read from an I/O port in the S1 state of the read cycle during execution of the read instruction. This timing cannot be recognized from outside, so that transient input such as chattering must be processed by the program.

Output data changes in the S2 state of the write cycle during execution of the instruction which writes to an I/O port.

Note: The positions of the read and write cycles may vary, depending on the instruction.

Figure 6-1 Input/Output Timing (Example)

6.1 Port P1 (P17 to P10)

Port P1 is an 8-bit input/output port, and also used as a timer counter input/output, external interrupt input, and serial interface input/output. To use port P1 as an input port or secondary function pins, set its output latch (P1DR) to "1". A reset sets the output latch to "1" and clears the push-pull control register (P1OUTCR) to "0".

The P1OUTCR can be used to select sink open-drain output or CMOS output for the output circuit of port P1. To use port P1 as an input port, set the P1DR to "1", and then clear the corresponding bit of the P1OUTCR to "0". Port P1 has separate data input registers. To sense the state of the output latch, read the P1DR. To sense the state of the pins the port, read the P1 port input data (P1PRD) register.

The input waveform of a TC3 input can be inverted in terms of phase, using the Timer Counter3 input control (TC3SEL) register.

P10, P11, P12, and P13 can work not only as a port but also as, respectively, the TC3/INT3, $\overline{PWM4}/\overline{PDO4}/TC4$, TXD, and RXD/INT2 functions. To use the TC3, INT3, TC4, RXD and INT2 functions, place the respective pins in input mode. To use the $\overline{PWM4}$ and $\overline{PDO4}$ functions, place the respective pins in output mode.

P14, P15, P16, and P17 can work not only as a port but also as, respectively, the SI/SDA, SO/SCL, \overline{SCK} , and \overline{CS} /INT4 functions. To use these functions, place the pin corresponding to the SI, \overline{CS} , and INT4 function in input mode, the pin corresponding to the SO, SDA, and SCL function in output mode (when using it in I²C bus, it is used by sink open-drain output.), and the pin corresponding to the SCK function in either input or output mode.

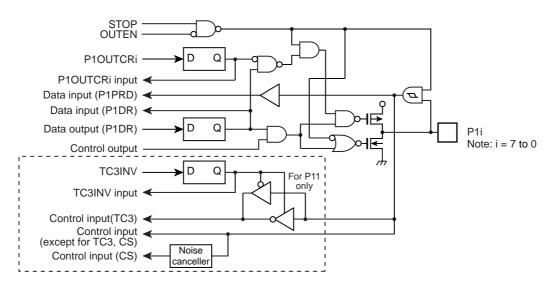


Figure 6-2 Port P1

	7	6	5	4	3	2	1	0		
P1DR (0001H) R/W	P17 CS INT4	P16 SCK	P15 SO SCL	P14 SI SDA	P13 RXD INT2	P12 TXD	P11 PWM4 PDO4 TC4	P10 TC3 INT3	(Initial value: 1111 1111)	
P1OUTCR (000BH)	7	6	5	4	3	2	1	0	(Initial value: 0000 0000)	
	P1OUTC		•	rt P1 be set on b	IT I	k open drair	າ			R/W

P1PRD	7	6	5	4	3	2	1	0	
(0015H)									
Read only									
TC3SBI	7	6	5	4	3	2	1	0	
(0029H)	CSEN		SBISEL					TC3INV	(Initial value: 0*0* ***0)

TC3INV	TC3 input control	0: Normal input 1: Inverted input	
SBISEL	SIO/I ² C BUS selection (P15)	0: SIO (P15: SO pin) 1: I ² C (P15: SCL pin)	R/W
CSEN	Chip enable function control	0: Disable 1: Enable	

P1OUTCR	P1DR	Function
0	0	Low output
0	1	Input, open-drain output, or control input
1	0	Low output
1	1	High output or control output

6.2 Port P2 (P22 to P20)

Port P2 is a 3-bit input/output port. It can work not only as a port but also as external input, STOP mode release signal input, and low-frequency resonator connection pins. To use it as an input port or the secondary function pins, set the output latch (P2DR) to "1". A reset initializes the P2DR to "1". To run the device in dual clock mode, connect a low-frequency resonator (32.768 kHz) to pins P21 (XTIN) and P22 (XTOUT). When the device runs in single clock mode, P21 and P22 can be used as an ordinary input/output port. It is recommended that pin P20 be used for external interrupt input, STOP release signal input, or as an input port (if it is used as an output port, it is set with the content of the interrupt latch at the negative-going edge of the signal).

Port P2 has separate data input registers. To sense the state of the output latch, read the P2DR. To sense the state of the pins of the port, read the P2 port input data (P2PRD) register.

If a read instruction is executed for the P2DR or P2PRD on port P2, the sensed state of bits 7 to 3 is undefined.

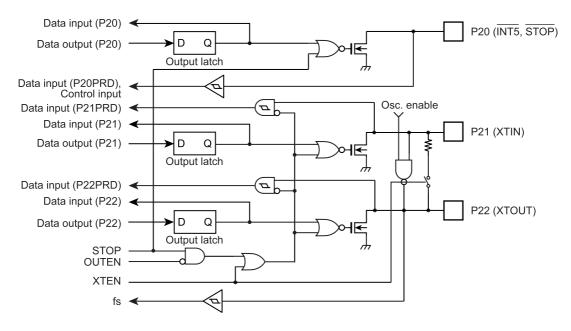
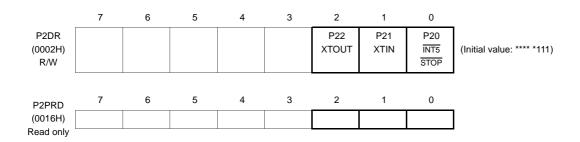



Figure 6-3 Port P2

Note: Because pin P20 is used also as the STOP pin, its output high impedance becomes high when it enters the STOP mode regardless of the state of OUTEN.

6.3 Port P4 (P47 to P40)

Port P4 is an 8-bit input/output port. Each bit of the port can be configured for either input or output separately, using the P4 port input/output control register (P4CR1). These pins can work not only as a port but also for analog input and key-on-wakeup input. To use each bit for output, set the corresponding bit of the P4CR1 to "1" to place them in output mode. To use them in input mode, clear the corresponding bit of the P4CR1 to "0", then set the P4CR2 to "1". To use the bits for analog input and key-on-wakeup input, clear the P4CR1 and P4CR2 to "0" in the stated order (then, for analog input, clear the ADCCR1<AINDS> to "0", and start the AD). A reset initializes the P4CR1 and P4CR2, respectively, to "0" and "1", thereby placing port P4 in input mode. A reset also clears the P4 port output latch (P4DR) to "0".

The "Low" level of P40 and P41 is a large current output ports.

When a sink open drain port uses, bit of P4CR2 is set to "0", and when using it is a CMOS output port, bit of P4CR2 is set to "1".

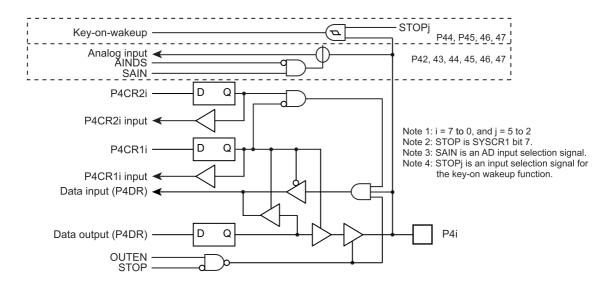


Figure 6-4 Port P4

P4DR	7	6		5	4	3	2	1	0			
(0004H) R/W	P47 AIN5 STOP5	P46 AIN4 STOF	4	P45 AIN3 STOP3	P44 AIN2 STOP2	P43 AIN1	P42 AIN0	P41	P40	(Initial value: 0000 0000)		
P4CR1 (000CH)	7	6		5	4	3	2	1	0	(Initial value: 0000 0000)		
'								-		•		
	P4CR1	(T		-	t P4 be set on b	ıt I .	ut mode or a	analog inpu	t/key-on wa	ıkeup input	R/W	
P4CR2	7	6		5	4	3	2	1	0			
(0028H)										(Initial value: 1111 1111)		
!					•			•		•		
	P4CR2 (Bit 7 to 2	! 2) (T		ū	t P4 be set on b	IT I	0: Analog input/key-on wakeup input 1: Input mode					
	P4CR2 (Bit 1, 0) I/O control for (This register basis.)					IT I	ık open draiı 10S output	n output			R/W	

Note 1: If a port is in input mode, it senses the state of an input to its pins. If some pins of the port are in input mode, and others are in output mode, the content of the output latch related to a port pin that is in input mode may be changed when a bit manipulation instruction is executed on the port.

Note 2: The P4CR2 controls the input gate of pins used for analog input. In analog input mode, clear the P4CR2 to "0" to fix the input gate, thereby protecting it from through current. In input mode, set the P4CR2 to "1". When using the key-on wakeup function, clear the P4CR2 to "0", because the inputs are received separately. If the P4CR2 is "0", read accessing the P4CR2 yields "0".

6.4 Port P5 (P52 to P50)

Port P5 is a 3-bit general-purpose input/output port. Each bit of the port can be configured for either input or output separately, using the P5 port input/output control register (P5CR). A reset clears the P5CR to "0", placing port P5 in input mode. A reset also initializes the P5 port output latch (P5DR) to "0".

P51, and P52 can work not only as an input/output port but also, respectively, for the INT0, and INT1 functions. To use these functions, place the corresponding pins in input mode.

P50 can work not only as a port but also as, respectively, the \overline{DVO} function. To use the \overline{DVO} function, place the respective pin in output mode.

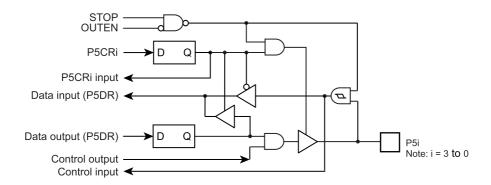
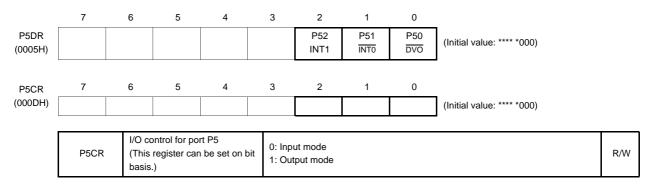



Figure 6-5 Port P5

Note: If a port is in input mode, it senses the state of an input to its pins. If some pins of the port are in input mode, and others are in output mode, the content of the output latch related to a port pin that is in input mode may be changed when a bit manipulation instruction is executed on the port.

6.5 Ports P6 (P67 to P60), P7 (P77 to P70), P8 (P87 to P80), and P9 (P97 to P90)

Ports P6, P7, P8, and P9 are 8-bit high-breakdown voltage input/output ports. They can work not only as a port but also for VFT driver output. They can drive directly a vacuum fluorescent tube (VFT). To use them as an input port or VFT driver, clear the output latch to "0".

Pins not set up for VFT driver output can be used as an input/output port. To use a pin for ordinary input/output when a VFT driver is used, clear the VFT driver output data buffer memory (DBR) for the pin to "0". A reset initializes the output latch to "0".

It is recommended that ports P6, P7, P8, and P9 be used to drive a VFT because they have a built-in pull-down resistor.

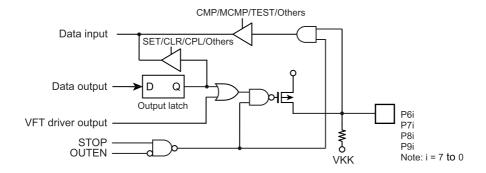


Figure 6-6 Port P6, P7, P8, and P9

P6DR	7	6	5	4	3	2	1	0	1
(0006H) R/W	P67	P66	P65	P64	P63	P62	P61	P60	(Initial value: 0000 0000)
P7DR	7	6	5	4	3	2	1	0	
(0007H)	P77	P76	P75	P74	P73	P72	P71	P70	(Initial value: 0000 0000)
R/W									
P8DR	7	6	5	4	3	2	1	0	_
(H8000)	P87	P86	P85	P84	P83	P82	P81	P80	(Initial value: 0000 0000)
R/W									_
P9DR	7	6	5	4	3	2	1	0	
(0009H)	P97	P96	P95	P94	P93	P92	P91	P90	(Initial value: 0000 0000)
R/W									=

7. Watchdog Timer (WDT)

The watchdog timer is a fail-safe system to detect rapidly the CPU malfunctions such as endless loops due to spurious noises or the deadlock conditions, and return the CPU to a system recovery routine.

The watchdog timer signal for detecting malfunctions can be programmed only once as "reset request" or "interrupt request". Upon the reset release, this signal is initialized to "reset request".

When the watchdog timer is not used to detect malfunctions, it can be used as the timer to provide a periodic interrupt.

Note: Care must be taken in system design since the watchdog timer functions are not be operated completely due to effect of disturbing noise.

7.1 Watchdog Timer Configuration

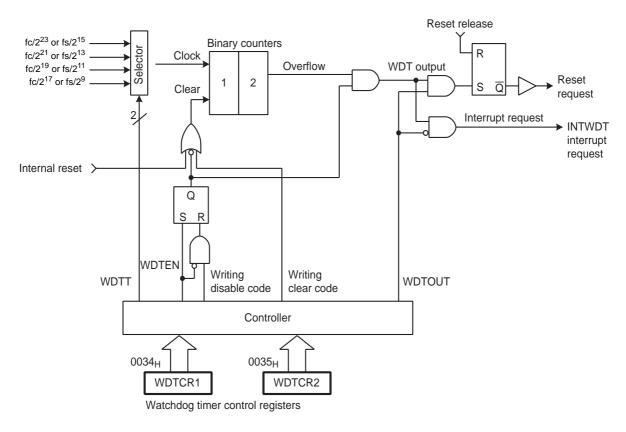


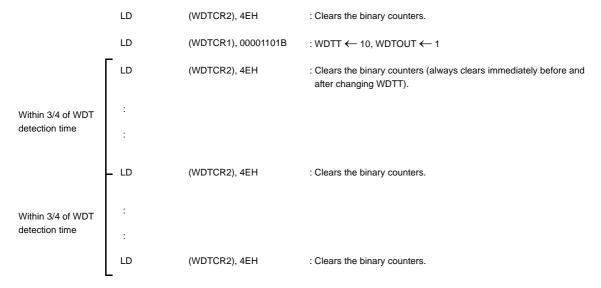
Figure 7-1 Watchdog Timer Configuration

7.2 Watchdog Timer Control

The watchdog timer is controlled by the watchdog timer control registers (WDTCR1 and WDTCR2). The watchdog timer is automatically enabled after the reset release.

7.2.1 Malfunction Detection Methods Using the Watchdog Timer

The CPU malfunction is detected, as shown below.


- 1. Set the detection time, select the output, and clear the binary counter.
- 2. Clear the binary counter repeatedly within the specified detection time.

If the CPU malfunctions such as endless loops or the deadlock conditions occur for some reason, the watchdog timer output is activated by the binary-counter overflow unless the binary counters are cleared. When WDTCR1<WDTOUT> is set to "1" at this time, the reset request is generated and then internal hardware is initialized. When WDTCR1<WDTOUT> is set to "0", a watchdog timer interrupt (INTWDT) is generated.

The watchdog timer temporarily stops counting in the STOP mode including the warm-up or IDLE/SLEEP mode, and automatically restarts (continues counting) when the STOP/IDLE/SLEEP mode is inactivated.

Note: The watchdog timer consists of an internal divider and a two-stage binary counter. When the clear code 4EH is written, only the binary counter is cleared, but not the internal divider. The minimum binary-counter overflow time, that depends on the timing at which the clear code (4EH) is written to the WDTCR2 register, may be 3/4 of the time set in WDTCR1<WDTT>. Therefore, write the clear code using a cycle shorter than 3/4 of the time set to WDTCR1<WDTT>.

Example :Setting the watchdog timer detection time to $2^{21}/\text{fc}$ [s], and resetting the CPU malfunction detection

Watchdog Timer Control Register 1

WDTCR1	7	6	5	4	3	2	1	0	
(0034H)			(ATAS)	(ATOUT)	WDTEN	WD	TT	WDTOUT	(Initial value: **11 1001)

WDTEN	Watchdog timer enable/disable		0: Disable (Writing the disable code to WDTCR2 is required.) 1: Enable						
			NORMA	L1/2 mode	SLOW1/2				
			DV7CK = 0	DV7CK = 1	mode				
	Watchdog timer detection time [s]	00	2 ²⁵ /fc	2 ¹⁷ /fs	2 ¹⁷ /fs	Write			
WDTT		01	2 ²³ /fc	2 ¹⁵ /fs	2 ¹⁵ fs	only			
		10	2 ²¹ fc	2 ¹³ /fs	2 ¹³ fs				
		11	2 ¹⁹ /fc	2 ¹¹ /fs	2 ¹¹ /fs				
WDTOUT	Watchdog timer output select		0: Interrupt request 1: Reset request						

- Note 1: After clearing WDTOUT to "0", the program cannot set it to "1".
- Note 2: fc: High-frequency clock [Hz], fs: Low-frequency clock [Hz], *: Don't care
- Note 3: WDTCR1 is a write-only register and must not be used with any of read-modify-write instructions. If WDTCR1 is read, a don't care is read.
- Note 4: To activate the STOP mode, disable the watchdog timer or clear the counter immediately before entering the STOP mode.

 After clearing the counter, clear the counter again immediately after the STOP mode is inactivated.
- Note 5: To clear WDTEN, set the register in accordance with the procedures shown in "7.2.3 Watchdog Timer Disable".

Watchdog Timer Control Register 2

WIDTORS

(0035H)					(Initial value: **** ****)	
, ,					(Illitial value.)	
ĺ		1	4511. Class the wetch doe time		vinter (Class ands)	
			4EH: Clear the watchdog time	•	,	
	WDTCR2	Write	B1H: Disable the watchdog tin	mer (Disab	le code)	Write
	WDTCKZ	Watchdog timer control code	D2H: Enable assigning addre	ss trap are	a	only
			Others: Invalid			

- Note 1: The disable code is valid only when WDTCR1<WDTEN> = 0.
- Note 2: *: Don't care
- Note 3: The binary counter of the watchdog timer must not be cleared by the interrupt task.
- Note 4: Write the clear code 4EH using a cycle shorter than 3/4 of the time set in WDTCR1<WDTT>.

7.2.2 Watchdog Timer Enable

Setting WDTCR1<WDTEN> to "1" enables the watchdog timer. Since WDTCR1<WDTEN> is initialized to "1" during reset, the watchdog timer is enabled automatically after the reset release.

7.2.3 Watchdog Timer Disable

To disable the watchdog timer, set the register in accordance with the following procedures. Setting the register in other procedures causes a malfunction of the microcontroller.

- 1. Set the interrupt master flag (IMF) to "0".
- 2. Set WDTCR2 to the clear code (4EH).
- 3. Set WDTCR1<WDTEN> to "0".
- 4. Set WDTCR2 to the disable code (B1H).

Note: While the watchdog timer is disabled, the binary counters of the watchdog timer are cleared.

Example :Disabling the watchdog timer

DI : IMF \leftarrow 0

LD (WDTCR2), 04EH : Clears the binary counter

LDW (WDTCR1), 0B101H : WDTEN ← 0, WDTCR2 ← Disable code

Table 7-1 Watchdog Timer Detection Time (Example: fc = 16.0 MHz, fs = 32.768 kHz)

	Watchdog Timer Detection Time[s]							
WDTT	NORMAL	SLOW						
	DV7CK = 0	DV7CK = 1	mode					
00	2.097	4	4					
01	524.288 m	1	1					
10	131.072 m	250 m	250 m					
11	32.768 m	62.5 m	62.5 m					

7.2.4 Watchdog Timer Interrupt (INTWDT)

When WDTCR1<WDTOUT> is cleared to "0", a watchdog timer interrupt request (INTWDT) is generated by the binary-counter overflow.

A watchdog timer interrupt is the non-maskable interrupt which can be accepted regardless of the interrupt master flag (IMF).

When a watchdog timer interrupt is generated while the other interrupt including a watchdog timer interrupt is already accepted, the new watchdog timer interrupt is processed immediately and the previous interrupt is held pending. Therefore, if watchdog timer interrupts are generated continuously without execution of the RETN instruction, too many levels of nesting may cause a malfunction of the microcontroller.

To generate a watchdog timer interrupt, set the stack pointer before setting WDTCR1<WDTOUT>.

Example :Setting watchdog timer interrupt

LD SP, 043FH : Sets the stack pointer

LD (WDTCR1), 00001000B : WDTOUT \leftarrow 0

7.2.5 Watchdog Timer Reset

When a binary-counter overflow occurs while WDTCR1<WDTOUT> is set to "1", a watchdog timer reset request is generated. When a watchdog timer reset request is generated, the internal hardware is reset. The reset time is maximum 24/fc [s] (1.5 μ s @ fc = 16.0 MHz).

Note: When a watchdog timer reset is generated in the SLOW1 mode, the reset time is maximum 24/fc (high-frequency clock) since the high-frequency clock oscillator is restarted. However, when crystals have inaccuracies upon start of the high-frequency clock oscillator, the reset time should be considered as an approximate value because it has slight errors.

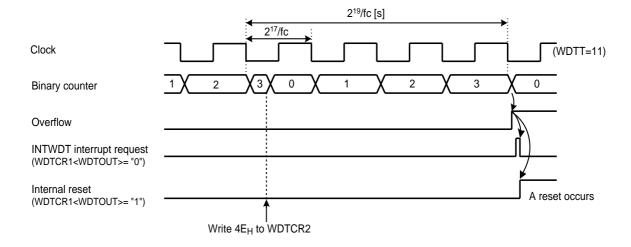
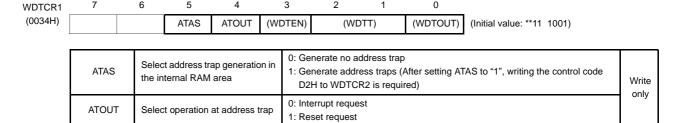



Figure 7-2 Watchdog Timer Interrupt

7.3 Address Trap

The Watchdog Timer Control Register 1 and 2 share the addresses with the control registers to generate address traps.

Watchdog Timer Control Register 1

Watchdog Timer Control Register 2

WDTCR2	7	6	5	4	3	2	1	0	_					
(0035H)									(Initial value: **** ****)					
•									<u> </u>					
		Write				D2H: Enable address trap area selection (ATRAP control code)								
	WDTCR2 Watchdog timer control code						4EH: Clear the watchdog timer binary counter (WDT clear code)							
	and address trap area control					B1H: Disable the watchdog timer (WDT disable code)								
		code			Other	s: Invalid								

7.3.1 Selection of Address Trap in Internal RAM (ATAS)

WDTCR1<ATAS> specifies whether or not to generate address traps in the internal RAM area. To execute an instruction in the internal RAM area, clear WDTCR1<ATAS> to "0". To enable the WDTCR1<ATAS> setting, set WDTCR1<ATAS> and then write D2H to WDTCR2.

Executing an instruction in the SFR or DBR area generates an address trap unconditionally regardless of the setting in WDTCR1<ATAS>.

7.3.2 Selection of Operation at Address Trap (ATOUT)

When an address trap is generated, either the interrupt request or the reset request can be selected by WDTCR1<ATOUT>.

7.3.3 Address Trap Interrupt (INTATRAP)

While WDTCR1<ATOUT> is "0", if the CPU should start looping for some cause such as noise and an attempt be made to fetch an instruction from the on-chip RAM (while WDTCR1<ATAS> is "1"), DBR or the SFR area, address trap interrupt (INTATRAP) will be generated.

An address trap interrupt is a non-maskable interrupt which can be accepted regardless of the interrupt master flag (IMF).

When an address trap interrupt is generated while the other interrupt including an address trap interrupt is already accepted, the new address trap is processed immediately and the previous interrupt is held pending. Therefore, if address trap interrupts are generated continuously without execution of the RETN instruction, too many levels of nesting may cause a malfunction of the microcontroller.

To generate address trap interrupts, set the stack pointer beforehand.

7.3.4 Address Trap Reset

While WDTCR1<ATOUT> is "1", if the CPU should start looping for some cause such as noise and an attempt be made to fetch an instruction from the on-chip RAM (while WDTCR1<ATAS> is "1"), DBR or the SFR area, address trap reset will be generated.

When an address trap reset request is generated, the internal hardware is reset. The reset time is maximum 24/fc [s] (1.5 μs @ fc = 16.0 MHz).

Note: When an address trap reset is generated in the SLOW1 mode, the reset time is maximum 24/fc (high-frequency clock) since the high-frequency clock oscillator is restarted. However, when crystals have inaccuracies upon start of the high-frequency clock oscillator, the reset time should be considered as an approximate value because it has slight errors.

TOSHIBA TMP86CM72FG

8. Time Base Timer (TBT)

The time base timer generates time base for key scanning, dynamic displaying, etc. It also provides a time base timer interrupt (INTTBT).

8.1 Time Base Timer

8.1.1 Configuration

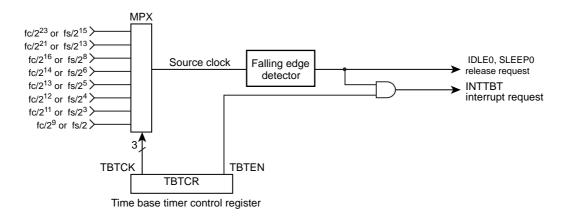


Figure 8-1 Time Base Timer configuration

8.1.2 Control

Time Base Timer is controlled by Time Base Timer control register (TBTCR).

Time Base Timer Control Register

TBTEN	Time Base Timer enable / disable	0: Disabl				
			NORMAL1/2,	IDLE1/2 Mode	SLOW1/2	
			DV7CK = 0	DV7CK = 1	SLEEP1/2 Mode	
		000	fc/2 ²³	fs/2 ¹⁵	fs/2 ¹⁵	
		001	fc/2 ²¹	fs/2 ¹³	fs/2 ¹³	
ТВТСК	Time Base Timer interrupt	010	fc/2 ¹⁶	fs/2 ⁸	-	R/W
IBION	Frequency select : [Hz]	011	fc/2 ¹⁴	fs/2 ⁶	-	
		100	fc/2 ¹³	fs/2 ⁵	-	
		101	fc/2 ¹²	fs/2 ⁴	-	
		110	fc/2 ¹¹	fs/2 ³	-	
		111	fc/2 ⁹	fs/2	-	

Note 1: fc; High-frequency clock [Hz], fs; Low-frequency clock [Hz], *; Don't care

Note 2: The interrupt frequency (TBTCK) must be selected with the time base timer disabled (TBTEN="0"). (The interrupt frequency must not be changed with the disable from the enable state.) Both frequency selection and enabling can be performed simultaneously.

Example :Set the time base timer frequency to fc/2¹⁶ [Hz] and enable an INTTBT interrupt.

LD (TBTCR), 00000010B ; TBTCK \leftarrow 010 LD (TBTCR), 00001010B ; TBTEN \leftarrow 1 DI ; IMF \leftarrow 0 SET (EIRL). 7

Table 8-1 Time Base Timer Interrupt Frequency (Example: fc = 16.0 MHz, fs = 32.768 kHz)

TDTOK	Time Base Timer Interrupt Frequency [Hz]								
TBTCK	NORMAL1/2, IDLE1/2 Mode	NORMAL1/2, IDLE1/2 Mode	SLOW1/2, SLEEP1/2 Mode						
	DV7CK = 0	DV7CK = 1							
000	1.91	1	1						
001	7.63	4	4						
010	244.14	128	-						
011	976.56	512	-						
100	1953.13	1024	-						
101	3906.25	2048	-						
110	7812.5	4096	-						
111	31250	16384	-						

8.1.3 Function

An INTTBT (Time Base Timer Interrupt) is generated on the first falling edge of source clock (The divider output of the timing generator which is selected by TBTCK.) after time base timer has been enabled.

The divider is not cleared by the program; therefore, only the first interrupt may be generated ahead of the set interrupt period (Figure 8-2).

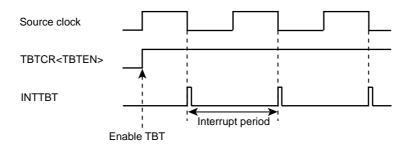


Figure 8-2 Time Base Timer Interrupt

TOSHIBA

TMP86CM72FG

8.2 Divider Output (DVO)

Approximately 50% duty pulse can be output using the divider output circuit, which is useful for piezoelectric buzzer drive. Divider output is from $\overline{\text{DVO}}$ pin.

8.2.1 Configuration

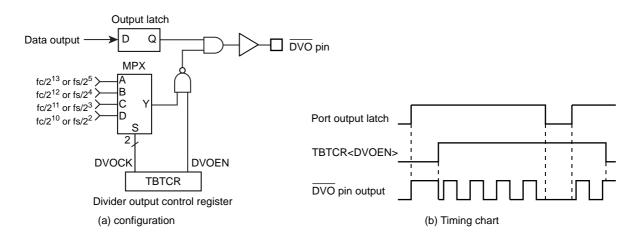


Figure 8-3 Divider Output

8.2.2 Control

The Divider Output is controlled by the Time Base Timer Control Register.

Time Base Timer Control Register

	7	6	5	4	3	2	1	0	
TBTCR (0036H)	DVOEN	DVC	OCK	(DV7CK)	(TBTEN)		(TBTCK)		(Initial value: 0000 0000)

DVOEN	Divider output enable / disable	0: Disab 1: Enab				R/W
			NORMAL1/2,	IDLE1/2 Mode	SLOW1/2	
			DV7CK = 0	DV7CK = 1	SLEEP1/2 Mode	
DVOCK	DVOCK Divider Output (DVO) frequency selection: [Hz]	00	fc/2 ¹³	fs/2 ⁵	fs/2 ⁵	R/W
BYOOK		frequency selection: [Hz]	01	fc/2 ¹²	fs/2 ⁴	fs/2 ⁴
		10	fc/2 ¹¹	fs/2 ³	fs/2 ³	
		11	fc/2 ¹⁰	fs/2 ²	fs/2 ²	

Note: Selection of divider output frequency (DVOCK) must be made while divider output is disabled (DVOEN="0"). Also, in other words, when changing the state of the divider output frequency from enabled (DVOEN="1") to disable(DVOEN="0"), do not change the setting of the divider output frequency.

Example :1.95 kHz pulse output (fc = 16.0 MHz)

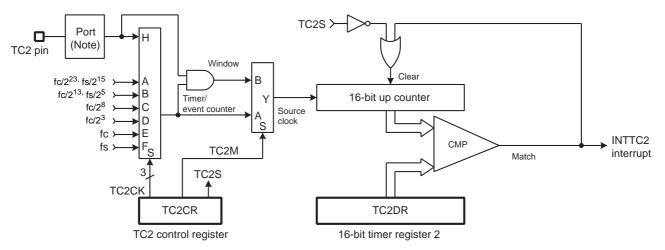
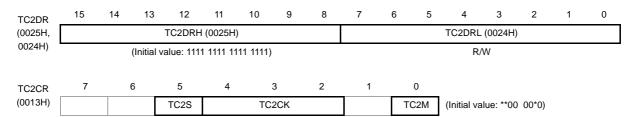

LD (TBTCR) , 00000000B ; DVOCK \leftarrow "00" LD (TBTCR) , 10000000B ; DVOEN \leftarrow "1"

Table 8-2 Divider Output Frequency (Example : fc = 16.0 MHz, fs = 32.768 kHz)

	Divider Output Frequency [Hz]							
DVOCK	NORMAL1/2,	SLOW1/2, SLEEP1/2						
	DV7CK = 0	DV7CK = 1	Mode					
00	1.953 k	1.024 k	1.024 k					
01	3.906 k	2.048 k	2.048 k					
10	7.813 k	4.096 k	4.096 k					
11	15.625 k	8.192 k	8.192 k					

9. 16-Bit Timer/Counter2 (TC2)

9.1 Configuration



Note: When control input/output is used, I/O port setting should be set correctly. For details, refer to the section "I/O ports".

Figure 9-1 Timer/Counter2 (TC2)

9.2 Control

The timer/counter 2 is controlled by a timer/counter 2 control register (TC2CR) and a 16-bit timer register 2 (TC2DR).

TC2S	TC2 start control	0:Stop a 1:Start	Stop and counter clear:					
			NORMAL1/2,	IDLE1/2 mode	Divider	SLOW1/2	SLEEP1/2	
			DV7CK = 0	DV7CK = 1	Divider	mode	mode	
		000	fc/2 ²³	fs/2 ¹⁵	DV21	fs/2 ¹⁵	fs/2 ¹⁵	
	TC2CK TC2 source clock select	001	fc/2 ¹³	fs/2 ⁵	DV11	fs/2 ⁵	fs/2 ⁵	
TC2CK		010	fc/2 ⁸	fc/2 ⁸	DV6	-	-	R/W
102011	Unit : [Hz]	011	fc/2 ³	fc/2 ³	DV1	-	-	
		100	_	-	-	fc (Note7)	-	
		101	fs	fs	_	-	-	
		110		Reserved				
		111		External clock (TC2 p	in input)			
TC2M	TC2 operating mode select		event counter mode w mode					R/W

- Note 1: fc: High-frequency clock [Hz], fs: Low-frequency clock [Hz], *: Don't care
- Note 2: When writing to the Timer Register 2 (TC2DR), always write to the lower side (TC2DRL) and then the upper side (TC2DRH) in that order. Writing to only the lower side (TC2DRL) or the upper side (TC2DRH) has no effect.
- Note 3: The timer register 2 (TC2DR) uses the value previously set in it for coincidence detection until data is written to the upper side (TC2DRH) after writing data to the lower side (TC2DRL).
- Note 4: Set the mode and source clock when the TC2 stops (TC2S = 0).
- Note 5: Values to be loaded to the timer register must satisfy the following condition. TC2DR > 1 ($TC2DR_{15}$ to $TC2DR_{11} > 1$ at warm up)
- Note 6: If a read instruction is executed for TC2CR, read data of bit 7, 6 and 1 are unstable.
- Note 7: The high-frequency clock (fc) canbe selected only when the time mode at SLOW2 mode is selected.
- Note 8: On entering STOP mode, the TC2 start control (TC2S) is cleared to "0" automatically. So, the timer stops. Once the STOP mode has been released, to start using the timer counter, set TC2S again.

9.3 Function

The timer/counter 2 has three operating modes: timer, event counter and window modes.

And if fc or fs is selected as the source clock in timer mode, when switching the timer mode from SLOW1 to NORMAL2, the timer/counter2 can generate warm-up time until the oscillator is stable.

9.3.1 Timer mode

In this mode, the internal clock is used for counting up. The contents of TC2DR are compared with the contents of up counter. If a match is found, a timer/counter 2 interrupt (INTTC2) is generated, and the counter is cleared. Counting up is resumed after the counter is cleared.

When fc is selected for source clock at SLOW2 mode, lower 11-bits of TC2DR are ignored and generated a interrupt by matching upper 5-bits only. Though, in this situation, it is necessary to set TC2DRH only.

Table 9-1 Source Clock (Internal clock) for Timer/Counter2 (at fc = 16 MHz, DV7CK=0)

TC2C		NORMAL1/2,	IDLE1/2 mode		SI OWA	/2 mada	SLEEP1/2 mode	
K	DV7C	DV7CK = 0 DV7CK = 1				SLOW1/2 mode		1/2 mode
	Resolution	Maximum Time Set- ting	Resolution	Maximum Time Set- ting	Resolu- tion	Maxi- mum Time Setting	Resolu- tion	Maxi- mum Time Setting
000	524.29 [ms]	9.54 [h]	1 [s]	18.2 [h]	1 [s]	18.2 [h]	1 [s]	18.2 [h]
001	512.0 [ms]	33.55 [s]	0.98 [ms]	1.07 [min]	0.98 [ms]	1.07 [min]	0.98 [ms]	1.07 [min]
010	16.0 [ms]	1.05 [s]	16.0 [ms]	1.05 [s]	_	-	_	-
011	0.5 [ms]	32.77 [ms]	0.5 [ms]	32.77 [ms]	_	-	-	-
100	_	_	-	_	62.5 [ns]	-	_	-
101	30.52 [ms]	2 [s]	30.52 [ms]	2 [s]	_	-	_	-

Note: When fc is selected as the source clock in timer mode, it is used at warm-up for switching from SLOW1 mode to NORMAL2 mode.

Example :Sets the timer mode with source clock $fc/2^3$ [Hz] and generates an interrupt every 25 ms (at fc = 16 MHz)

LDW (TC2DR), 061AH ; Sets TC2DR (25 ms 3 2 8 /fc = 061AH)

DI ; IMF= "0"

SET (EIRH). 6 ; Enables INTTC2 interrupt

EI ; IMF= "1"

LD (TC2CR), 00001000B ; Source clock / mode select

LD (TC2CR), 00101000B ; Starts Timer

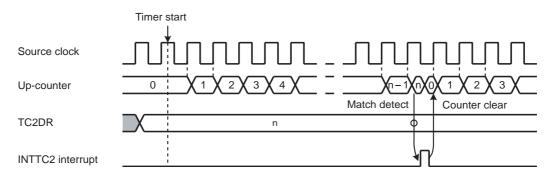


Figure 9-2 Timer Mode Timing Chart

9.3.2 Event counter mode

In this mode, events are counted on the rising edge of the TC2 pin input. The contents of TC2DR are compared with the contents of the up counter. If a match is found, an INTTC2 interrupt is generated, and the counter is cleared. Counting up is resumed every the rising edge of the TC2 pin input after the up counter is cleared.

Match detect is executed on the falling edge of the TC2 pin. Therefore, an INTTC2 interrupt is generated at the falling edge after the match of TC2DR and up counter.

The minimum input pulse width of TC2 pin is shown in Table 9-2. Two or more machine cycles are required for both the "H" and "L" levels of the pulse width.

Example :Sets the event counter mode and generates an INTTC2 interrupt 640 counts later.

LDW	(TC2DR), 640	; Sets TC2DR
DI		; IMF= "0"
SET	(EIRH). 6	;Enables INTTC2 interrupt
EI		; IMF= "1"
LD	(TC2CR), 00011100B	; TC2 source vclock / mode select
LD	(TC2CR), 00111100B	; Starts TC2

Table 9-2 Timer/Counter 2 External Input Clock Pulse Width

	Minimum Input	Pulse Width [s]
	NORMAL1/2, IDLE1/2 mode	SLOW1/2, SLEEP1/2 mode
"H" width	2 ³ /fc	2 ³ /fs
"L" width	2 ³ /fc	2 ³ /fs

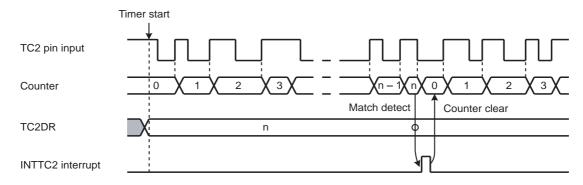


Figure 9-3 Event Counter Mode Timing Chart

9.3.3 Window mode

In this mode, counting up performed on the rising edge of an internal clock during TC2 external pin input (Window pulse) is "H" level. The contents of TC2DR are compared with the contents of up counter. If a match found, an INTTC2 interrupt is generated, and the up-counter is cleared.

The maximum applied frequency (TC2 input) must be considerably slower than the selected internal clock by the TC2CR<TC2CK>.

Note: It is not available window mode in the SLOW/SLEEP mode. Therefore, at the window mode in NORMAL mode, the timer should be halted by setting TC2CR<TC2S> to "0" before the SLOW/SLEEP mode is entered.

Example :Generates an interrupt, inputting "H" level pulse width of 120 ms or more. (at fc = 16 MHz, TBTCR<DV7CK> = "0")

LDW (TC2DR), 00EAH ; Sets TC2DR (120 ms ³ ²¹³/fc = 00EAH) DI ; IMF= "0" (EIRH). 6 SET ; Enables INTTC2 interrupt ; IMF= "1" ΕI (TC2CR), 00000101B LD ; TC2sorce clock / mode select (TC2CR), 00100101B LD ; Starts TC2

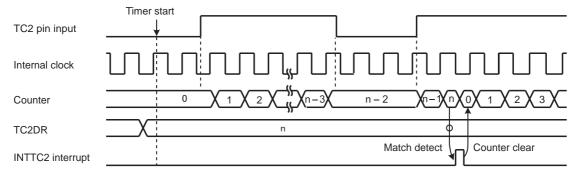
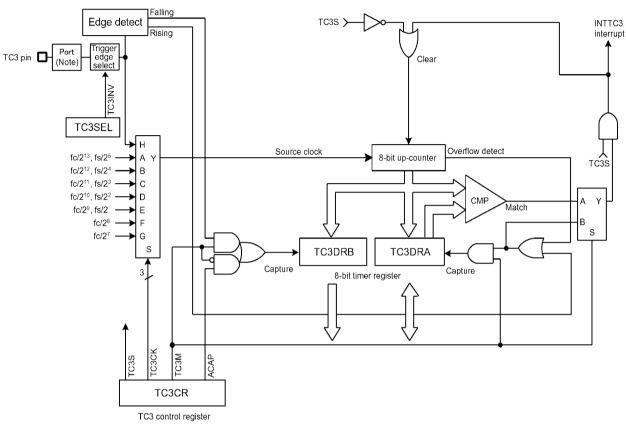



Figure 9-4 Window Mode Timing Chart

TOSHIBA

10.8-Bit TimerCounter 3 (TC3)

10.1 Configuration

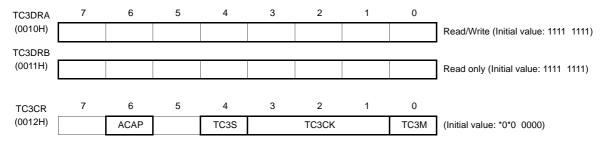
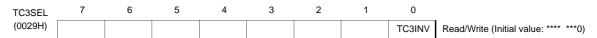

Note: Function input may not operate depending on I/O port setting. For more details, see the chapter "I/O Port".

Figure 10-1 TimerCounter 3 (TC3)

10.2 TimerCounter Control

The TimerCounter 3 is controlled by the TimerCounter 3 control register (TC3CR) and two 8-bit timer registers (TC3DRA and TC3DRB).


Timer Register and Control Register

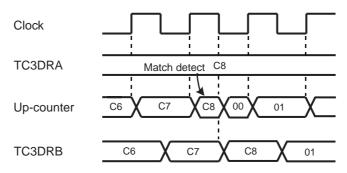
ACAP	Auto capture control	0: – 1: Auto): – : Auto capture					
TC3S	TC3 start control	0: Stop 1: Star	Stop and counter clear Start					
			NORMAL1/2,	IDLE1/2 mode		SLOW1/2,		
			DV7CK = 0	DV7CK = 1	Divider	SLEEP1/2 mode		
		000	fc/2 ¹³	fs/2 ⁵	DV11	fs/2 ⁵		
			001	fc/2 ¹²	fs/2 ⁴	DV10	fs/2 ⁴	
тсзск	TC3 source clock select	010	fc/2 ¹¹	fs/2 ³	DV9	fs/2 ³	R/W	
	[Hz]	011	fc/2 ¹⁰	fs/2 ²	DV8	fs/2 ²		
		100	fc/2 ⁹	fs/2	DV7	fs/2		
		101	fc/2 ⁸	fc/2 ⁸	DV6	-		
		110	fc/2 ⁷	fc/2 ⁷	DV5	-		
		111	111 External clock (TC3 pin input)					
ТСЗМ	TC3 operating mode select		er/event counter mode sture mode				R/W	

- Note 1: fc: High-frequency clock [Hz], fs: Low-frequency clock [Hz], *: Don't care
- Note 2: Set the operating mode and source clock when TimerCounter stops (TC3S = 0).
- Note 3: To set the timer registers, the following relationship must be satisfied. TC3DRA > 1 (Timer/event counter mode)
- Note 4: Auto-capture (ACAP) can be used only in the timer and event counter modes.
- Note 5: When the read instruction is executed to TC3CR, the bit 5 and 7 are read as a don't care.
- Note 6: Do not program TC3DRA when the timer is running (TC3S = 1).
- Note 7: When the STOP mode is entered, the start control (TC3S) is cleared to 0 automatically, and the timer stops. After the STOP mode is exited, TC3S must be set again to use the timer counter.

TimerCounter 3 Input Control Register

			Event counter mode	Capture mode	
TC3INV	TC3 input control	0: 1:	Count at the rising edge Count at the falling edge	An interrupt is generated at the rising edge. An interrupt is generated at the falling edge.	R/W

Note: When the read instruction is executed to TC3SEL, the bit 7 to 1 are read as a don't care.


10.3 Function

TimerCounter 3 has three types of operating modes: timer, event counter and capture modes.

10.3.1 Timer mode

In the timer mode, the up-counter counts up using the internal clock. When a match between the up-counter and the timer register 3A (TC3DRA) value is detected, an INTTC3 interrupt is generated and the up-counter is cleared. After being cleared, the up-counter restarts counting. Setting TC3CR<ACAP> to 1 captures the up-counter value into the timer register B (TC3DRB) with the auto-capture function. The count value during timer operation can be checked by executing the read instruction to TC3DRB.

Note: 00H which is stored in the up-counter immediately after detection of a match is not captured into TC3DRB. (Figure 10-2)

Note: In the case that TC3DRB is C8H

Figure 10-2 Auto-Capture Function

Table 10-1 Source Clock for TimerCounter 3 (Example: fc = 16 MHz, fs = 32.768 kHz)

TC3CK		NORMAL1/2,	IDLE1/2 mode		SLOW	SLOW1/2, SLEEP1/2		
	DV70	CK = 0	DV70	CK = 1	mode			
	Resolution Maximum Time Seti [μs] [ms]		3		Reso- lution [μs]	Maximum Time Setting [ms]		
000	512	130.6	976.56	249.0	976.56	249.0		
001	256	65.3	488.28	124.5	488.28	124.5		
010	128	32.6	244.14	62.3	244.14	62.3		
011	64	16.3	122.07	31.1	122.07	31.1		
100	32	8.2	61.01	15.6	61.01	15.6		
101	16	4.1	16.0	4.1	-	-		
110	8	2.0	8.0	2.0	-	-		

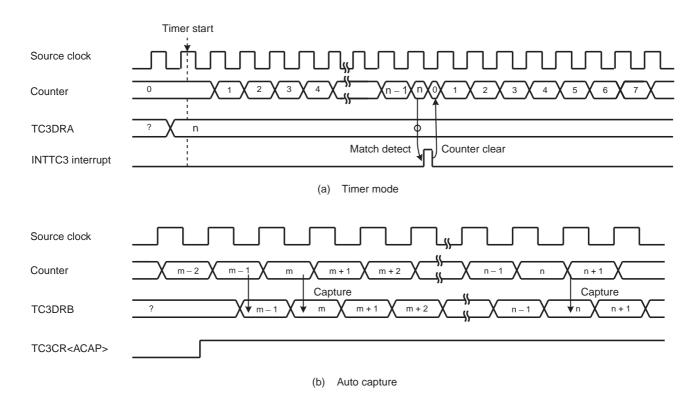


Figure 10-3 Timer Mode Timing Chart

10.3.2 Event Counter Mode

In the event counter mode, the up-counter counts up at the edge of the input pulse to the TC3 pin. Either the rising or falling edge of the input pulse is programmed as the count up edge in TC3SEL<TC3INV>.

When a match between the up-counter and TC3DRA value is detected, an INTTC3 interrupt is generated and up-counter is cleared. After being cleared, the up-counter restarts counting at each edge of the input pulse to the TC3 pin. Since a match between the up-counter and TC3DRA value is detected at the edge opposite to the selected edge, an INTTC3 interrupt request is generated at the edge opposite to the selected edge immediately after the up-counter reaches the value set in TC3DRA.

The maximum applied frequencies are shown in Table 10-2. The pulse width larger than one machine cycle is required for high-going and low-going pulses.

Setting TC3CR<ACAP> to 1 captures the up-counter value into TC3DRB with the auto-capture function. The count value during a timer operation can be checked by the read instruction to TC3DRB.

Note: 00H which is stored in the up-counter immediately after detection of a match is not captured into TC3DRB. (Figure 10-2)

Example: Inputting 50 Hz pulse to TC3, and generating interrupts every 0.5 s

LD (TC3SEL), 00000000B : Selects the count-up edge.

LD (TC3CR), 00001110B : Sets the clock mode

LD (TC3DRA), 19H : 0.5 s ÷ 1/50 = 25 = 19H

LD (TC3CR), 00011110B : Starts TC3.

Table 10-2 Maximum Frequencies Applied to TC3

	Minimum F	Pulse Width		
	NORMAL1/2, IDLE1/2 mode SLOW1/2, SLEEP1/2 m			
High-going	2 ² /fc	2 ² /fs		
Low-going	2 ² /fc	2 ² /fs		

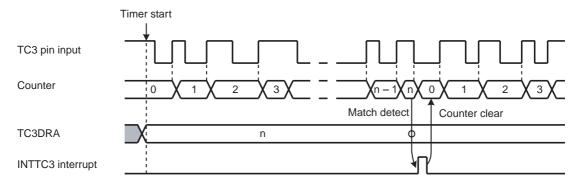


Figure 10-4 Event Counter Mode Timing Chart (TC3SEL<TC3INV> = 0)

10.3.3 Capture Mode

In the capture mode, the pulse width, frequency and duty cycle of the pulse input to the TC3 pin are measured with the internal clock. The capture mode is used to decode remote control signals, and identify AC50/60 Hz

Either the rising or falling edge is programmed in TC3SEL<TC3IVN> as the INTTC3 interrupt generation edge. Typically, program TC3SEL<TC3INV> = 0 when the first capture is performed at the falling edge, and TC3SEL<TC3INV> = 1 when performed at the rising edge.

- When TC3SEL<TC3INV> = 0

When the falling edge of the TC3 input is detected after the timer starts, the up-counter value is captured into TC3DRB. Hereafter, whenever the rising edge is detected, the up-counter value is captured into TC3DRA and the INTTC3 interrupt request is generated. The up-counter is cleared at this time. Generally, read TC3DRB and TC3DRA during INTTC3 interrupt processing. After the up-counter is cleared, counting is continued and the next up-counter value is captured into TC3DRB.

When the rising edge is detected immediately after the timer starts, the up-counter value is captured into TCDRA only, but not into TC3DRB. The INTTC3 interrupt request is generated. When the read instruction is executed to TC3DRB at this time, the value at the completion of the last capture (FF immediately after a reset) is read.

- When TC3SEL<TC3INV> = 1

When the rising edge of the TC3 input is detected after the timer starts, the up-counter value is captured into TC3DRB. Hereafter, whenever the falling edge is detected, the up-counter value is captured into TC3DRA and the INTTC3 interrupt request is generated. The up-counter is cleared at this time. Generally, read TC3DRB and TC3DRA during INTTC3 interrupt processing. After the up-counter is cleared, counting is continued and the next up-counter value is captured into TC3DRB.

When the falling edge is detected immediately after the timer starts, the up-counter value is captured into TC3DRA only, but not into TC3DRB. The INTTC3 interrupt request is generated. When the read instruction is executed to TC3DRB at this time, the value at the completion of the last capture (FF immediately after a reset) is read.

Table 10-3 Tr	riaaer Edae	Programmed in	TC3SEL<	TC3INV>
---------------	-------------	---------------	---------	---------

TC3SEL <tc3inv></tc3inv>	Capture into TC3DRB	Capture into TC3DRA	INTTC3 Interrupt Request	
0	Falling edge	Rising edge		
1	Rising edge	Fallin	g edge	

The minimum input pulse width must be larger than one cycle width of the source clock programmed in TC3CR<TC3CK>.

The INTTC3 interrupt request is generated if the up-counter overflow (FFH) occurs during capture operation before the edge is detected. TC3DRA is set to FFH and the up-counter is cleared. Counting is continued by the up-counter, but capture operation and overflow detection are stopped until TC3DRA is read. Generally, read TC3DRB first because capture operation and overflow detection resume by reading TC3DRA.

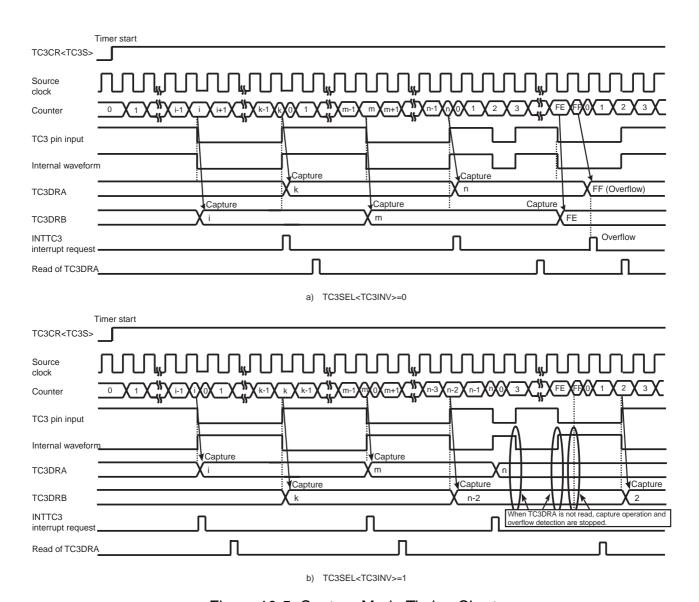
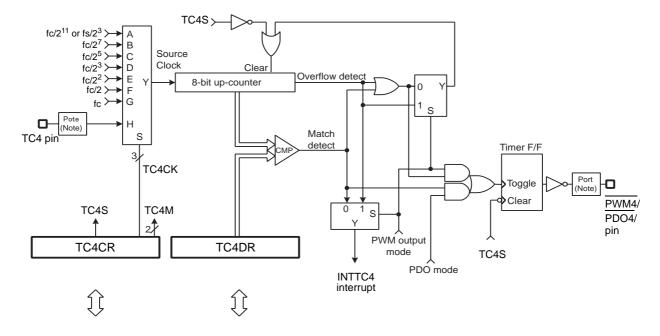



Figure 10-5 Capture Mode Timing Chart

11.8-Bit TimerCounter 4 (TC4)

11.1 Configuration

Note: Function I/O may not operate depending on I/O port setting. For more details, see the chapter "I/O Port".

Figure 11-1 TimerCounter 4 (TC4)

11.2 TimerCounter Control

The TimerCounter 4 is controlled by the TimerCounter 4 control register (TC4CR) and timer registers 4 (TC4DR).

Timer Register and Control Register

TC4DR	7	6	5	4	3	2	1	0	
(0018)									Read/Write (Initial value: 1111 1111)
									•
TC4CR	7	6	5	4	3	2	1	0	
(0014)			TC4S		TC4CK		TC	C4M	Read/Write (Initial value: **00 0000)

TC4S	TC4 start control	0: Stop and counter clear 1: Start					R/W
			NORMAL1/2, IDLE1/2 mode			SLOW1/2,	
			DV7CK = 0	DV7CK = 1	Divider	SLEEP1/2 mode	R/W
		000	fc/2 ¹¹	fs/2 ³	DV9	fs/2 ³	
	TC4 source clock select [Hz]	001	fc/2 ⁷	fc/2 ⁷	DV5	-	
TC4CK		010	fc/2 ⁵	fc/2 ⁵	DV3	-	
		011	fc/2 ³	fc/2 ³	DV1	-	
		100	fc/2 ²	fc/2 ²	-	-	
		101	fc/2	fc/2	-	-	
		110	fc	fc	-	-	
		111	111 External clock (TC4 pin input)				
TC4M	TC4 operating mode select	00: Timer/event counter mode 01: Reserved 10: Programmable divider output (PDO) mode 11: Pulse width modulation (PWM) output mode					R/W

- Note 1: fc: High-frequency clock [Hz], fs: Low-frequency clock [Hz], *: Don't care
- Note 2: To set the timer registers, the following relationship must be satisfied.

 $1 \le TC4DR \le 255$

- Note 3: To start timer operation (TC4S = $0 \rightarrow 1$) or disable timer operation (TC4S = $1 \rightarrow 0$), do not change the TC4CR<TC4M, TC4CK> setting. During timer operation (TC4S = $1 \rightarrow 1$), do not change it, either. If the setting is programmed during timer operation, counting is not performed correctly.
- Note 4: The event counter and PWM output modes are used only in the NOMAL1/2 and IDLE1/2 modes.
- Note 5: When the STOP mode is entered, the start control (TC4S) is cleared to "0" automatically.
- Note 6: The bit 6 and 7 of TC4CR are read as a don't care when these bits are read.
- Note 7: In the timer, event counter and PDO modes, do not change the TC4DR setting when the timer is running.
- Note 8: When the high-frequency clock fc exceeds 10 MHz, do not select the source clock of TC4CK = 110.
- Note 9: The operating clock fs can not be used in NORMAL1 or IDEL1 mode (when low-frequency oscillation is stopped.)
- Note 10:For available source clocks depending on the operation mode, refer to the following table.

		Timer Mode	Event Counter Mode	PDO Mode	PWM Mode
	000	0	-	0	-
	001	0	_	0	-
	010	О	-	0	-
TC4CK	011	О	-	-	0
	100	_	-	-	0
	101	_	-	-	0
	110	-	-	-	0
	111	_	0	_	×

Note: O: Available source clock

11.3 Function

TimerCounter 4 has four types of operating modes: timer, event counter, programmable divider output (PDO), and pulse width modulation (PWM) output modes.

11.3.1 Timer Mode

In the timer mode, the up-counter counts up using the internal clock. When a match between the up-counter and the TC4DR value is detected, an INTTC4 interrupt is generated and the up-counter is cleared. After being cleared, the up-counter restarts counting.

Table 11-1 Source Clock for TimerCounter 4 (Example: fc = 16 MHz, fs = 32.768 kHz)

TC4CK		NORMAL1/2, IDLE1/2 Mode						
104CK	TC4CK DV7CK = 0		DV70	Mode				
	Resolution [μs]			Maximum Time Setting [ms]	Resolution [μs]	Maxi- mum Time Setting [ms]		
000	128.0	32.6	244.14	62.2	244.14	62.2		
001	8.0	2.0	8.0	2.0	-	-		
010	2.0	0.510	2.0	0.510	-	-		
011	0.5	0.128	0.5	0.128	-	_		

11.3.2 Event Counter Mode

In the event counter mode, the up-counter counts up at the rising edge of the input pulse to the TC4 pin.

When a match between the up-counter and the TC4DR value is detected, an INTTC4 interrupt is generated and the up-counter is cleared. After being cleared, the up-counter restarts counting at rising edge of the TC4 pin. Since a match is detected at the falling edge of the input pulse to the TC4 pin, the INTTC4 interrupt request is generated at the falling edge immediately after the up-counter reaches the value set in TC4DR.

The minimum pulse width applied to the TC4 pin are shown in Table 11-2. The pulse width larger than two machine cycles is required for high- and low-going pulses.

Note: The event counter mode can not used in the SLOW1/2 and SLEEP1/2 modes since the external clock is not supplied in these modes.

Table 11-2 External Source Clock for TimerCounter 4

	Minimum Pulse Width
	NORMAL1/2, IDLE1/2 mode
High-going	2 ³ /fc
Low-going	2 ³ /fc

11.3.3 Programmable Divider Output (PDO) Mode

The programmable divider output (PDO) mode is used to generated a pulse with a 50% duty cycle by counting with the internal clock.

When a match between the up-counter and the TC4DR value is detected, the logic level output from the PDO4 pin is switched to the opposite state and INTTC4 interrupt request is generated. The up-counter is cleared at this time and then counting is continued. When a match between the up-counter and the TC4DR value is detected, the logic level output from the PDO4 pin is switched to the opposite state again and INTTC4 interrupt request is generated. The up-counter is cleared at this time, and then counting and PDO are continued.

When the timer is stopped, the PDO4 pin is high. Therefore, if the timer is stopped when the PDO4 pin is low, the duty pulse may be shorter than the programmed value.

Example : Generating 1024 Hz pulse (fc = 16.0 Mhz)

LD (TC4CR), 00000110B : Sets the PDO mode. (TC4M = 10, TC4CK = 001) LD (TC4DR), 3DH : $1/1024 \div 2^7/\text{fc} \div 2$ (half cycle period) = 3DH

LD (TC4CR), 00100110B : Start TC4

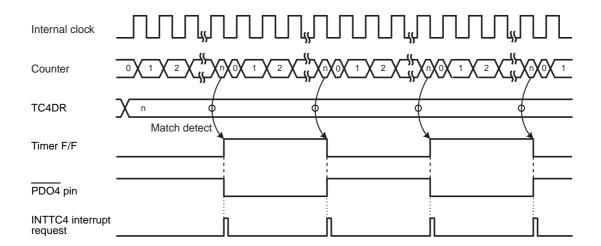


Figure 11-2 PDO Mode Timing Chart

11.3.4 Pulse Width Modulation (PWM) Output Mode

The pulse width modulation (PWM) output mode is used to generate the PWM pulse with up to 8 bits of resolution by an internal clock.

When a match between the up-counter and the TC4DR value is detected, the logic level output from the $\overline{PWM}4$ pin becomes low. The up-counter continues counting. When the up-counter overflow occurs, the $\overline{PWM}4$ pin becomes high. The INTTC4 interrupt request is generated at this time.

When the timer is stopped, the PWM4 pin is high. Therefore, if the timer is stopped when the PWM4 pin is low, one PMW cycle may be shorter than the programmed value.

TC4DR is serially connected to the shift register. If TC4DR is programmed during PWM output, the data set to TC4DR is not shifted until one PWM cycle is completed. Therefore, a pulse can be modulated periodically. For the first time, the data written to TC4DR is shifted when the timer is started by setting TC4CR<TC4S> to 1.

Note 1: The PWM output mode can be used only in the NORMAL1/2 and IDEL 1/2 modes.

Note 2: In the PWM output mode, program TC4DR immediately after the INTTC4 interrupt request is generated (typically in the INTTC4 interrupt service routine.) When the programming of TC4DR and the INTTC4 interrupt occur at the same time, an unstable value is shifted, that may result in generation of pulse different from the programmed value until the next INTTC4 interrupt request is issued.

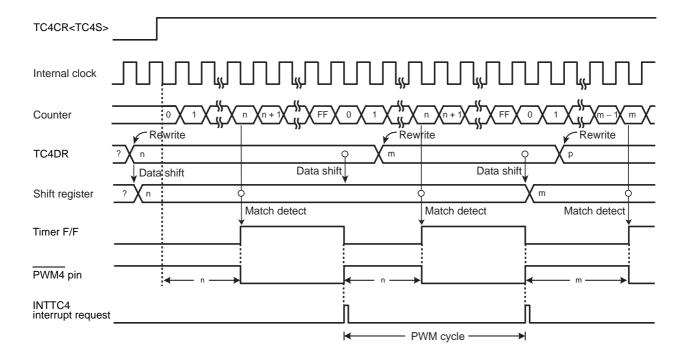


Figure 11-3 PWM output Mode Timing Chart (TC4)

Table 11-3 PWM Mode (Example: fc = 16 MHz)

TC4CK	NORMAL1/2, IDLE1/2 Mode						
1040K	DV70	CK = 0	DV7CK = 1				
	Resolution [ns]	Cycle [μs]	Resolution [ns]	Cycle [μs]			
000	_	_	_	-			
001	-	-	-	-			
010	-	-	-	-			
011	500	128	500	128			
100	250	64	250	64			
101	125	32	125	32			
110	-	-	-	-			

11. 8-Bit TimerCounter 4 (TC4) 11.1 Configuration

Configuration TMP86CM72FG

12. Synchronous Serial Interface (SIO)

The TMP86CM72FG contain one SIO (synchronous serial interface) channel. It is connected to external devices via the SI, SO and \overline{SCK} pins. The SI pin is used also as the P14 pin, the SO pin is used also as the P15 pin, and the \overline{SCK} pin is used also as the P16 pin. The \overline{CS} pin is used also as the P17 pin, \overline{CS} pin can be used as a chip selection function (at external clock input mode). Using these pins for serial interfacing requires setting the output latches of the each port to "1".

SIO Functions.

- Transfer mode (8 bit)
- Receive mode (8 bit)
- Transfer/Receive mode (8 bit)
- Internal /External clock selection
- 32 bytes Buffer conbining Transfer and Receive

Table 12-1 lists the SIO1 register addresses.

Table 12-1 Control Registers

12.1 Configuration

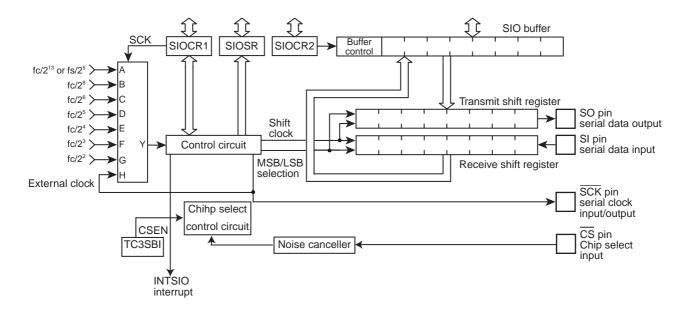


Figure 12-1 Configuration of the Serial Interface

12.2 Control

SIO is controlled using Serial Interface Control Register 1 (SIOCR1) and Serial Interface Control Register 2 (SIOCR2). The operating status of the serial interface can be determined by reading the Serial Interface Status Register (SIOSR).

Serial Interface Control Register 1

SIOCR1	7	6	5	4	3	2	1	0	_
(0019H)	SIOS	SIONH	SION	Л	SIODIR		SCK		(Initial value: 0000 0000)

SIOS	Start/Stop a transfer.		0: Stop 1: Start						
SIOINH	Continue/Abort a trans- fer (Note 1)		O: Continue transfer. 1: Abort transfer (automatically cleared after abort).						
SIOM	Select transfer mode.	01: R 10: T	00: Transmit mode 01: Receive mode 10: Transmit/receive mode 11: Reserved						
SIODIR	Select direction of trans- fer		0: MSB (transfer beginning with bit 7) 1: LSB (transfer beginning with bit 0)						
		NORMAL1/2, IDLE1/2 mode		Source	SLOW1/2,				
	Select a serial clock. (Note 2)		DV7CK = 0	DV7CK = 1	clock	SLEEP1/2 mode	R/W		
		000	fc/2 ¹³	fs/2 ⁵	DV11	fs/2 ⁵			
		001	fc/2 ⁸	fc/2 ⁸	DV6	-			
		010	fc/2 ⁶	fc/2 ⁶	DV4	-			
SCK		011	fc/2 ⁵	fc/2 ⁵	DV3	-			
		100	fc/2 ⁴	fc/2 ⁴	DV2	-			
		101	fc/2 ³	fc/2 ³	DV1	-			
		110	fc/2 ²	fc/2 ²	fc/2 ²	-			
		111	External clock (supplied from the SCK pin)	External clock (supplied from the SCK pin)	1	ı			

Note 1: If SIOCR1<SIOINH> is set, SIOCR1<SIOS>, SIOSR<SIOF>, SIOSR<SEF>, SIOSR<TXF>, SIOSR<TXF>, SIOSR<TXFP>, and SIOSR<RXERP> are initialized.

Note 2: When selecting a serial clock, do not make such a setting that the serial clock rate will exceed 1 Mbps.

Note 3: Before setting SIOCR1<SIOS> to "1" or setting SIOCR1<SIOM>, SIOCR1<SIODIR>, or SIOCR1<SCK> to any value, make sure the SIO is idle (SIOSR<SIOF> = "0").

Note 4: Reserved: Setting prohibited

Serial Interface Control Register 2

SIOCR2 7 6 5 4 3 2 1 0 (001AH) "0" "0" "0" SIORXD (Initial value: ***0 0000)

SIORXD	Set the number of data bytes to transmit/receive.	00H: 1-byte transfer 01H: 2-byte transfer 02H: 3-byte transfer 03H: 4-byte transfer : 1FH: 32-byte transfer	R/W
--------	---	---	-----

- Note 1: Before setting the number of data bytes to transfer, make sure the SIO is idle (SIOSR<SIOF> = "0").
- Note 2: The number of data bytes to transfer is used for transmit and receive operations in common.
- Note 3: Always write "0" to bits 7 to 5.

Serial Interface Status Register

7 6 5 4 3 2 0 SIOSR (001BH) SIOF SEF TXF RXF **TXERR RXERR** (Initial value: 0010 00**)

SIOF	Monitor the operating status of serial transfer.	0: Transfer ended (Note1) 1: Transfer in process	
SEF	Shift operation status flag	0: Shift ended 1: Shift in process	
TXF	Transmit buffer flag	The transmit buffer contains data. The transmit buffer contains no data.	
RXF	Receive buffer flag	O: The receive buffer contains no data. 1: As many data bytes specified in SIORXD have been received. (The flag is reset to "0" when as many data bytes as specified in SIORXD have been read.)	Read only
TXERR	Transmit error flag (Note2)	Transmit operation was normal. Error occurred during transmission.	
RXERR	Receive error flag (Note2)	Receive operation was normal. Error occurred during reception.	

- Note 1: The SIOSR<SIOF> bit is cleared to "0" by clearing SIOCR1<SIOS> to stop transferring or by setting SIOCR1<SIOINH> to "1" to abort transfer.
- Note 2: Neither the SIOSR<TXERR> nor SIOSR<RXERR> bit can be cleared when transfer ends on SIOCR1<SIOS> = "0". To clear them, set SIOCR1<SIOINH> to "1"
- Note 3: Do not write to the SIOSR register.

Serial Interface Data Buffer

 SIOBUF (001CH)
 7
 6
 5
 4
 3
 2
 1
 0

 (Initial value: **** ****)

SIOBUF Transmit/receive data buffer Transmit data are set, or received data are stored.

R/W

Note 1: Setting SIOCR1<SIOINH> causes the contents of SIOBUF to be lost.

Note 2: When setting transmit data or storing received data, be sure to handle as many bytes as specified in SIOCR2<SIORXD> at a time.

12.3 Function

12.3.1 Serial clock

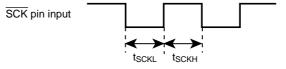
12.3.1.1 Clock source

One of the following clocks can be selected using SIOCR1<SCK>.

(1) Internal clock

A clock having the frequency selected with SIOCR1<SCK> (except for "111") is used as the serial clock. The $\overline{\text{SCK}}$ pin output goes high when transfer starts or ends.

Table 12-2 Serial Clock Rate


SCK	Clock	Baud Rate			
SCK	Clock	fc = 16 MHz	fc = 8 MHz		
000	fc/2 ¹³	1.91 Kbps	0.95 Kbps		
001	fc/2 ⁸	61.04 Kbps	30.51 Kbps		
010	fc/2 ⁶	244.14 Kbps	122.07 Kbps		
011	fc/2 ⁵	488.28 Kbps	244.14 Kbps		
100	fc/2 ⁴	976.56 Kbps	488.28 Kbps		
101	fc/2 ³	-	976.56 Kbps		
110	fc/2 ²	-	-		
111	External	External	External		

(1 Kbit = 1,024 bit)

(2) External clock

Setting SIOCR1<SCK> to "111" causes an external clock to be selected. A clock supplied to the \overline{SCK} pin is used as the serial clock.

For a shift operation to be performed securely, both the high and low levels of the serial clock pulse must be at least 4/fc. If fc = 8 MHz, therefore, the maximum available transfer rate is 976.56 Kbps.

 $t_{SCKL},\,t_{SCKH}\geq 2.5/\text{fc}\;(\text{High-frequency clock mode}\\t_{SCKL},\,t_{SCKH}\geq 2.5/\text{fs}\;(\text{Low-frequency clock mode})$

Figure 12-2 External Clock

12.3.1.2 Shift edges

The SIO uses leading-edge shift for transmission and trailing-edge shift for reception.

(1) Leading-edge shift

Data are shifted on each leading edge of the serial clock pulse (falling edge of the SCK pin input/output).

(2) Trailing-edge shift

Data are shifted on each trailing edge of the serial clock pulse (rising edge of the \overline{SCK} pin input/output).

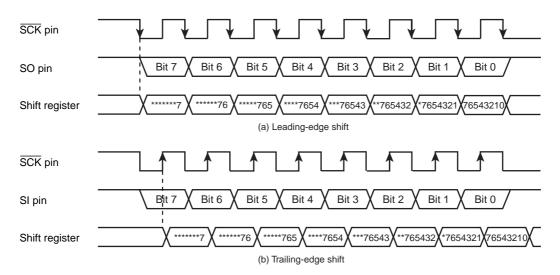
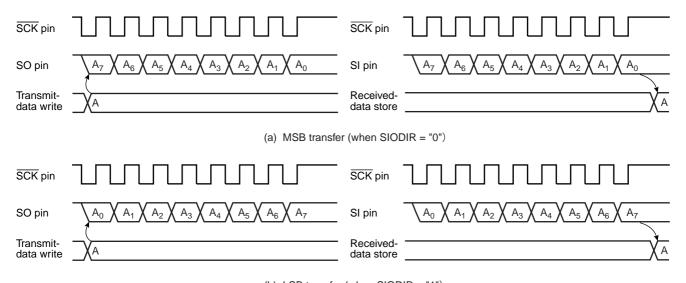


Figure 12-3 Shift Edges

12.3.2 Transfer bit direction


The direction in which 8-bit serial data are transferred can be selected using SIOCR1<SIODIR>. The direction of data transfer applies in common to both transmission and reception, and cannot be set individually.

12.3.2.1 MSB transfer

MSB transfer is assumed by clearing SIOCR1<SIODIR> to "0". In MSB transfer, data are transferred sequentially beginning with the most significant bit (MSB). As for received data, the first data bit to receive is stored as the MSB.

12.3.2.2 LSB transfer

LSB transfer is assumed by setting SIOCR1<SIODIR> to "1". In LSB transfer, data are transferred sequentially beginning with the least significant bit (LSB). As for received data, the first data bit to receive is stored as the LSB.

(b) LSB transfer (when SIODIR = "1")

Figure 12-4 Transfer Bit Direction

12.3.3 Transfer modes

SIOCR1<SIOM> is used to select a transfer mode (transmit, receive, or transmit/receive mode).

12.3.3.1 Transmit mode

Transmit mode is assumed by setting SIOCR1<SIOM> to "00".

(1) Causing the SIO to start transmitting

- 1. Set the transmit mode, serial clock rate, and transfer direction, respectively, in SIOCR1<SIOM>, SIOCR1<SCK>, and SIOCR1<SIODIR>.
- 2. Set the number of data bytes to transfer in SIOCR2<SIORXD>.
- 3. Set, in SIOBUF, as many transmit data bytes as specified in SIOCR2<SIORXD>.

4. SIOCR1<SIOS> to "1".

If the selected serial clock is an internal clock, the SIO immediately starts transmitting data sequentially in the direction selected using SIOCR1<SIODIR>.

If the selected serial clock is an external clock, the SIO immediately starts transmitting data, upon external clock input, sequentially in the direction selected using SIOCR1<SIODIR>.

(2) Causing the SIO to stop transferring

1. When as many data bytes as specified in SIOCR2<SIORXD> have been transmitted, be sure to clear SIOCR1<SIOS> to "0" to halt the SIO. Clearing of SIOCR1<SIOS> should be executed within the INTSIO service routine or should be executed after confirmation of SIOSR<TXF> = "1". Before starting to transfer the next data, make sure SIOSR<SIOF> = "0" and SIOSR<TXERR>= "0", write the data to be transferred, and then set SIOCR1<SIOS> = "1".

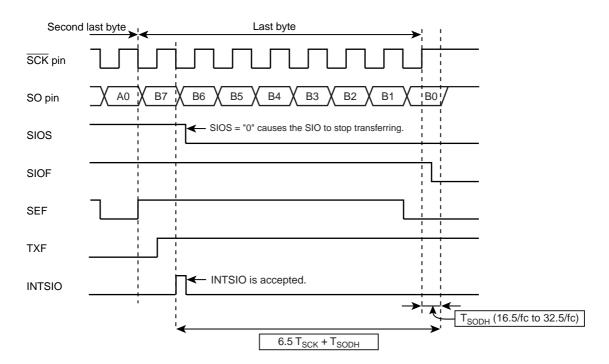


Figure 12-5 Time from INTSIO Occurrence to Transfer End (SIOSR<SIOF> = "0") when the SIO is Directed to Stop Transferring (SIOCR1<SIOS> = "0") upon the Occurrence of a Transmit Interrupt

- Note 1: Be sure to write as many bytes as specified in SIOCR2<SIORXD> to SIOBUF. If the number of data bytes to be written to SIOBUF is not equal to the value specified in SIOCR2<SIORXD>, the SIO fails to work normally.
- Note 2: Before starting the SIO, be sure to write as many data bytes as specified in SIOCR2<SIORXD> to SIOBUF.
- Note 3: In the transmit mode, an INTSIO interrupt occurs when the transmission of the second bit of the last byte begins.
- Note 4: If an attempt is made to write SIOCR1<SIOS> = "0" within the INTSIO interrupt service routine, the SIO stops transferring (SIOSR<SIOF> = "0") after the last data byte is transmitted (the signal at the SCK pin rises).
- Note 5: Be sure to write to SIOBUF in the condition SIO stop status (SIOSR<SIOF>="0"). If write to SIOBUF during SIO working status (SIOSR<SIOF>="1"), the SIO fails to work normally.

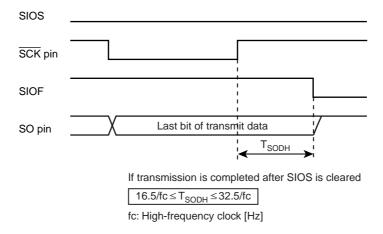


Figure 12-6 Last-Bit Hold Time

• Setting SIOCR1<SIOINH> to "1" causes the SIO to immediately stop a transmission sequence even if any byte is being transmitted.

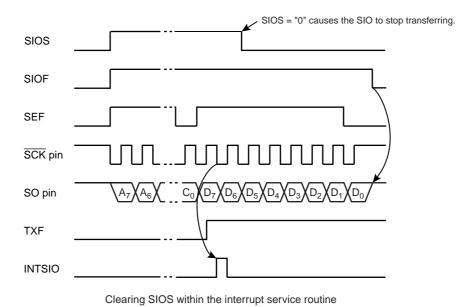


Figure 12-7 SIOCR1<SIOS> Clear Timing

12.3.3.2 Transmit error

During operation on an external clock, the following case may be detected as a transmit error, causing the transmit error flag (SIOSR<TXERR>) to be set to "1". If a transmit error occurs, the SO pin goes high.

• If the SCK pin goes low when the SIO is running (SIOSR<SIOF> = "1") but there is no transmit data in SIOBUF (SIOSR<TXF> = "1").

If a transmit error is detected, be sure to set SIOCR1<SIOINH> to "1" to force the SIO to halt. Setting SIOCR1<SIOINH> to "1" initializes the SIOCR1<SIOS> and SIOSR registers; no other registers or bits are initialized.

Example :Example of setting the transmit mode (transmit mode, external clock, and 32-byte transfer)

		Port setting	
			(It is necessary to set P15 as SOpin by port setting.
			LD (TC3SBI),**0*****B)
	DI		; IMF ← 0
	LD	(INTSEL),*0*****B	; INTSIO Select
	LDW	(EIRL), *****1******0B	; Enables INTSIO (EF9).
	EI		; Enables interrupts.
	LD	(SIOCR1), 01*****B	; Initializes the SIO (forces the SIO halt).
WAIT:	TEST	(SIOSR). 7	; Checks to see if the SIO has halted (SIOF = 0).
	JRS	F, WAIT	; Jumps to START if the SIO is already at a halt.
START:	LD	(SIOCR1), 00000111B	; Sets the transmit mode, selects the direction of transfer, and sets a serial clock.
	LD	(SIOCR2), 00011111B	; Sets the number of bytes (32 bytes) to transfer.
		:	
		Transmit data setting	
		:	
	LD	(SIOCR1), 10000111B	; Directs the SIO to start transferring.
INTSIO (INTSIO service routine):			
	LD	(SIOCR1), 00000111B	; Directs the SIO to stop transferring.
	TEST	(SIOSR). 3	; Checks TXERR.
	JRS	T, NOERR	
	LD	(SIOCR1), 01000111B	; Forces the SIO to halt (clears TXERR).
		:	
		Error handling	
		:	
NOERR:			
END:			; End of transfer

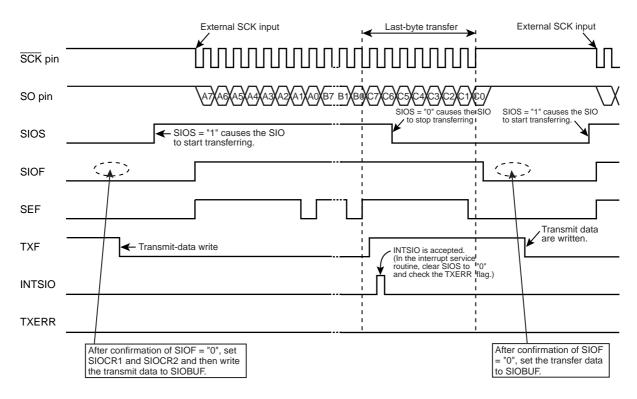


Figure 12-8 Transmit Mode Operation (where 3 bytes are transferred on an external source clock)

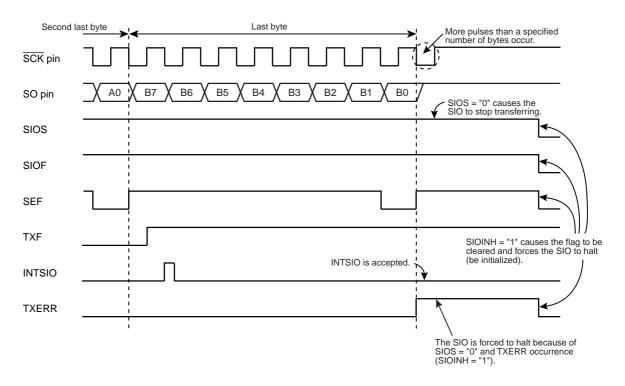


Figure 12-9 Occurrence of Transmit Error (where, before the SIO is directed to stop transferring (SIOCR1<SIOS> = "0" is written), the transfer of the last byte is completed and more pulses than a specified number of bytes occur)

Note: When the SIO is running (SIOSR<SIOF> = "1"), do not supply more transfer clock pulses than the number of bytes specified in SIOCR2<SIORXD> to the SCK pin.

12.3.3.3 Receive mode

Receive mode is assumed by setting SIOCR1<SIOM> to "01".

(1) Causing the SIO to start receiving

- 1. Set the receive mode, serial clock rate, and transfer direction, respectively, in SIOCR1<SIOM>, SIOCR1<SICK>, and SIOCR1<SIODIR>.
- 2. Set the number of data bytes to transfer in SIOCR2<SIORXD>.
- 3. Set SIOCR1<SIOS> to "1".

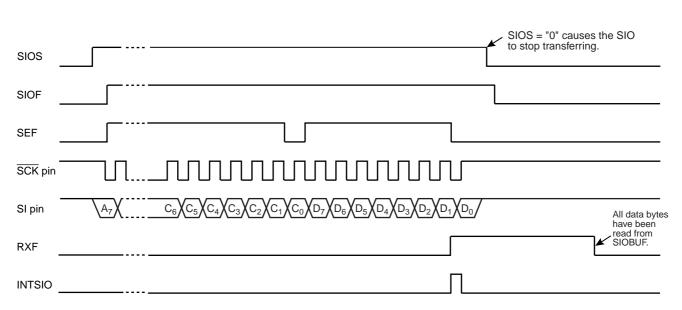
If the selected serial clock is an internal clock, the SIO immediately starts receiving data sequentially in the direction selected using SIOCR1<SIODIR>.

If the selected serial clock is an external clock, the SIO immediately starts receiving data, upon external clock input, sequentially in the direction selected using SIOCR1<SIODIR>.

(2) Causing the SIO to stop receiving

When as many data bytes as specified in SIOCR2<SIORXD> have been received, be sure
to clear SIOCR1<SIOS> to "0" to halt the SIO. Clearing of SIOCR1<SIOS> should be executed within the INTSIO service routine or should be executed after confirmation of
SIOSR<RXF> = "1".

Setting SIOCR1<SIOINH> to "1" causes the SIO to immediately stop a reception sequence even if any byte is being received.


(3) Received-data read timing

Before reading received data, be sure to make sure SIOBUF is full (SIOSR<RXF> = "1") or clear SIOCR1<SIOS> to "0" to halt the SIO in the INTSIO interrupt service routine.

To read the received data after SIOCR1<SIOS> to "0", make sure SIOSR<SIOF> = "0" and SIOSR<RXERR> = "0". SIOSR<RXF> is cleared to "0" when as many received data bytes as specified in SIOCR2<SIORXD> are read.

To transfer the next data after SIOCR1<SIOS> to "0", first read the received data, make sure SIOSR<SIOF> = "0", and set SIOCR1<SIOS> = "1" to start receiving data.

- Note 1: Be sure to read, from SIOBUF, as many received data bytes as specified in SIOCR2<SIORXD>. If the number of data bytes to be read from SIOBUF is not equal to the value specified in SIOCR2<SIORXD>, the SIO fails to work normally.
- Note 2: If an attempt is made to read data before the end of reception (SIOSR<RXF> = "0"), the SIO fails to work normally.
- Note 3: In the receive mode, an INTSIO interrupt occurs when the reception of the last bit of the last data byte is completed.
- Note 4: If an attempt is made to start transferring after a receive error has been detected, the SIO fails to work normally. Before starting transferring, set SIOCR1<SIOINH> = "1" to force the SIO to halt.

Clearing SIOS within the interrupt service routine

Figure 12-10 SIOCR1<SIOS> Clear Timing

12.3.3.4 Receive error

During operation on an external clock, the following case is detected as a receive error, causing the receive error flag (SIOSR<RXERR>) to be set to "1". If a receive error occurs, discard all data from the receive buffer.

• If the reception of the next data byte ends with SIOBUF full (SIOSR<RXF> = "1") (if eight clock pulses are supplied to the SCK pin)

If a receive error is detected, be sure to set SIOCR1<SIOINH> to "1" to force the SIO to halt. Setting SIOCR1<SIOINH> to "1" initializes the SIOCR1<SIOS> and SIOSR registers; no other registers or bits are initialized.

Note: When the SIO is running on an external clock, it becomes impossible to read the content of the receive data buffer (SIOBUF) correctly if the $\overline{\text{SCK}}$ pin goes low before as many data bytes as specified in SIOCR2<SIORXD> are read.

A receive error flag (SIOSR<RXF>) can be set only after eight clock pulses are input upon completion of reception. If only one to seven transfer clock pulses (including noise) are input to the \overline{SCK} pin, therefore, it becomes impossible to determine whether the pulses at the pin are those unnecessary. So, it is recommended that the system employ a backup method such as checksum-based verification. Before restarting reception, be sure to force the SIO to halt (SIOCR1<SIOINH> = "1").

Example :Example of setting the receive mode (receive mode, external clock, and 32-byte transfer)

		Port setting	
			(It is necessary to set P15 as SOpin by port setting.
			LD (TC3SBI),**0*****B)
	DI		; IMF \leftarrow 0
	LD	(INTSEL),*0*****B	; INTSIO Select
	LDW	(EIRL), *****1******0B	; Enables INTSIO (EF9)
	EI		; Enables interrupts.
	LD	(SIOCR1), 01*****B	; Initializes the SIO (Forces the SIO halt).
WAIT:	TEST	(SIOSR). 7	; Checks to see if the SIO has halted (SIOF = 0).
	JRS	F, WAIT	; Jumps to START if the SIO is already at a halt.
START:			
	LD	(SIOCR1), 00010111B	; Sets the receive mode, selects the direction of transfer, and sets a serial clock.
	LD	(SIOCR2), 00011111B	; Sets the number of bytes to transfer.
	LD	(SIOCR1), 10010111B	; Directs the SIO to start transferring.
INTSIO (INTSIO service routine):			
	LD	(SIOCR1), 00010111B	; Directs the SIO to stop transferring.
		Receive data reading Checks a checksum or the like to see if the received data are normal. :	
	LD	(SIOCR1), 01010111B	; Forces the SIO to halt.
END:			; End of transfer

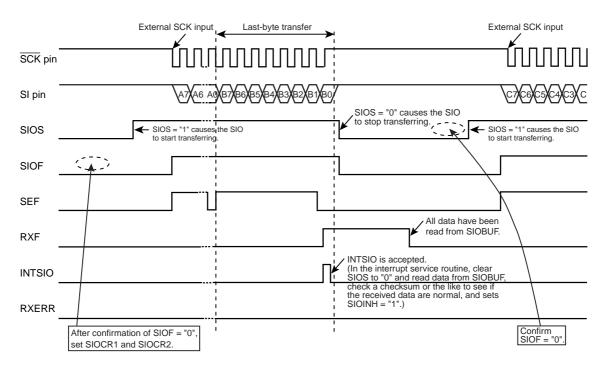


Figure 12-11 Receive Mode Operation (where 2 bytes are transferred on an external source clock)

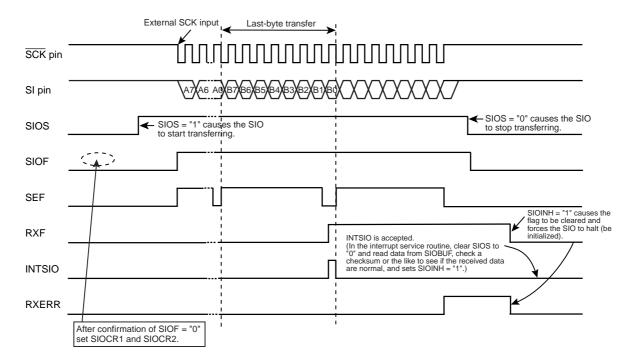


Figure 12-12 Occurrence of Receive Error (2 bytes are transferred on an external source clock)

Note 1: When the SIO is running (SIOSR<SIOF> = "1"), do not supply more transfer clock pulses than the number of bytes specified in SIOCR2<SIORXD> at SCK pin.

Note 2: After data reception is completed, a receive error occurs if eight clock pulses are supplied to the SCK pin before a direction to stop the SIO becomes valid (SIOCR1<SIOS> = "0"). Figure 12-8 shows a case in which a receive error occurs when eight clock pulses are supplied to the SCK pin before the INTSIO interrupt service routine writes SIOCR1<SIOS> = "0".

12.3.3.5 Transmit/receive mode

Transmit/receive mode is assumed by setting SIOCR1<SIOM> to "10".

(1) Causing the SIO to start transmitting/receiving

- 1. Set the transmit/receive mode, serial clock rate, and transfer direction, respectively, in SIOCR1<SIOM>, SIOCR1<SCK>, and SIOCR1<SIODIR>.
- 2. Set the number of data bytes to transfer in SIOCR2<SIORXD>.
- 3. Set, in SIOBUF, as many transmit data bytes as specified in SIOCR2<SIORXD>.
- 4. Set SIOCR1<SIOS> to "1".

If the selected serial clock is an internal clock, the SIO immediately starts transmitting/receiving data sequentially in the direction selected using SIOCR1<SIODIR>.

If the selected serial clock is an external clock, the SIO starts transmitting/receiving data, in synchronization with a clock input to the \overline{SCK} pin sequentially in the direction selected using SIOCR1<SIODIR>.

Note 1: SIOCR2<SIORXD>, SIOCR1<SIODIR>, and SIOCR1<SCK> are used in common to both transmission and reception. They cannot be set individually.

Note 2: Transmit data are output in synchronization with the falling edge of a signal at the $\overline{\text{SCK}}$ pin. The data are received in synchronization with the rising edge of a signal at the $\overline{\text{SCK}}$ pin.

(2) Causing the SIO to stop transmitting/receiving

 When as many data bytes as specified in SIOCR2<SIORXD> have been transmitted and received, be sure to clear SIOCR1<SIOS> to "0" to halt the SIO. Clearing of SIOCR1<SIOS> should be executed within the INTSIO service routine or should be executed after confirmation of SIOSR<RXF> = "1".

Setting SIOCR1<SIOINH> to "1" causes the SIO to immediately stop the transmission/reception sequence even if any byte is being transmitted or received.

(3) Received-data read and transmit-data set timing

After as many bytes as specified in SIOCR2<SIORXD> have been transmitted and received, reading the received data and writing the next transmit data should be executed after confirmation of SIOSR<RXF> = "1" or should be executed after SIOCR1<SIOS> is cleared to "0" in the INTSIO interrupt service routine. To re-start transferring the next data after SIOCR1<SIOS> to "0", first make sure SIOSR<SIOF> = "0", SIOSR<TXERR> = "0" and SIOSR<RXERR> = "0", and read the received data, and then write the transmit data and set SIOCR1<SIOS> = "1" to start transferring.

- Note 1: An INTSIO interrupt occurs when the last bit of the last data byte is received.
- Note 2: When writing to and reading from SIOBUF, make sure that the number of data bytes to transfer is as specified in SIOCR2<SIORXD>. If the number is not equal to the value specified in SIOCR2<SIORXD>, the SIO does not run normally.
- Note 3: When as many data bytes as specified in SIOCR2<SIORXD> are read, SIOSR<RXF> is cleared to "0".
- Note 4: In the transmit/receive mode, setting SIOCR1<SIOINH> to "1" to force the SIO to halt will cause received data to be discarded.
- Note 5: If a transfer sequence is started after a transmit or receive error has been detected, the SIO does not run normally. Before starting transferring, set SIOCR1<SIOINH> = "1" to force the SIO to halt.

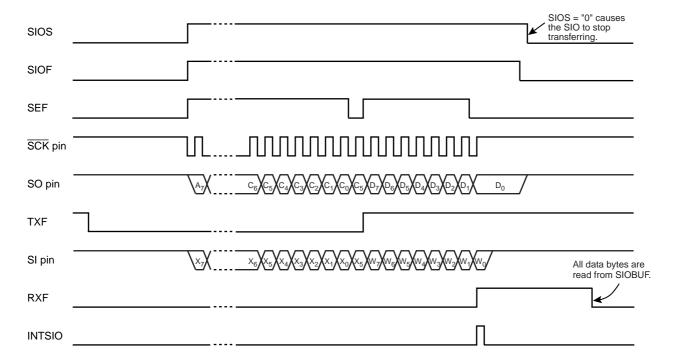


Figure 12-13 SIOCR1<SIOS> Clear Timing (Transmit/Receive Mode)

WAIT:

12.3.3.6 Transmit/receive error

During operation on an external clock, the following cases may be detected as a transmit or receive error, causing an error flag (SIOSR<TXERR> or SIOSR<RXERR>) to be set. If an error occurs, the transmit data go high.

- If the SCK pin goes low when the SIO is running (SIOSR<SIOF> = "1") but there is no transmit data in SIOBUF (SIOSR<TXF> = "1").
- If the reception of the next data byte is completed when the SIO is running (SIOSR<SIOF> = "1") and SIOBUF is full (SIOSR<RXF> = "1") (if eight clock pulses are supplied to the SCK pin) (SIOSR<RXERR>)

If a transmit or receive error is detected, be sure to set SIOCR1<SIOINH> to "1" to force the SIO to halt.

Note: When the SIO is running on an external clock, it becomes impossible to read the content of the receive data buffer (SIOBUF) correctly if the $\overline{\text{SCK}}$ pin goes low before as many data bytes as specified in SIOCR2<SIORXD> are read.

A receive error flag (SIOSR<RXF>) can be set only after eight clock pulses are input upon completion of reception. If one to seven transfer clock pulses (including noise) are input to the $\overline{\text{SCK}}$ pin, therefore, it becomes impossible to determine whether the pulses at the pin are those unnecessary. So, it is recommended that the system employ a backup method such as checksum-based verification. Before restarting transmitting/receiving, be sure to force the SIO to halt (SIOCR1<SIOINH> = "1").

Example :Example of setting the transmit/receive mode (transmit/receive mode, external clock, and 32-byte transfer)

	Port setting	
		(It is necessary to set P15 as SOpin by port setting.
		LD (TC3SBI),**0*****B)
DI		; IMF ← 0
LD	(INTSEL),*0*****B	; INTSIO Select
LDW	(EIRL), *****1******0B	; Enables INTSIO (EF9)
EI		; Enables interrupts.
LD	(SIOCR1), 01*****B	; Initializes the SIO (forces the SIO halt).
TEST	(SIOSR). 7	; Checks to see if the SIO has halted (SIOF = 0).
JRS	F, WAIT	; Jumps to START if the SIO is already at a halt.

Example :Example of setting the transmit/receive mode (transmit/receive mode, external clock, and 32-byte transfer)

START:

LD (SIOCR1), 00100111B ; Sets the transmit/receive mode, selects the direction of transfer, and sets a serial clock.

LD (SIOCR2), 00011111B ; Sets the number of bytes (32 bytes) to transfer.

Transmit data setting:

LD (SIOCR1), 10100111B ; Starts transferring.

INTSIO (INTSIO service routine):

LD (SIOCR1), 00100111B ; Directs the SIO to stop transferring.

TEST (SIOSR). 3 ; Checks TXERR.

JRS T, TXNOERR

LD (SIOCR1), 01100111B ; Forces the SIO to halt (clears TXERR).

:

Error handling

:

JR END

TXNOER:

:

Receive-data reading Checks a checksum or the like to see if the received data are correct.

:

LD (SIOCR1), 01100111B ; Forces the SIO to halt.

END: ; End of transfer

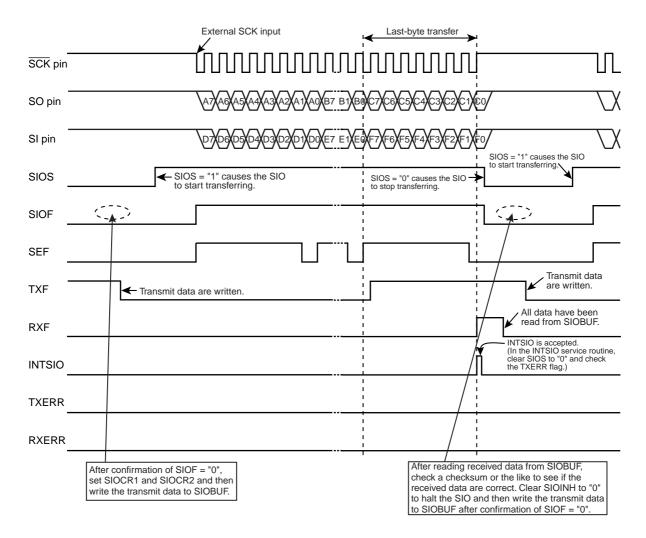


Figure 12-14 Transmit/Receive Mode Operation (where 3 bytes are transferred on an external source clock)

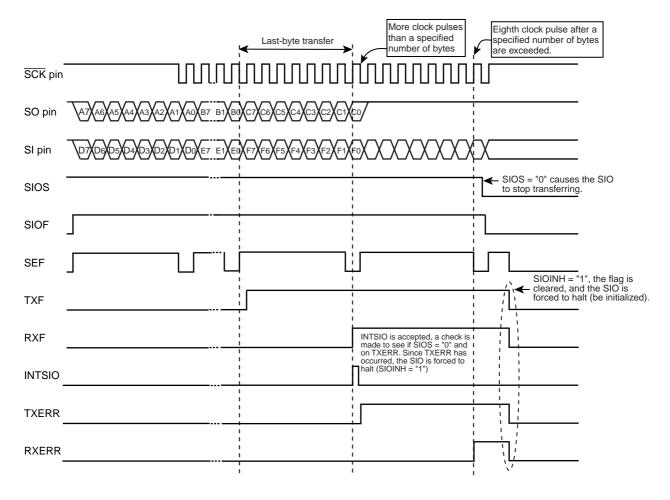
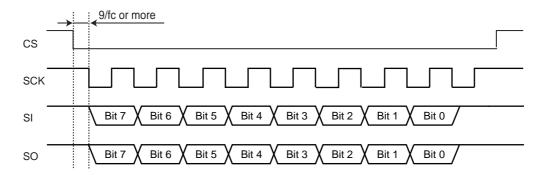



Figure 12-15 Occurrence of Transmit/Receive Error (3 bytes are transferred on an external source clock)

Note: When the SIO is running (SIOSR<SIOF> = "1"), do not supply more transfer clock pulses than the number of bytes specified in SIOCR2<SIORXD> to the $\overline{\text{SCK}}$ pin.

12.4 Chip selection function

SIO is controlled using Serial Interfade Control Register 1(SIOCR1) and Serial Interface Control Register 2 (SIOCR2). The operating status of the serial interface can be determined by reading the Serial Interface Status Register (SIOSR).

Note: The internal SCK signal goes avilable after 9/fc[s] due to the Noise-cancellation function.

Figure 12-16 Chip selection function

13. Asynchronous Serial interface (UART)

13.1 Configuration

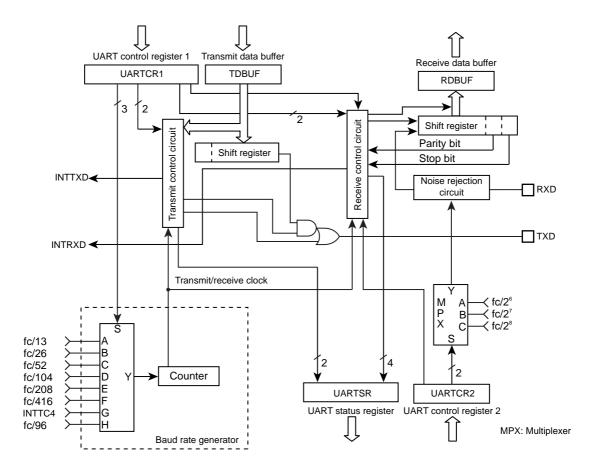


Figure 13-1 UART (Asynchronous Serial Interface)

13.2 Control

UART is controlled by the UART Control Registers (UARTCR1, UARTCR2). The operating status can be monitored using the UART status register (UARTSR).

UART Control Register1

UARTCR1	7	6	5	4	3	2	1	0	
(001DH)	TXE	RXE	STBT	EVEN	PE		BRG		(Initial value: 0000 0000)

TXE	Transfer operation	0: Disable 1: Enable	
RXE	Receive operation	0: Disable 1: Enable	
STBT	Transmit stop bit length	0: 1 bit 1: 2 bits	
EVEN	Even-numbered parity	Odd-numbered parity Even-numbered parity	\\\/-i+-
PE	Parity addition	0: No parity 1: Parity	Write only
BRG	Transmit clock select	000: fc/13 [Hz] 001: fc/26 010: fc/52 011: fc/104 100: fc/208 101: fc/416 110: TC4 (Input INTTC4) 111: fc/96	

Note 1: When operations are disabled by setting TXE and RXE bit to "0", the setting becomes valid when data transmit or receive complete. When the transmit data is stored in the transmit data buffer, the data are not transmitted. Even if data transmit is enabled, until new data are written to the transmit data buffer, the current data are not transmitted.

Note 2: The transmit clock and the parity are common to transmit and receive.

Note 3: UARTCR1<RXE> and UARTCR1<TXE> should be set to "0" before UARTCR1<BRG> is changed.

UART Control Register2

UARTCR2	7	6	5	4	3	2	1	0	
(001EH)						RXI	ONC	STOPBR	(Initial value: **** *000)

RXDNC	Selection of RXD input noise rejection time	 00: No noise rejection (Hysteresis input) 01: Rejects pulses shorter than 31/fc [s] as noise 10: Rejects pulses shorter than 63/fc [s] as noise 11: Rejects pulses shorter than 127/fc [s] as noise 	Write only
STOPBR	Receive stop bit length	0: 1 bit 1: 2 bits	

Note: When UARTCR2<RXDNC> = "01", pulses longer than 96/fc [s] are always regarded as signals; when UARTCR2<RXDNC> = "10", longer than 192/fc [s]; and when UARTCR2<RXDNC> = "11", longer than 384/fc [s].

UART Status Register

UARTSR (001DH)

7	6	5	4	3	2	1	0	
PERR	FERR	OERR	RBFL	TEND	TBEP			(Initial value: 0000 11**)

PERR	Parity error flag	O: No parity error Parity error	
FERR	Framing error flag	No framing error Framing error	
OERR	Overrun error flag	No overrun error Overrun error	Read
RBFL	Receive data buffer full flag	Receive data buffer empty Receive data buffer full	only
TEND	Transmit end flag	On transmitting Transmit end On transmit end	
TBEP	Transmit data buffer empty flag	O: Transmit data buffer full (Transmit data writing is finished) 1: Transmit data buffer empty	

Note: When an INTTXD is generated, TBEP flag is set to "1" automatically.

UART Receive Data Buffer

RDBUF	7	6	5	4	3	2	1	0	Read only
(001FH)									(Initial value: 0000 0000)

UART Transmit Data Buffer

TDBUF	7	6	5	4	3	2	1	0	Write only
(001FH)									(Initial value: 0000 0000)

13.3 Transfer Data Format

In UART, an one-bit start bit (Low level), stop bit (Bit length selectable at high level, by UARTCR1<STBT>), and parity (Select parity in UARTCR1<PE>; even- or odd-numbered parity by UARTCR1<EVEN>) are added to the transfer data. The transfer data formats are shown as follows.

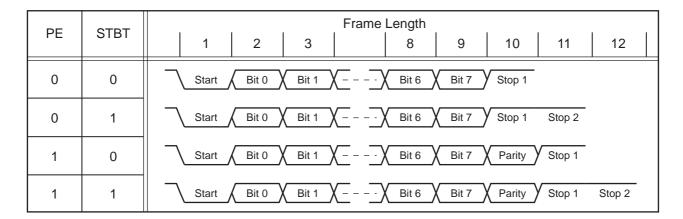


Figure 13-2 Transfer Data Format

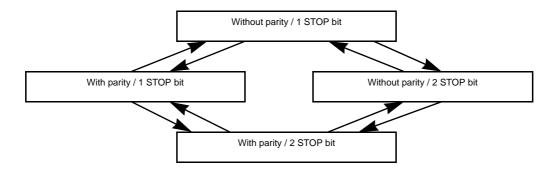


Figure 13-3 Caution on Changing Transfer Data Format

Note: In order to switch the transfer data format, perform transmit operations in the above Figure 13-3 sequence except for the initial setting.

13.4 Transfer Rate

The baud rate of UART is set of UARTCR1<BRG>. The example of the baud rate are shown as follows.

Source Clock BRG 16 MHz 8 MHz 4 MHz 000 76800 [baud] 38400 [baud] 19200 [baud] 001 38400 19200 9600 010 19200 9600 4800 011 9600 4800 2400 100 4800 2400 1200 101 2400 1200 600

Table 13-1 Transfer Rate (Example)

When TC4 is used as the UART transfer rate (when UARTCR1<BRG> = "110"), the transfer clock and transfer rate are determined as follows:

Transfer clock [Hz] = TC4 source clock [Hz] / TTREG4 setting value

Transfer Rate [baud] = Transfer clock [Hz] / 16

13.5 Data Sampling Method

The UART receiver keeps sampling input using the clock selected by UARTCR1<BRG> until a start bit is detected in RXD pin input. RT clock starts detecting "L" level of the RXD pin. Once a start bit is detected, the start bit, data bits, stop bit(s), and parity bit are sampled at three times of RT7, RT8, and RT9 during one receiver clock interval (RT clock). (RT0 is the position where the bit supposedly starts.) Bit is determined according to majority rule (The data are the same twice or more out of three samplings).

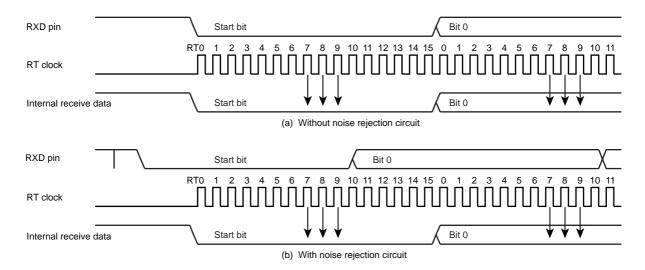


Figure 13-4 Data Sampling Method

13.6 STOP Bit Length

Select a transmit stop bit length (1 bit or 2 bits) by UARTCR1<STBT>.

13.7 Parity

Set parity / no parity by UARTCR1<PE> and set parity type (Odd- or Even-numbered) by UARTCR1<EVEN>.

13.8 Transmit/Receive Operation

13.8.1 Data Transmit Operation

Set UARTCR1<TXE> to "1". Read UARTSR to check UARTSR<TBEP> = "1", then write data in TDBUF (Transmit data buffer). Writing data in TDBUF zero-clears UARTSR<TBEP>, transfers the data to the transmit shift register and the data are sequentially output from the TXD pin. The data output include a one-bit start bit, stop bits whose number is specified in UARTCR1<STBT> and a parity bit if parity addition is specified. Select the data transfer baud rate using UARTCR1<BRG>. When data transmit starts, transmit buffer empty flag UARTSR<TBEP> is set to "1" and an INTTXD interrupt is generated.

While UARTCR1<TXE> = "0" and from when "1" is written to UARTCR1<TXE> to when send data are written to TDBUF, the TXD pin is fixed at high level.

When transmitting data, first read UARTSR, then write data in TDBUF. Otherwise, UARTSR<TBEP> is not zero-cleared and transmit does not start.

13.8.2 Data Receive Operation

Set UARTCR1<RXE> to "1". When data are received via the RXD pin, the receive data are transferred to RDBUF (Receive data buffer). At this time, the data transmitted includes a start bit and stop bit(s) and a parity bit if parity addition is specified. When stop bit(s) are received, data only are extracted and transferred to RDBUF (Receive data buffer). Then the receive buffer full flag UARTSR<RBFL> is set and an INTRXD interrupt is generated. Select the data transfer baud rate using UARTCR1<BRG>.

If an overrun error (OERR) occurs when data are received, the data are not transferred to RDBUF (Receive data buffer) but discarded; data in the RDBUF are not affected.

Note: When a receive operation is disabled by setting UARTCR1<RXE> bit to "0", the setting becomes valid when data receive is completed. However, if a framing error occurs in data receive, the receive-disabling setting may not become valid. If a framing error occurs, be sure to perform a re-receive operation.

13.9 Status Flag

13.9.1 Parity Error

When parity determined using the receive data bits differs from the received parity bit, the parity error flag UARTSR<PERR> is set to "1". The UARTSR<PERR> is cleared to "0" when the RDBUF is read after reading the UARTSR.

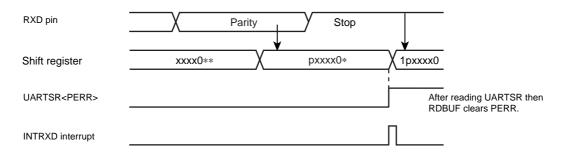


Figure 13-5 Generation of Parity Error

13.9.2 Framing Error

When "0" is sampled as the stop bit in the receive data, framing error flag UARTSR<FERR> is set to "1". The UARTSR<FERR> is cleared to "0" when the RDBUF is read after reading the UARTSR.

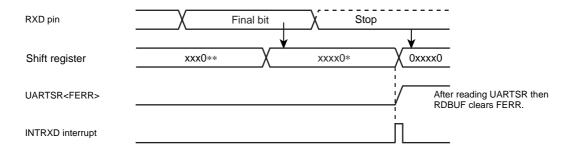


Figure 13-6 Generation of Framing Error

13.9.3 Overrun Error

When all bits in the next data are received while unread data are still in RDBUF, overrun error flag UARTSR<OERR> is set to "1". In this case, the receive data is discarded; data in RDBUF are not affected. The UARTSR<OERR> is cleared to "0" when the RDBUF is read after reading the UARTSR.

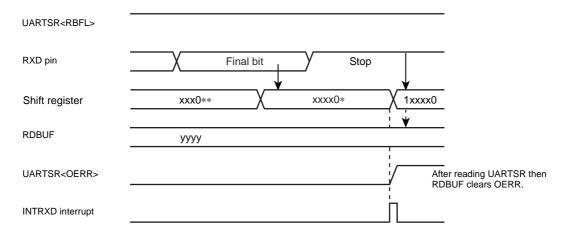


Figure 13-7 Generation of Overrun Error

Note: Receive operations are disabled until the overrun error flag UARTSR<OERR> is cleared.

13.9.4 Receive Data Buffer Full

Loading the received data in RDBUF sets receive data buffer full flag UARTSR<RBFL> to "1". The UARTSR<RBFL> is cleared to "0" when the RDBUF is read after reading the UARTSR.

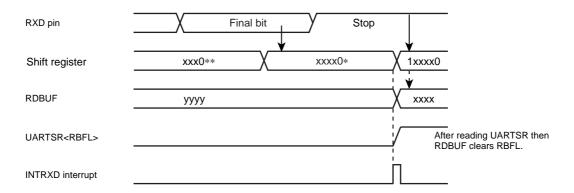


Figure 13-8 Generation of Receive Data Buffer Full

Note: If the overrun error flag UARTSR<OERR> is set during the period between reading the UARTSR and reading the RDBUF, it cannot be cleared by only reading the RDBUF. Therefore, after reading the RDBUF, read the UARTSR again to check whether or not the overrun error flag which should have been cleared still remains set.

13.9.5 Transmit Data Buffer Empty

When no data is in the transmit buffer TDBUF, that is, when data in TDBUF are transferred to the transmit shift register and data transmit starts, transmit data buffer empty flag UARTSR<TBEP> is set to "1". The UARTSR<TBEP> is cleared to "0" when the TDBUF is written after reading the UARTSR.

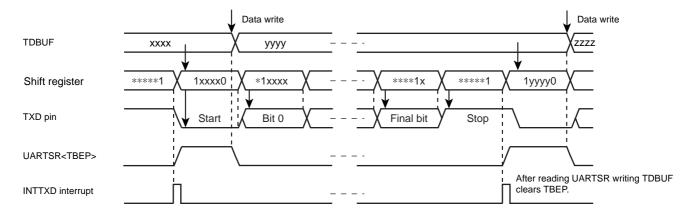


Figure 13-9 Generation of Transmit Data Buffer Empty

13.9.6 Transmit End Flag

When data are transmitted and no data is in TDBUF (UARTSR<TBEP> = "1"), transmit end flag UARTSR<TEND> is set to "1". The UARTSR<TEND> is cleared to "0" when the data transmit is started after writing the TDBUF.

Figure 13-10 Generation of Transmit End Flag and Transmit Data Buffer Empty

14. Serial Bus Interface(I²C Bus) Ver.-D (SBI)

The TMP86CM72FG has a serial bus interface which employs an I²C bus.

The serial interface is connected to an external devices through SDA and SCL.

The serial bus interface pins are also used as the port. When used as serial bus interface pins, set the output latches of these pins to "1". When not used as serial bus interface pins, the port is used as a normal I/O port.

- Note 1: The serial bus interface can be used only in NORMAL1/2 and IDLE1/2 mode. It can not be used in IDLE0, SLOW1/2 and SLEEP0/1/2 mode.
- Note 2: The serial bus interface can be used only in the Standard mode of I²C. The fast mode and the high-speed mode can not be used.
- Note 3: Please refer to the I/O port section about the detail of setting port.

14.1 Configuration

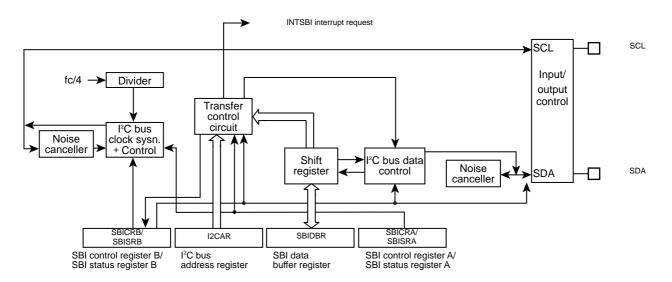


Figure 14-1 Serial Bus Interface (SBI)

14.2 Control

The following registers are used for control the serial bus interface and monitor the operation status.

- Serial bus interface control register A (SBICRA)
- Serial bus interface control register B (SBICRB)
- Serial bus interface data buffer register (SBIDBR)
- I²C bus address register (I2CAR)
- Serial bus interface status register A (SBISRA)
- Serial bus interface status register B (SBISRB)

14.3 Software Reset

A serial bus interface circuit has a software reset function, when a serial bus interface circuit is locked by an external noise, etc.

To reset the serial bus interface circuit, write "10", "01" into the SWRST (Bit1, 0 in SBICRB).

And a status of software reset canbe read from SWRMON (Bit0 in SBISRA).

14.4 The Data Format in the I²C Bus Mode

The data format of the I²C bus is shown below.

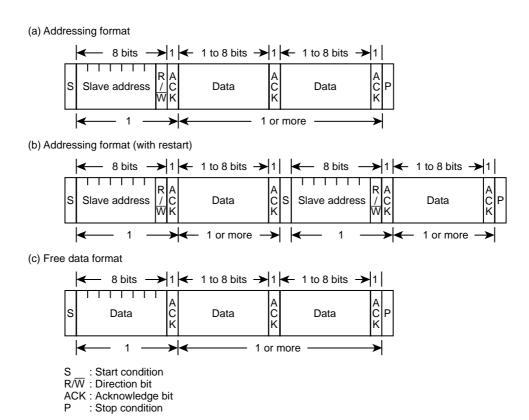


Figure 14-2 Data Format in of I²C Bus

14.5 I²C Bus Control

The following registers are used to control the serial bus interface and monitor the operation status of the I²C bus.

Serial Bus Interface Control Register A

SBICRA	7	6	5	4	3	2	1	0	
(0020H)		ВС		ACK			SCK		(Initial value: 0000 *000)

			ACI	ζ = 0	ACI	ζ = 1		
		BC	Number of Clock	Bits	Number of Clock	Bits		
		000:	8	8	9	8		
		001:	1	1	2	1		
ВС	BC Number of transferred bits		2	2	3	2	Write only	
		011:	3	3	4	3	Offig	
		100:	4	4	5	4		
		101:	5	5	6	5		
		110:	6	6	7	6		
		111:	7	7	8	7		
	ACK Acknowledgement mode specification		Maste	r mode	Slave	mode		
ACK			Not generate a an acknowledge	•	Not count a cloc an acknowledge	•	R/W	
			Generate a cloc acknowledgeme	•	Count a clock p			
		SCK	n	At fc = 16 MHz	At fc = 8 MHz	At fc = 4 MHz		
		000:	4	Reserved	Reserved	100.0 kHz		
		001:	5	Reserved	Reserved	55.6 kHz		
	Serial clock (fscl) selection	010:	6	Reserved	58.8 kHz	29.4 kHz	144.5	
SCK	(Output on SCL pin)	011:	7	60.6 kHz	30.3 kHz	15.2 kHz	Write only	
	$[fscl = 1/(2^{n+1}/fc + 8/fc)]$	100:	8	30.8 kHz	15.4 kHz	7.7 kHz	- ,	
		101:	9	15.5 kHz	7.8 kHz	3.9 kHz		
		110:	10	7.8 kHz	3.9 kHz	1.9 kHz		
		111:		Res	erved			

Note 1: fc: High-frequency clock [Hz], *: Don't care

Note 2: SBICRA cannot be used with any of read-modify-write instructions such as bit manipulation, etc.

Note 3: Do not set SCK as the frequency that is over 100 kHz.

Serial Bus Interface Data Buffer Register

SBIDBR	7	6	5	4	3	2	1	0	
(0021H)									(Initial value: **** ****) R/W

Note 1: For writing transmitted data, start from the MSB (Bit7).

Note 2: The data which was written into SBIDBR can not be read, since a write data buffer and a read buffer are independent in SBIDBR. Therefore, SBIDBR cannot be used with any of read-modify-write instructions such as bit manipulation, etc.

Note 3: *: Don't care

I²C bus Address Register

I2CAR 7 6 5 4 3 2 1 0
(0022H) Slave address ALS SA1 SA0 ALS (Initial value: 0000 0000)

SA	Slave address selection		147.7
ALS	Address recognition mode spec-	0: Slave address recognition	Write only
ALO	ification	1: Non slave address recognition	

Note 1: I2CAR is write-only register, which cannot be used with any of read-modify-write instruction such as bit manipulation, etc.

Note 2: Do not set I2CAR to "00H" to avoid the incorrect response of acknowledgment in slave mode. (If "00H" is set to I2CAR as the Slave Address and a START Byte "01H" in I²C bus standard is recived, the device detects slave address match.)

Serial Bus Interface Control Register B

SBICRB	7	6	5	4	3	2	1	0	
(0023H)	MST	TRX	BB	PIN	SE	BIM	SWRST1	SWRST0	(Initial value: 0001 0000)

MST	Master/slave selection	0: Slave			
IVIST	Master/slave selection	1: Master			
TRX	Transmitter/receiver selection	0: Receiver			
IKA	Transmitter/receiver selection	1: Transmitter			
ВВ	Start/stop generation	0: Generate a stop condition when MST, TRX and PIN are "1"			
DD	Start/stop generation	1: Generate a start condition when MST, TRX and PIN are "1"			
PIN	Cancel interrupt service request	0: - (Can not clear this bit by a software)	Write		
FIIN	Cancer interrupt service request	1: Cancel interrupt service request	only		
		00: Port mode (Serial bus interface output disable)			
SBIM	Serial bus interface operating	01: Reserved			
SBIIN	mode selection	10: I ² C bus mode			
		11: Reserved			
SWRST1 SWRST0	Software reset start bit	Software reset starts by first writing "10" and next writing "01"			

Note 1: Switch a mode to port after confirming that the bus is free.

Note 2: Switch a mode to I²C bus mode after confiming that the port is high level.

Note 3: SBICRB has write-only register and must not be used with any of read-modify-write instructions such as bit manipulation, etc.

Note 4: When the SWRST (Bit1, 0 in SBICRB) is written to "10", "01" in I²C bus mode, software reset is occurred. In this case, the SBICRA, I2CAR, SBISRA and SBISRB registers are initialized and the bits of SBICRB except the SBIM (Bit3, 2 in SBI-CRB) are also initialized.

Serial Bus Interface Status Register A

SBISRA	7	6	5	4	3	2	1	0	
(H)								SWRMON	(Initial value: **** ***1)

SWRMON	Software reset monitor	0:	During software reset	Read
SVRIVION Software reset monitor	1:	- (Initial value)	only	

Serial Bus Interface Status Register B

SBISRB	7	6	5	4	3	2	1	0	
(0023H)	MST	TRX	BB	PIN	AL	AAS	AD0	LRB	(Initial value: 0001 0000)

MST	Master/slave selection status	0: Slave	
IVIST	monitor	1: Master	
TRX	Transmitter/receiver selection	0: Receiver	
IKA	status monitor	1: Transmitter	
BB	Bus status monitor	0: Bus free	
DD	Dus status monitor	1: Bus busy	
PIN	Interrupt service requests sta-	0: Requesting interrupt service	
FIIN	tus monitor	1: Releasing interrupt service request	Read
AL	Arbitration lost detection monitor	0: –	only
AL	Arbitration lost detection monitor	1: Arbitration lost detected	
AAS	Slave address match detection	0: -	
AAO	monitor	1: Detect slave address match or "GENERAL CALL"	
AD0	"GENERAL CALL" detection	0: -	
ADO	monitor	1: Detect "GENERAL CALL"	
LRB	Last received bit monitor	0: Last receive bit is "0"	
LKD	Last received bit monitor	1: Last receiv bit is "1"	

14.5.1 Acknowledgement mode specification

14.5.1.1 Acknowledgment mode (ACK = "1")

To set the device as an acknowledgment mode, the ACK (Bit4 in SBICRA) should be set to "1". When a serial bus interface circuit is a master mode, an additional clock pulse is generated for an acknowledge signal. In a slave mode, a clock is counted for the acknowledge signal.

In the master transmitter mode, the SDA pin is released in order to receive an acknowledge signal from the receiver during additional clock pulse cycle. In the master receiver mode, the SDA pin is set to low level generation an acknowledge signal during additional clock pulse cycle.

In a slave mode, when a received slave address matches to a slave address which is set to the I2CAR or when a "GENERAL CALL" is received, the SDA pin is set to low level generating an acknowledge signal. After the matching of slave address or the detection of "GENERAL CALL", in the transmitter, the SDA pin is released in order to receive an acknowledge signal from the receiver during additional clock pulse cycle. In a receiver, the SDA pin is set to low level generation an acknowledge signal during additional clock pulse cycle after the matching of slave address or the detection of "GENERAL CALL"

The Table 14-1 shows the SCL and SDA pins status in acknowledgment mode.

Table 14-1 SCL and SDA Pins Status in Acknowledgement Mode

Mode		Pin	Transmitter	Receiver		
SCL			An additional clock pulse is generated.			
Master		SDA Released in order to receive an acknowledge signal.		Set to low level generating an acknowledge signal		
	SCL		A clock is counted for the acknowledge signal.			
Slave		When slave address matches or a general call is detected	-	Set to low level generating an acknowledge signal.		
SD	SDA	After matching of slave address or general call	Released in order to receive an acknowledge signal.	Set to low level generating an acknowledge signal.		

14.5.1.2 Non-acknowledgment mode (ACK = "0")

To set the device as a non-acknowledgement mode, the ACK (Bit4 in SBICRA) should be cleared to "0".

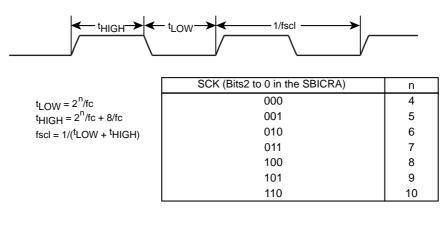
In the master mode, a clock pulse for an acknowledge signal is not generated.

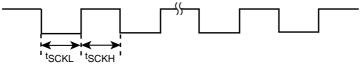
In the slave mode, a clock for a acknowledge signal is not counted.

14.5.2 Number of transfer bits

The BC (Bits7 to 5 in SBICRA) is used to select a number of bits for next transmitting and receiving data.

Since the BC is cleared to "000" by a start condition, a slave address and direction bit transmissions are always executed in 8 bits. Other than these, the BC retains a specified value.


14.5.3 Serial clock


14.5.3.1 Clock source

The SCK (Bits2 to 0 in SBICRA) is used to select a maximum transfer frequency output from the SCL pin in the master mode.

Four or more machine cycles are required for both high and low levels of pulse width in the external clock which is input from SCL pin.

Note: Since the serial bus interface can not be used as the fast mode and the high-speed mode, do not set SCK as the frequency that is over 100 kHz.

tSCKL, tSCKH > 4 tcyc

Note 1: fc = High-frequency clock

Note 2: tcyc = 4/fc (in NORMAL mode, IDLE mode)

Figure 14-3 Clock Source

14.5.3.2 Clock synchronization

In the I²C bus, in order to drive a bus with a wired AND, a master device which pulls down a clock pulse to low will, in the first place, invalidate a clock pulse of another master device which generates a high-level clock pulse.

The serial bus interface circuit has a clock synchronization function. This function ensures normal transfer even if there are two or more masters on the same bus.

The example explains clock synchronization procedures when two masters simultaneously exist on a bus.

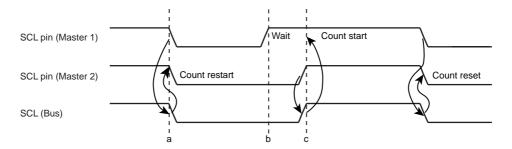


Figure 14-4 Clock Synchronization

As Master 1 pulls down the SCL pin to the low level at point "a", the SCL line of the bus becomes the low level. After detecting this situation, Master 2 resets counting a clock pulse in the high level and sets the SCL pin to the low level.

Master 1 finishes counting a clock pulse in the low level at point "b" and sets the SCL pin to the high level. Since Master 2 holds the SCL line of the bus at the low level, Master 1 waits for counting a clock pulse in the high level. After Master 2 sets a clock pulse to the high level at point "c" and detects the SCL line of the bus at the high level, Master 1 starts counting a clock pulse in the high level. Then, the master, which has finished the counting a clock pulse in the high level, pulls down the SCL pin to the low level.

The clock pulse on the bus is determined by the master device with the shortest high-level period and the master device with the longest low-level period from among those master devices connected to the bus.

14.5.4 Slave address and address recognition mode specification

When the serial bus interface circuit is used with an addressing format to recognize the slave address, clear the ALS (Bit0 in I2CAR) to "0", and set the SA (Bits7 to 1 in I2CAR) to the slave address.

When the serial bus interface circuit is used with a free data format not to recognize the slave address, set the ALS to "1". With a free data format, the slave address and the direction bit are not recognized, and they are processed as data from immediately after start condition.

14.5.5 Master/slave selection

To set a master device, the MST (Bit7 in SBICRB) should be set to "1". To set a slave device, the MST should be cleared to "0".

When a stop condition on the bus or an arbitration lost is detected, the MST is cleared to "0" by the hard-ware.

14.5.6 Transmitter/receiver selection

To set the device as a transmitter, the TRX (Bit6 in SBICRB) should be set to "1". To set the device as a receiver, the TRX should be cleared to "0". When data with an addressing format is transferred in the slave mode, the TRX is set to "1" by a hardware if the direction bit (R/\overline{W}) sent from the master device is "1", and is cleared to "0" by a hardware if the bit is "0". In the master mode, after an acknowledge signal is returned from the slave device, the TRX is cleared to "0" by a hardware if a transmitted direction bit is "1", and is set to "1" by a hardware if it is "0". When an acknowledge signal is not returned, the current condition is maintained.

When a stop condition on the bus or an arbitration lost is detected, the TRX is cleared to "0" by the hardware. "Table 14-2 TRX changing conditions in each mode shows TRX changing conditions in each mode and TRX value after changing

Table 14-2 TRX changing conditions in each modern	Table 14-2	TRX changing	conditions in	each mode
---	------------	--------------	---------------	-----------

Mode	Direction Bit	Conditions	TRX after Changing
Slave Mode	"0"	A received slave address is	"0"
	"1"	the same value set to I2CAR	"1"
Master	"0"	ACK signal is naturated	"1"
Mode	"1"	ACK signal is returned	"0"

When a serial bus interface circuit operates in the free data format, a slave address and a direction bit are not recognized. They are handled as data just after generating a start condition. The TRX is not changed by a hardware.

14.5.7 Start/stop condition generation

When the BB (Bit5 in SBISRB) is "0", a slave address and a direction bit which are set to the SBIDBR are output on a bus after generating a start condition by writing "1" to the MST, TRX, BB and PIN. It is necessary to set ACK to "1" beforehand.

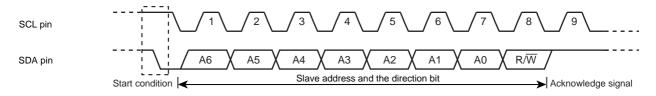


Figure 14-5 Start Condition Generation and Slave Address Generation

When the BB is "1", sequence of generating a stop condition is started by writing "1" to the MST, TRX and PIN, and "0" to the BB. Do not modify the contents of MST, TRX, BB and PIN until a stop condition is generated on a bus.

When a stop condition is generated and the SCL line on a bus is pulled-down to low level by another device, a stop condition is generated after releasing the SCL line.

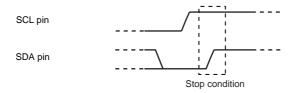


Figure 14-6 Stop Condition Generation

The bus condition can be indicated by reading the contents of the BB (Bit5 in SBISRB). The BB is set to "1" when a start condition on a bus is detected (Bus Busy State) and is cleared to "0" when a stop condition is detected (Bus Free State).

14.5.8 Interrupt service request and cancel

When a serial bus interface circuit is in the master mode and transferring a number of clocks set by the BC and the ACK is complete, a serial bus interface interrupt request (INTSBI) is generated.

In the slave mode, the conditions of generating INTSBI interrupt request are follows:

- At the end of acknowledge signal when the received slave address matches to the value set by the I2CAR
- At the end of acknowledge signal when a "GENERAL CALL" is received
- At the end of transferring or receiving after matching of slave address or receiving of "GENERAL CALL"

When a serial bus interface interrupt request occurs, the PIN (Bit4 in SBISRB) is cleared to "0". During the time that the PIN is "0", the SCL pin is pulled-down to low level.

Either writing data to SBIDBR or reading data from the SBIDBR sets the PIN to "1".

The time from the PIN being set to "1" until the SCL pin is released takes t_{LOW}.

Although the PIN (Bit4 in SBICRB) can be set to "1" by the softrware, the PIN can not be cleared to "0" by the softrware.

Note: When the arbitration lost occurs, if the slave address sent from the other master devices is not match, the INTSBI interrupt request is generated. But the PIN is not cleared.

14.5.9 Setting of I²C bus mode

The SBIM (Bit3 and 2 in SBICRB) is used to set I²C bus mode.

Set the SBIM to "10" in order to set I²C bus mode. Before setting of I²C bus mode, confirm serial bus interface pins in a high level, and then, write "10" to SBIM. And switch a port mode after confirming that a bus is free.

14.5.10Arbitration lost detection monitor

Since more than one master device can exist simultaneously on a bus, a bus arbitration procedure is implemented in order to guarantee the contents of transferred data.

Data on the SDA line is used for bus arbitration of the I²C bus.

The following shows an example of a bus arbitration procedure when two master devices exist simultaneously on a bus. Master 1 and Master 2 output the same data until point "a". After that, when Master 1 outputs "1" and Master 2 outputs "0", since the SDA line of a bus is wired AND, the SDA line is pulled-down to the low level by Master 2. When the SCL line of a bus is pulled-up at point "b", the slave device reads data on the SDA line, that is data in Master 2. Data transmitted from Master 1 becomes invalid. The state in Master 1 is called "arbitration lost". A master device which loses arbitration releases the SDA pin and the SCL pin in order not to effect data transmitted from other masters with arbitration. When more than one master sends the same data at the first word, arbitration occurs continuously after the second word.

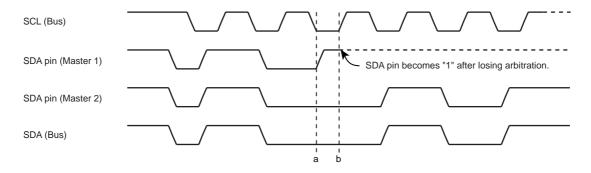


Figure 14-7 Arbitration Lost

The serial bus interface circuit compares levels of a SDA line of a bus with its SDA pin at the rising edge of the SCL line. If the levels are unmatched, arbitration is lost and the AL (Bit3 in SBISRB) is set to "1".

When the AL is set to "1", the MST and TRX are cleared to "0" and the mode is switched to a slave receiver mode. Thus, the serial bus interface circuit stops output of clock pulses during data transfer after the AL is set to "1".

The AL is cleared to "0" by writing data to the SBIDBR, reading data from the SBIDBR or writing data to the SBICRB.

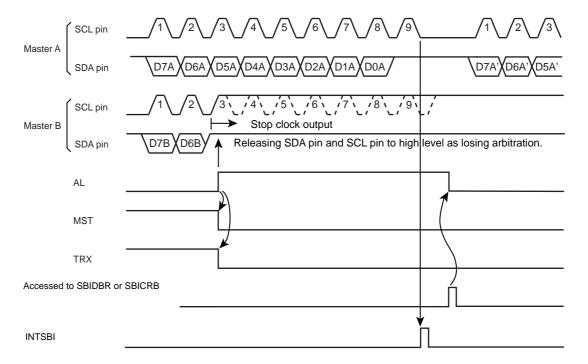


Figure 14-8 Example of when a Serial Bus Interface Circuit is a Master B

14.5.11 Slave address match detection monitor

In the slave mode, the AAS (Bit2 in SBISRB) is set to "1" when the received data is "GENERAL CALL" or the received data matches the slave address setting by I2CAR with an address recognition mode (ALS = 0).

When a serial bus interface circuit operates in the free data format (ALS = 1), the AAS is set to "1" after receiving the first 1-word of data.

The AAS is cleared to "0" by writing data to the SBIDBR or reading data from the SBIDBR.

14.5.12GENERAL CALL detection monitor

The AD0 (Bit1 in SBISRB) is set to "1" when all 8-bit received data is "0" immediately after a start condition in a slave mode. The AD0 is cleared to "0" when a start or stop condition is detected on a bus.

14.5.13Last received bit monitor

The SDA line value stored at the rising edge of the SCL line is set to the LRB (Bit0 in SBISRB). In the acknowledge mode, immediately after an INTSBI interrupt request is generated, an acknowledge signal is read by reading the contents of the LRB.

14.6 Data Transfer of I²C Bus

14.6.1 Device initialization

For initialization of device, set the ACK in SBICRA to "1" and the BC to "000". Specify the data length to 8 bits to count clocks for an acknowledge signal. Set a transfer frequency to the SCK in SBICRA.

Next, set the slave address to the SA in I2CAR and clear the ALS to "0" to set an addressing format.

After confirming that the serial bus interface pin is high level, for specifying the default setting to a slave receiver mode, clear "0" to the MST, TRX and BB in SBICRB, set "1" to the PIN, "10" to the SBIM, and "00" to bits SWRST1 and SWRST0.

Note: The initialization of a serial bus interface circuit must be complete within the time from all devices which are connected to a bus have initialized to and device does not generate a start condition. If not, the data can not be received correctly because the other device starts transferring before an end of the initialization of a serial bus interface circuit

14.6.2 Start condition and slave address generation

Confirm a bus free status (BB = 0).

Set the ACK to "1" and specify a slave address and a direction bit to be transmitted to the SBIDBR.

By writing "1" to the MST, TRX, BB and PIN, the start condition is generated on a bus and then, the slave address and the direction bit which are set to the SBIDBR are output. The time from generating the START condition until the falling SCL pin takes $t_{\rm LOW}$.

An INTSBI interrupt request occurs at the 9th falling edge of a SCL clock cycle, and the PIN is cleared to "0". The SCL pin is pulled-down to the low level while the PIN is "0". When an interrupt request occurs, the TRX changes by the hardware according to the direction bit only when an acknowledge signal is returned from the slave device.

Note 1: Do not write a slave address to be output to the SBIDBR while data is transferred. If data is written to the SBIDBR, data to been outputting may be destroyed.

Note 2: The bus free must be confirmed by software within 98.0 μ s (The shortest transmitting time according to the I²C bus standard) after setting of the slave address to be output. Only when the bus free is confirmed, set "1" to the MST, TRX, BB, and PIN to generate the start conditions. If the writing of slave address and setting of MST, TRX, BB and PIN doesn't finish within 98.0 μ s, the other masters may start the transferring and the slave address data written in SBIDBR may be broken.

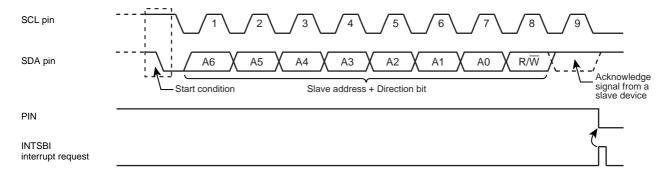


Figure 14-9 Start Condition Generation and Slave Address Transfer

14.6.3 1-word data transfer

Check the MST by the INTSBI interrupt process after an 1-word data transfer is completed, and determine whether the mode is a master or slave.

14.6.3.1 When the MST is "1" (Master mode)

Check the TRX and determine whether the mode is a transmitter or receiver.

(1) When the TRX is "1" (Transmitter mode)

Test the LRB. When the LRB is "1", a receiver does not request data. Implement the process to generate a stop condition (Described later) and terminate data transfer.

When the LRB is "0", the receiver requests next data. When the next transmitted data is other than 8 bits, set the BC, set the ACK to "1", and write the transmitted data to the SBIDBR. After writing the data, the PIN becomes "1", a serial clock pulse is generated for transferring a next 1 word of data from the SCL pin, and then the 1 word of data is transmitted. After the data is transmitted, and an INTSBI interrupt request occurs. The PIN become "0" and the SCL pin is set to low level. If the data to be transferred is more than one word in length, repeat the procedure from the LRB test above.

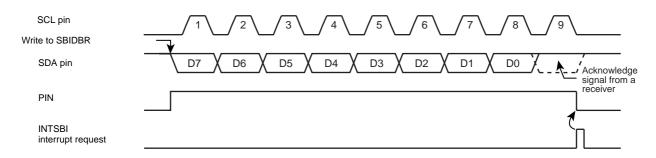


Figure 14-10 Example of when BC = "000", ACK = "1"

(2) When the TRX is "0" (Receiver mode)

When the next transmitted data is other than of 8 bits, set the BC again. Set the ACK to "1" and read the received data from the SBIDBR (Reading data is undefined immediately after a slave address is sent). After the data is read, the PIN becomes "1". A serial bus interface circuit outputs a serial clock pulse to the SCL pin to transfer next 1-word of data and sets the SDA pin to "0" at the acknowledge signal timing.

An INTSBI interrupt request occurs and the PIN becomes "0". Then a serial bus interface circuit outputs a clock pulse for 1-word of data transfer and the acknowledge signal each time that received data is read from the SBIDBR.

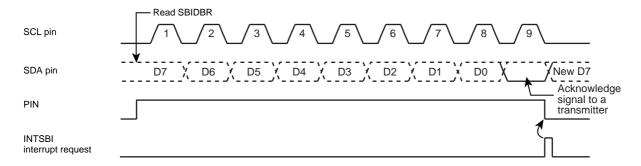


Figure 14-11 Example of when BC = "000", ACK = "1"

To make the transmitter terminate transmit, clear the ACK to "0" before reading data which is 1-word before the last data to be received. A serial bus interface circuit does not generate a clock pulse for the acknowledge signal by clearing ACK. In the interrupt routine of end of transmission, when the BC is set to "001" and read the data, PIN is set to "1" and generates a clock pulse for a 1-bit data transfer. In this case, since the master device is a receiver, the SDA line on a bus keeps the high-level. The transmitter receives the high-level signal as an ACK signal. The receiver indicates to the transmitter that data transfer is complete.

After 1-bit data is received and an interrupt request has occurred, generate the stop condition to terminate data transfer.

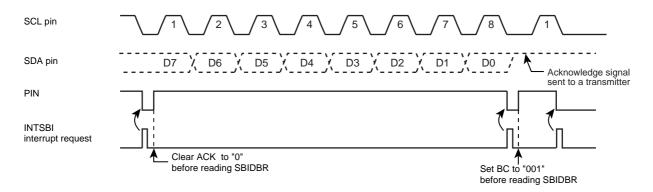


Figure 14-12 Termination of Data Transfer in Master Receiver Mode

14.6.3.2 When the MST is "0" (Slave mode)

In the slave mode, a serial bus interface circuit operates either in normal slave mode or in slave mode after losing arbitration.

In the slave mode, the conditions of generating INTSBI interrupt request are follows:

- At the end of acknowledge signal when the received slave address matches to the value set by the I2CAR
- At the end of acknowledge signal when a "GENERAL CALL" is received
- At the end of transferring or receiving after matching of slave address or receiving of "GENERAL CALL"

A serial bus interface circuit changes to a slave mode if arbitration is lost in the master mode. And an INTSBI interrupt request occurs when word data transfer terminates after losing arbitration. The behavior of INTSBI interrupt request and PIN after losing arbitration are shown in Table 14-3.

Table 14-3 The Behavior of INTSBI interrupt request and PIN after Losing Arbitration

	When the Arbitration Lost Occurs during Transmission of Slave Address as a Master	When the Arbitration Lost Occurs during Transmission of Data as a Master Transmit Mode
INTSBI interrupt request	INTSBI interrupt request is genera	ted at the termination of word data.
PIN	When the slave address matches the value set by I2CAR, the PIN is cleared to "0" by generating of INTSBI interrupt request. When the slave address doesn't match the value set by I2CAR, the PIN keeps "1".	PIN keeps "1" (PIN is not cleared to "0").

When an INTSBI interrupt request occurs, the PIN (bit 4 in the SBICRB) is reset, and the SCL pin is set to low level. Either reading or writing from or to the SBIDBR or setting the PIN to "1" releases the SCL pin after taking t_{LOW} .

Check the AL (Bit3 in the SBISRB), the TRX (Bit6 in the SBISRB), the AAS (Bit2 in the SBISRB), and the AD0 (Bit1 in the SBISRB) and implements processes according to conditions listed in " Table 14-4 Operation in the Slave Mode".

Table 14-4 Operation in the Slave Mode

TRX	AL	AAS	AD0	Conditions	Process
	1 1		0	A serial bus interface circuit loses arbitration when transmitting a slave address. And receives a slave address of which the value of the direction bit sent from another master is "1".	Set the number of bits in 1 word to the BC
1	0	1	0	In the slave receiver mode, a serial bus interface circuit receives a slave address of which the value of the direction bit sent from the master is "1".	and write transmitted data to the SBIDBR.
		0	0	In the slave transmitter mode, 1-word data is transmitted.	Test the LRB. If the LRB is set to "1", set the PIN to "1" since the receiver does not request next data. Then, clear the TRX to "0" to release the bus. If the LRB is set to "0", set the number of bits in 1 word to the BC and write transmitted data to the SBIDBR since the receiver requests next data.
	1	1	1/0	A serial bus interface circuit loses arbitration when transmitting a slave address. And receives a slave address of which the value of the direction bit sent from another master is "0" or receives a "GENERAL CALL".	Read the SBIDBR for setting the PIN to "1" (Reading dummy data) or write "1" to the PIN.
0		0	0	A serial bus interface circuit loses arbitration when transmitting a slave address or data. And terminates transferring word data.	A serial bus interface circuit is changed to slave mode. To clear AL to "0", read the SBIDBR or write the data to SBIDBR.
	0	1	1/0	In the slave receiver mode, a serial bus interface circuit receives a slave address of which the value of the direction bit sent from the master is "0" or receives "GENERAL CALL".	Read the SBIDBR for setting the PIN to "1" (Reading dummy data) or write "1" to the PIN.
		0	1/0	In the slave receiver mode, a serial bus interface circuit terminates receiving of 1-word data.	Set the number of bits in 1-word to the BC and read received data from the SBIDBR.

Note: In the slave mode, if the slave address set in I2CAR is "00H", a START Byte "01H" in I²C bus standard is recived, the device detects slave address match and the TRX is set to "1".

14.6.4 Stop condition generation

When the BB is "1", a sequence of generating a stop condition is started by setting "1" to the MST, TRX and PIN, and clear "0" to the BB. Do not modify the contents of the MST, TRX, BB, PIN until a stop condition is generated on a bus.

When a SCL line on a bus is pulled-down by other devices, a serial bus interface circuit generates a stop condition after they release a SCL line.

The time from the releasing SCL line until the generating the STOP condition takes $t_{\mbox{\scriptsize LOW}}$.

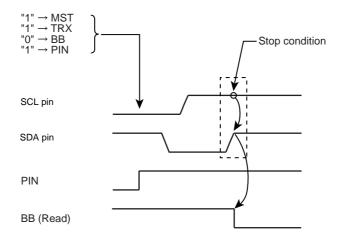


Figure 14-13 Stop Condition Generation

14.6.5 Restart

Restart is used to change the direction of data transfer between a master device and a slave device during transferring data. The following explains how to restart a serial bus interface circuit.

Clear "0" to the MST, TRX and BB and set "1" to the PIN. The SDA pin retains the high-level and the SCL pin is released. Since a stop condition is not generated on a bus, a bus is assumed to be in a busy state from other devices. Test the BB until it becomes "0" to check that the SCL pin of a serial bus interface circuit is released. Test the LRB until it becomes "1" to check that the SCL line on a bus is not pulled-down to the low level by other devices. After confirming that a bus stays in a free state, generate a start condition with procedure " 14.6.2 Start condition and slave address generation ".

In order to meet setup time when restarting, take at least 4.7 µs of waiting time by software from the time of restarting to confirm that a bus is free until the time to generate a start condition.

Note: When the master is in the receiver mode, it is necessary to stop the data transmission from the slave devcie before the STOP condtion is generated. To stop the transmission, the master device make the slave device receiving a negative acknowledge. Therefore, the LRB is "1" before generating the Restart and it can not be confirmed that SCL line is not pulled-down by other devices. Please confirm the SCL line state by reading the port.

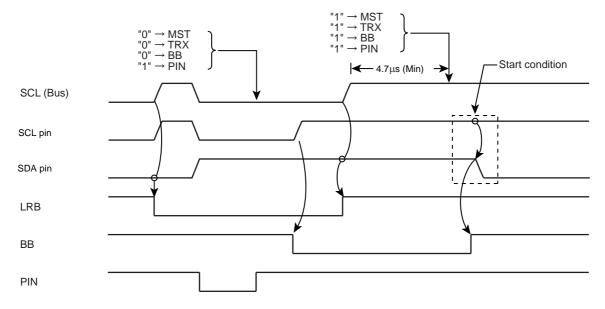


Figure 14-14 Timing Diagram when Restarting

15. 8-Bit AD Converter (ADC)

The TMP86CM72FG have a 8-bit successive approximation type AD converter.

15.1 Configuration

The circuit configuration of the 8-bit AD converter is shown in Figure 15-1.

It consists of control registers ADCCR1 and ADCCR2, converted value registers ADCDR1 and ADCDR2, a DA converter, a sample-and-hold circuit, a comparator, and a successive comparison circuit.

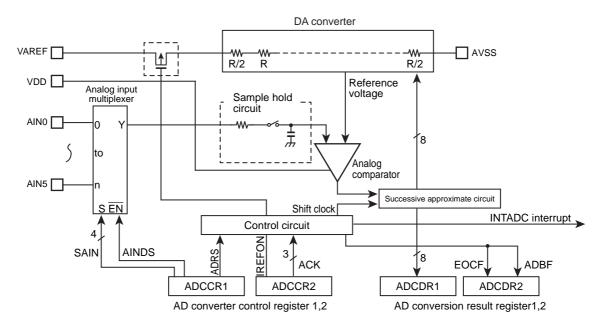


Figure 15-1 8-bit AD Converter (ADC)

15.2 Control

The AD converter consists of the following four registers:

1. AD converter control register 1 (ADCCR1)

This register selects the analog channels in which to perform AD conversion and controls the AD converter as it starts operating.

2. AD converter control register 2 (ADCCR2)

This register selects the AD conversion time and controls the connection of the DA converter (ladder resistor network).

3. AD converted value register (ADCDR1)

This register is used to store the digital value after being converted by the AD converter.

4. AD converted value register (ADCDR2)

This register monitors the operating status of the AD converter.

AD Converter Control Register 1

ADCCR1	7	6	5	4	3	2	1	0	
(000EH)	ADRS	"0"	"1"	AINDS		SA	IN		(Initial value: 0001 0000)

ADRS	AD conversion start	0: 1:	- Start	
AINDS	Analog input control	0: 1:	Analog input enable Analog input disable	
SAIN	Analog input channel select	0000: 0001: 0010: 0011: 0100: 0101: 0110: 1000: 1001: 1010: 1110: 1111:	AIN0 AIN1 AIN2 AIN3 AIN4 AIN5 Reserved	R/W

- Note 1: Select analog input when AD converter stops (ADCDR2<ADBF> = "0").
- Note 2: When the analog input is all use disabling, the ADCCR1<AINDS> should be set to "1".
- Note 3: During conversion, do not perform output instruction to maintain a precision for all of the pins. And port near to analog input, do not input intense signaling of change.
- Note 4: The ADRS is automatically cleared to "0" after starting conversion.
- Note 5: Do not set ADCCR1<ADRS> newly again during AD conversion. Before setting ADCCR1<ADRS> newly again, check ADCDR2<EOCF> to see that the conversion is completed or wait until the interrupt signal (INTADC) is generated (e.g., interrupt handling routine).
- Note 6: After STOP or SLOW/SLEEP mode are started, AD converter control register 1 (ADCCR1) is all initialized and no data can be written in this register. Therefore, to use AD converter again, set the ADCCR1 newly after returning to NORMAL1 or NORMAL2 mode.
- Note 7: Always set bit 5 in ADCCR1 to "1" and set bit 6 in ADCCR1 to "0".

AD Converter Control Register 2

ADCCR2 (000FH)

7	6	5	4	3	2	1	0	
		IREFON	"1"		ACK		"0"	(Initial value: **0* 000*)

IREFON	DA converter (ladder resistor) connection control	0: 1:	Connected only during AD conversion Always connected	R/W
ACK	AD conversion time select	000: 001: 010: 011: 100: 101: 110: 111:	39/fc Reserved 78/fc 156/fc 312/fc 624/fc 1248/fc Reserved	R/W

Note 1: Always set bit 0 in ADCCR2 to "0" and set bit 4 in ADCCR2 to "1".

Note 2: When a read instruction for ADCCR2, bit 6 to 7 in ADCCR2 read in as undefined data.

Note 3: After STOP or SLOW/SLEEP mode are started, AD converter control register 2 (ADCCR2) is all initialized and no data can be written in this register. Therefore, to use AD converter again, set the ADCCR2 newly after returning to NORMAL1 or NORMAL2 mode.

Table 15-1 Conversion Time according to ACK Setting and Frequency

Condition ACK	Conbersion time	16MHz	8MHz	4 MHz	2 MHz	10MHz	5 MHz	2.5 MHz		
000	39/fc	-	-	-	19.5 μs	-	-	15.6 μs		
001	Reserved									
010	78/fc	-	-	19.5 μs	39.0 μs	-	15.6 μs	31.2 μs		
011	156/fc	-	19.5 μs	39.0 μs	78.0 μs	15.6 μs	31.2 μs	62.4 μs		
100	312/fc	19.5 μs	39.0 μs	78.0 μs	156.0 μs	31.2 μs	62.4 μs	124.8 μs		
101	624/fc	39.0 μs	78.0 μs	156.0 μs	-	62.4 μs	124.8 μs	-		
110	1248/fc	78.0 μs	156.0 μs	-	-	124.8 μs	-	-		
111		Reserved								

Note 1: Settings for "-" in the above table are inhibited.

Note 2: Set conversion time by Analog Reference Voltage (V_{AREF}) as follows.

- V_{AREF} = 4.5 to 5.5 V (15.6 μs or more)

- $V_{AREF} = 2.7 \text{ to } 5.5 \text{ V}$ (31.2 µs or more)

AD Conversion Result Register

ADCDR1	7	6	5	4	3	2	1	0	
(0027H)	AD07	AD06	AD05	AD04	AD03	AD02	AD01	AD00	(Initial value: 0000 0000)

AD Conversion Result Register

ADCDR2 7 6 5 4 3 2 1 0
(0026H) EOCF ADBF (Initial value: **00 ****)

EOCF	AD conversion end flag	Before or during conversion Conversion completed	Read
ADBF	AD conversion busy flag	During stop of AD conversion During AD conversion	only

Note 1: The ADCDR2<EOCF> is cleared to "0" when reading the ADCDR1.

Therefore, the AD conversion result should be read to ADCDR2 more first than ADCDR1.

Note 2: ADCDR2<ADBF> is set to "1" when AD conversion starts and cleared to "0" when the AD conversion is finished. It also is cleared upon entering STOP or SLOW mode.

Note 3: If a read instruction is executed for ADCDR2, read data of bits 7, 6 and 3 to 0 are unstable.

15.3 Function

15.3.1 AD Conveter Operation

When ADCCR1<ADRS> is set to "1", AD conversion of the voltage at the analog input pin specified by ADCCR1<SAIN> is thereby started.

After completion of the AD conversion, the conversion result is stored in AD converted value registers (ADCDR1) and at the same time ADCDR2<EOCF> is set to "1", the AD conversion finished interrupt (INTADC) is generated.

ADCCR1<ADRS> is automatically cleared after AD conversion has started. Do not set ADCCR1<ADRS> newly again (restart) during AD conversion. Before setting ADRS newly again, check ADCDR<EOCF> to see that the conversion is completed or wait until the interrupt signal (INTADC) is generated (e.g., interrupt handling routine).

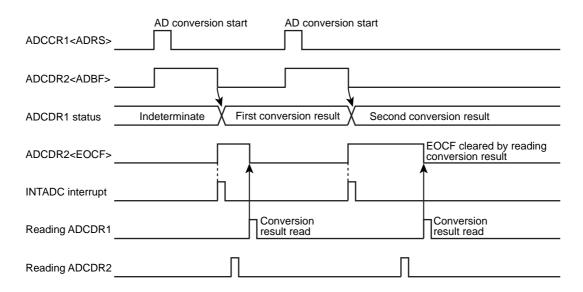


Figure 15-2 AD Converter Operation

15.3.2 AD Converter Operation

- 1. Set up the AD converter control register 1 (ADCCR1) as follows:
 - Choose the channel to AD convert using AD input channel select (SAIN).
 - Specify analog input enable for analog input control (AINDS).
- 2. Set up the AD converter control register 2 (ADCCR2) as follows:
 - Set the AD conversion time using AD conversion time (ACK). For details on how to set the conversion time, refer to Table 15-1.
 - Choose IREFON for DA converter control.
- 3. After setting up 1. and 2. above, set AD conversion start (ADRS) of AD converter control register 1 (ADCCR1) to "1".
- 4. After an elapse of the specified AD conversion time, the AD converted value is stored in AD converted value register 1 (ADCDR1) and the AD conversion finished flag (EOCF) of AD converted value register 2 (ADCDR2) is set to "1", upon which time AD conversion interrupt INTADC is generated.
- 5. EOCF is cleared to "0" by a read of the conversion result. However, if reconverted before a register read, although EOCF is cleared the previous conversion result is retained until the next conversion is completed.

Example :After selecting the conversion time of 19.5 µs at 16 MHz and the analog input channel AIN3 pin, perform AD conversion once. After checking EOCF, read the converted value and store the 8-bit data in address 009FH on RAM.

; AIN SELECT ; Before setting the AD converter register, set each port register suitably (For detail, see chapter of I/O port.) LD (ADCCR1), 00100011B ; Select AIN3 LD (ADCCR2), 11011000B ; Select conversion time (312/fc) and operation mode ; AD CONVERT START SET (ADCCR1). 7 ; ADRS = 1 SLOOP: TEST (ADCDR2). 5 ; EOCF = 1 ? JRS T. SLOOP ; RESULT DATA READ LD A, (ADCDR1) LD (9FH), A

15.3.3 STOP and SLOW Mode during AD Conversion

When the STOP or SLOW mode is entered forcibly during AD conversion, the AD convert operation is suspended and the AD converter is initialized (ADCCR1 and ADCCR2 are initialized to initial value.). Also, the conversion result is indeterminate. (Conversion results up to the previous operation are cleared, so be sure to read the conversion results before entering STOP or SLOW mode.) When restored from STOP or SLOW mode, AD conversion is not automatically restarted, so it is necessary to restart AD conversion. Note that since the analog reference voltage is automatically disconnected, there is no possibility of current flowing into the analog reference voltage.

15.3.4 Analog Input Voltage and AD Conversion Result

The analog input voltage is corresponded to the 8-bit digital value converted by the AD as shown in Figure 15-3.

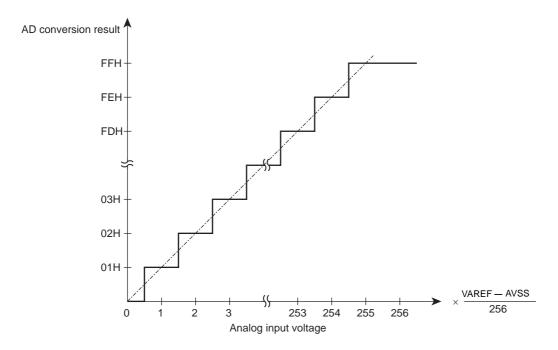


Figure 15-3 Analog Input Voltage and AD Conversion Result (typ.)

15.4 Precautions about AD Converter

15.4.1 Analog input pin voltage range

Make sure the analog input pins (AIN0 to AIN5) are used at voltages within AVSS below VAREF. If any voltage outside this range is applied to one of the analog input pins, the converted value on that pin becomes uncertain. The other analog input pins also are affected by that.

TMP86CM72FG

15.4.2 Analog input shared pins

The analog input pins (AIN0 to AIN5) are shared with input/output ports. When using any of the analog inputs to execute AD conversion, do not execute input/output instructions for all other ports. This is necessary to prevent the accuracy of AD conversion from degrading. Not only these analog input shared pins, some other pins may also be affected by noise arising from input/output to and from adjacent pins.

15.4.3 Noise countermeasure

The internal equivalent circuit of the analog input pins is shown in Figure 15-4. The higher the output impedance of the analog input source, more easily they are susceptible to noise. Therefore, make sure the output impedance of the signal source in your design is 5 k Ω or less. Toshiba also recommends attaching a capacitor external to the chip.

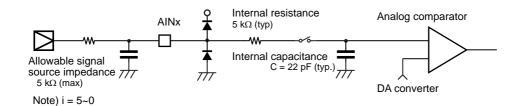


Figure 15-4 Analog Input Equivalent Circuit and Example of Input Pin Processing

16. Key-on Wakeup (KWU)

In the TMP86CM72FG, the STOP mode is released by not only P20(INT5/STOP) pin but also four (STOP2 to STOP5) pins.

When the STOP mode is released by STOP2 to STOP5 pins, the $\overline{\text{STOP}}$ pin needs to be used. In details, refer to the following section " 16.2 Control ".

16.1 Configuration

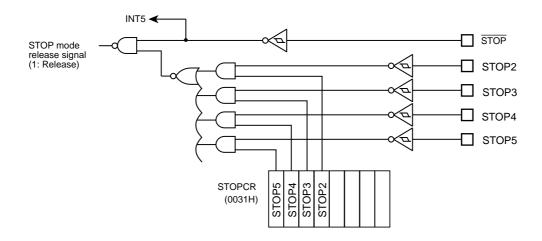


Figure 16-1 Key-on Wakeup Circuit

16.2 Control

STOP2 to STOP5 pins can controlled by Key-on Wakeup Control Register (STOPCR). It can be configured as enable/disable in 1-bit unit. When those pins are used for STOP mode release, configure corresponding I/O pins to input mode by I/O port register beforehand.

Key-on Wakeup Control Register

STOPER	7	6	5	4	3	2	1	0	
(0031H)	STOP5	STOP4	STOP3	STOP2					(Initial value: 0000 ****)

STOP5	STOP mode released by STOP5	0:Disable 1:Enable	Write only
STOP4	STOP mode released by STOP4	0:Disable 1:Enable	Write only
STOP3	STOP mode released by STOP3	0:Disable 1:Enable	Write only
STOP2	STOP mode released by STOP2	0:Disable 1:Enable	Write only

16.3 Function

Stop mode can be entered by setting up the System Control Register (SYSCR1), and can be exited by detecting the "L" level on STOP2 to STOP5 pins, which are enabled by STOPCR, for releasing STOP mode (Note1).

Also, each level of the STOP2 to STOP5 pins can be confirmed by reading corresponding I/O port data register, check all STOP2 to STOP5 pins "H" that is enabled by STOPCR before the STOP mode is started (Note2,3).

- Note 1: When the STOP mode released by the edge release mode (SYSCR1<RELM> = "0"), inhibit input from STOP2 to STOP5 pins by Key-on Wakeup Control Register (STOPCR) or must be set "H" level into STOP2 to STOP5 pins that are available input during STOP mode.
- Note 2: When the STOP pin input is high or STOP2 to STOP5 pins input which is enabled by STOPCR is low, executing an instruction which starts STOP mode will not place in STOP mode but instead will immediately start the release sequence (Warm up).
- Note 3: The input circuit of Key-on Wakeup input and Port input is separated, so each input voltage threshold value is different. Therefore, a value comes from port input before STOP mode start may be different from a value which is detected by Key-on Wakeup input (Figure 16-2).
- Note 4: STOP pin doesn't have the control register such as STOPCR, so when STOP mode is released by STOP2 to STOP5 pins, STOP pin also should be used as STOP mode release function.
- Note 5: In STOP mode, Key-on Wakeup pin which is enabled as input mode (for releasing STOP mode) by Key-on Wakeup Control Register (STOPCR) may generate the penetration current, so the said pin must be disabled AD conversion input (analog voltage input).
- Note 6: When the STOP mode is released by STOP2 to STOP5 pins, the level of STOP pin should hold "L" level (Figure 16-3).

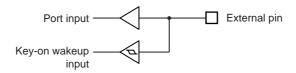


Figure 16-2 Key-on Wakeup Input and Port Input

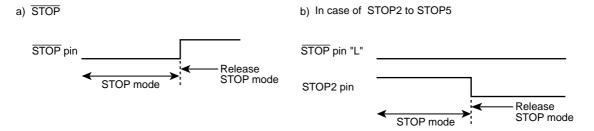


Figure 16-3 Priority of STOP pin and STOP2 to STOP5 pins

Pin name	Release level (edge)							
	SYSCR1 <relm>="1" (Note2)</relm>	SYSCR1 <relm>="0"</relm>						
STOP	"H" level	Rising edge						
STOP2	"L" level	Don't use (Note1)						
STOP3	"L" level	Don't use (Note1)						
STOP4	"L" level	Don't use (Note1)						
STOP5	"L" level	Don't use (Note1)						

Table 16-1 Release level (edge) of STOP mode

17. Vacuum Fluorescent Tube (VFT) Driver Circuit

The TMP86CM72FG features built-in high-breakdown voltage output buffers for directly driving fluorescent tubes, and a display control circuit used to automatically transfer display data to the output port.

The segment and the digit, as it is the VFT drive circuit which included in the usual products, are not allocated. The segment and the digit can be freely allocated in the timing (T0 to T15) which is specified according to the display tube types and the layout.

17.1 Functions

- 1. 32 high-breakdown voltage output buffers built-in.
 - Large current output pin 16 (V0 to V15)
 - Middle current output pin 16 (V16 to V31)

There is also the VKK pin used for the VFT drive power supply.

- 2. The dynamic lighting system makes it possible to select 1 to 16 digits (T0 to T15) by program.
- 3. Display data (64 bytes in DBR) are automatically transferred to the VFT output pin.
- 4. Brightness level can be adjusted in 7 steps using the dimmer function.
- 5. Display time are shown in Table 17-1.

Table 17-1 tdisp Time setting

SDT1	SDT2	tdisp Time	at 16 MHz	at 8 MHz	at 4 MHz	at 2 MHz	at 1 MHz
00		2 ⁹ /fc [s]	32 μs	64 μs	128 μs	256 μs	512 μs
01	0	2 ¹⁰ /fc [s]	64 μs	128 μs	256 μs	512 μs	1024 μs
10		2 ¹¹ /fc [s]	128 μs	256 μs	512 μs	1024 μs	2048 μs
11		2 ¹² /fc [s]	256 μs	512 μs	1024 μs	2048 μs	4096 μs
00		2 ⁸ /fc [s]	16 μs	32 μs	64 μs	128 μs	256 μs
01	4	2 ⁹ /fc [s]	32 μs	64 μs	128 μs	256 μs	512 μs
10	1	2 ¹⁰ /fc [s]	64 μs	128 μs	256 μs	512 μs	1024 μs
11		2 ¹¹ /fc [s]	128 μs	256 μs	512 μs	1024 μs	2048 μs

17.2 Configuration

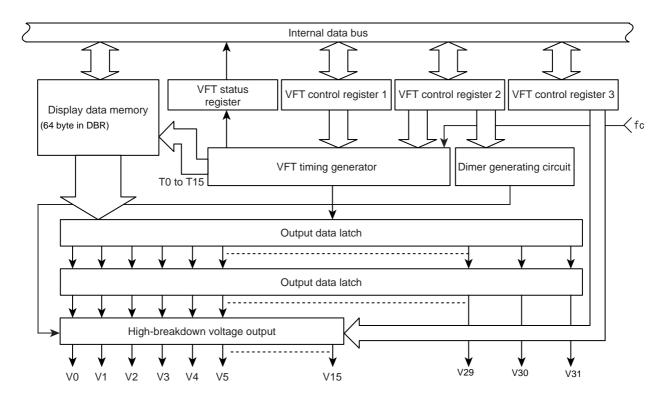


Figure 17-1 Vacuum Fluorescent Display (VFT) Circuit

TMP86CM72FG

17.3 Control

The VFT driver circuit is controlled by the VFT control registers (VFTCR1, VFTCR2, VFTCR3). Reading VFT status register (VFTSR) determines the VFT operating status.

Switching the mode from NORMAL1/2 to SLOW or STOP puts the VFT driver circuit into blanking state (BLK is set to "1"; values set in the VFT control registers except BLK is maintained), and sets segment outputs and digit outputs are cleared to "0". Thus, ports P6 to P9 function as general-purpose output ports with pull-down.

VFT control register 1

VFTCR1	7	6	5	4	3	2	1	0	
(002AH)	BLK	SD	T1			"0"			(Initial value: 1000 0000)

BLK	VFT display control	0: Display en 1: Disable	0: Display enable 1: Disable					
			SDT2 = 0	SDT2 = 1				
		00	2 ⁹ /fc	2 ⁸ /fc				
SDT1	Display time select1 (tdisp) (Display time of 1 digit)	01	2 ¹⁰ /fc	2 ⁹ /fc	R/W			
(DIS)	(Diopidy lime of Taight)	10	2 ¹¹ /fc	2 ¹⁰ /fc				
		11	2 ¹² /fc	2 ¹¹ /fc				

Note 1: fc: High frequency clock [Hz]

Note 2: It is necessary to set diplay blanking staus by setting VFTCR1<BLK> to "1", when you would like to change display time(SDT1) on VFT display operation. At the same time, please make sure not to modify SDT1.

Note 3: Reserved: Can not access.

VFTSR	7	6	5	4	3	2	1	0		
(002DH)	WAIT								(Initial value: 1000 0000)	
	WAIT	VFT	operational	status monito		T display in T display op		abled		Read only

Note 1: VFTSR<WAIT> is initialized to 1 after resetting.

Note 2: When VFTCR1<BLK> is cleared to 0, WAIT flag is cleared to 0 at an end of display timing. And a VFT driving circuit is enabled at an end of next display timing.

Note 3: During a VFT driving circuit is enabled, it is disabled just after an end of display timing (tdisp) by setting VFTCR1<BLK> to 1. And WAIT flag is set to 1 simultaneously.

Note 4: When a VFT driving circuit is enabled again, it is necessary that VFTCR1<BLK> is set to 1 after confirming VFTSR<WAIT> is 1.

VFT control register 2

VFTCR2	7	6	5	4	3	2	1	0	
(002BH)		DIM				STA			(Initial value: 0010 0000)

DIM	Dimmer time select	000: Reserved 001: (14/16) × tdisp (s) 010: (12/16) × tdisp (s) 011: (10/16) × tdisp (s) 100: (8/16) × tdisp (s) 101: (6/16) × tdisp (s) 101: (4/16) × tdisp (s) 110: (4/16) × tdisp (s)	
STA	Number of state (display)	00000: 1 display mode (T0) 00001: 2 display mode (T1 to T0) 00010: 3 display mode (T2 to T0) 00011: 4 display mode (T3 to T0) 00100: 5 display mode (T4 to T0) 00101: 6 display mode (T5 to T0) 00110: 7 display mode (T6 to T0) 00111: 8 display mode (T7 to T0) 01100: 9 display mode (T8 to T0) 01000: 9 display mode (T8 to T0) 01001: 10 display mode (T9 to T0) 01010: 11 display mode (T10 to T0) 01011: 12 display mode (T11 to T0) 01100: 13 display mode (T12 to T0) 01101: 14 display mode (T13 to T0) 01110: 15 display mode (T14 to T0) 01111: 16 display mode (T15 to T0) Others: Reserved	R/W

Note 1: Even if a number of the display digit is set a pin which is equal to the digit dose not output.

It is necessary to write data to the data buffer which corresponds to the digit according to the display timing (T0 to T15).

VFT control register 3

VFTCR3	7	6	5	4	3	2	1	0	
(002CH)			OWSEL			-	HVTR0	SDT2	(Initial value: 0000 0000)

			SDT1 = "00"	SDT1 = "01"	SDT1 = "10"	SDT1 = "11"				
SDT2	Display time select 2 (tdisp) (Display time of 1 digit)	0	2 ⁹ /fc [s]	2 ¹⁰ /fc [s]	2 ¹¹ /fc [s]	2 ¹² /fc [s]	R/W			
	(Display aims of Faight)	1	2 ⁸ /fc [s]	2 ⁹ /fc [s]	2 ¹⁰ /fc [s]	2 ¹¹ /fc [s]				
HVTR0	P6 to P9 Ports Tr time select	0		Tr normal mode typ. 150 ns (VDD = 3 V, Vkk = -35 V)						
HVIKU	Po to P9 Ports 11 time select	1	Tr increment mo	ode = 3 V, Vkk = -35	V)		R/W			
			GRID output (I	Dimmer enable)	SEG	output				
		00000	Р	60	P61 t	o P97				
		00001	P60 t	o P61	P62 t	o P97				
		00010	P60 t	o P62	P63 t	o P97				
		00011	P60 t	o P63	P64 t	P64 to P97				
		00100	P60 t	o P64	P65 t	R/W				
		00101	P60 t	o P65	P66 t					
		00110	P60 t	o P66	P67 t					
		00111	P60 t	o P67	P70 t					
014/051	Output waveform select	01000	P60 t	o P70	P71 t					
OWSEL	(Select grid or segment)	01001	P60 t	o P71	P72 t	K/VV				
		01010	P60 t	o P72	P73 to P97					
		01011	P60 t	o P73	P74 to P97					
		01100	P60 t	o P74	P75 to P97					
		01101 P60 to P75		o P75	P76 t					
		01110	P60 t	o P76	P77 t	o P97				
		01111	P60 t	o P77	P80 t	o P97				
		10000	Res	erved	Rese	erved				
		to	t	0	t	0				
		11111	Res	erved	Rese	erved				

Note 1: It is possible to reduce the VFT port noise by using Tr increment mode. When Tr increment mode is enabled, a time of Tr is increased and also Tf. Therefore, the display time and dimmer value should be decided with the stray capacitor on a PCB. Otherwise the switching timing between grid and segment is overlapped each other and a VFT display is dimmed. Please confirm a VFT display with your set.

17.3.1 Setting of Display mode

VFT display mode is set by VFT control register 1 (VFTCR1), VFT control register 2 (VFTCR2) and VFT control register 3 (VFTCR3). VFT control register 1 (VFTCR1) sets 1 display time (tdisp) and the number of display lines (VSEL), VFT control register 2 (VFTCR2) sets dimmer timer (DIM) and state (STA) and VFT control register 3 (VFTCR3) sets Port Tr mode (HVTR0/1). (BLK of VFTCR1 must be set to "1".) The segments and the digits are not fixed, so that they can be freely allocated. However the number of states must be specified according to the number of digits of VFT which you use. Thought the layout of VFT display mode is freely allocated, the followings are recommended; usually, large current output (V0 to V15) is used for a digit, and middle current output (V16 to V31) is used for a segment.

In case of changeing the setting of dimmer time (DIM) in display-on, it is available to change whenever the BLK status is "0".

17.3.2 Display data setting

Data are converted into VFT display data by instructions. The converted data stored in the display data buffer (addresses 0F80H to 0FBFH in DBR) are automatically transferred to the VFT driver circuit (V0 to V31), then transferred to the high-breakdown voltage output buffer. Thus, to change the display pattern, just change the data in the display data buffer.

Bits in the VFT segment (dot) and display data area correspond one to one. When data are set to 1, the segments corresponding to the bits light. The display data buffer is assigned to the DBR area shown in Figure 17-2. (The display data buffer can not be used as data memory)

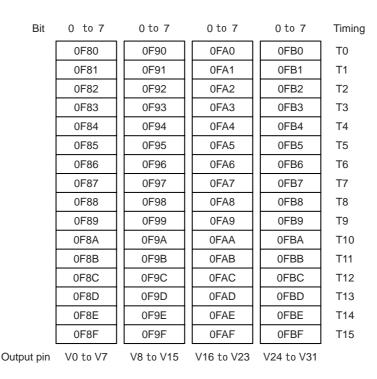


Figure 17-2 VFT Display Data Buffer Memory (DBR)

Note: Contents in data memory is cleared (unknown data) after power-on.

17.4 Display Operation

As the above-mentioned, the segment and the digit are not allocated. After setting of the display timing for the number of digits according to the using VFT and storing the segment and digit data according to the respective timings, clearing VFTCR1<BLK> to 0 starts VFT display.

Figure 17-3 shows the VFT drive pulse and Figure 17-4, Figure 17-5 show the display operation.

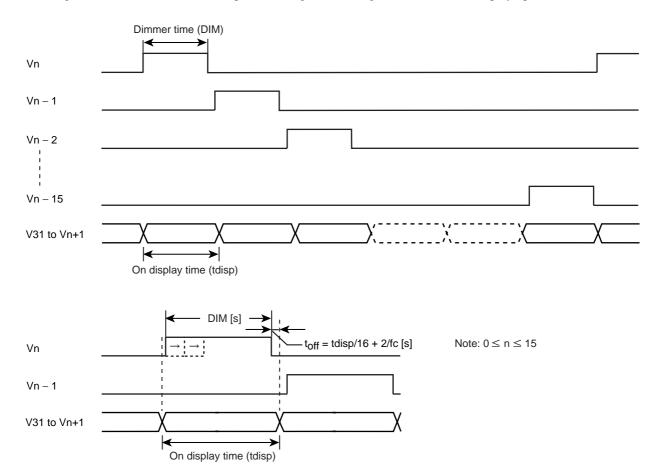


Figure 17-3 VFT Drive Wafeform and Display Timing

17.5 Example of Display Operation

17.5.1 For Conventional type VFT

When using the conventional type VFT, the output timing of the digits is specified to output 1 digit for 1 timing. Data must be set to output the pins which are specified to the digit in sequence. The following figure shows a data allocation of the display data buffer (DBR) and the output timing when VFT of 10 digits is used and V0 to V9 pins are allocated as the digit outputs. (When data is first written by the data buffer which corresponds to the digit pin, it is unnecessary to rewrite the data later.)

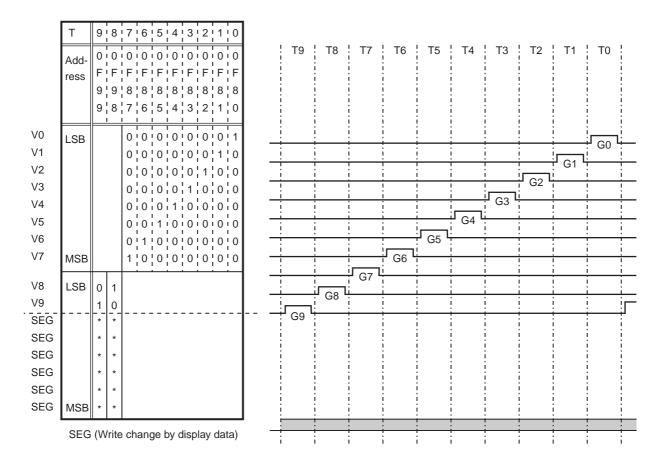


Figure 17-4 Example of Conventional type VFT driver pulse

17.5.2 For Grid scan type VFT

When using the grid scan type VFT, two or more grids must be simultaneously selected to turn the display pattern which contains two or more grids on. Additionally, the timing and the data must be determined to set the grid scan mode as follows.

- When the display pattern which is fully set in the respective grids is turned on, only the grids which correspond as ever must be scanned in sequence to turn on the display pattern. (timing of T8 to T3 in the following figure)
- When the display pattern which contains two or more grids is turned on, two or more corresponding grids are simultaneously selected to turn on the display pattern. (timing of T2 to T0 in the following figure)

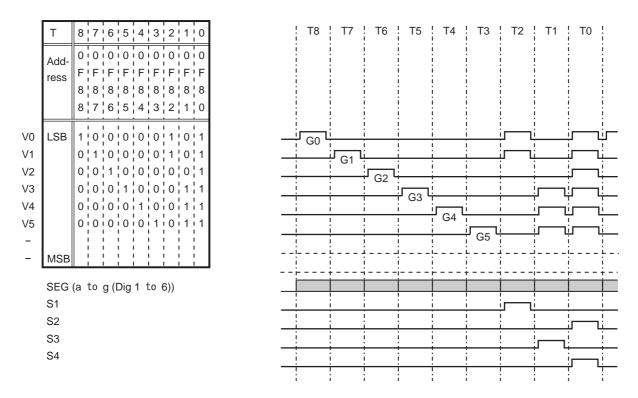


Figure 17-5 Grid Scan Type Display Vacuum Fluorescent Tube Ware

17.6 Port Function

17.6.1 High-breakdown voltage buffer

To drive fluorescent display tube, clears the port output latch to "0". The port output latch is initialized to 0 at reset.

Precaution for using as general-purpose I/O pins are follows.

Note: When not using a pin which is pulled down ($R_K = \text{typ. } 80 \text{ k}\Omega$) to pin VKK , it must be set to open. It is necessary to clear the port output latch and the data buffer memory (DBR) to "0".

17.6.1.1 Ports P6 to P9

When a part of P6 to P9 is used as the input/output pin (VFT driver in operation), the data buffer memory (DBR) of the segment which is also used as the input/output pin must be cleared to "0".

17.6.2 Caution

When a pin which is pulled down to pin VKK is used as usual output or input, the following cautions are required.

17.6.2.1 When outputting

When level "L" is output, a port which is pulled down to pin VKK is pin VKK voltage. Such processes as clamping with the diode as shown in Figure 17-6 (a) are necessary to prevent pin VKK voltage applying to the external circuit.

17.6.2.2 When inputting

When the external data is input, the port output latch is cleared to "0".

The input threshold is the same as that of the other usual input/output port. However it is necessary to drive $R_K(typ. 80 \text{ k}\Omega)$ sufficiently because of pulled down to pin VKK.

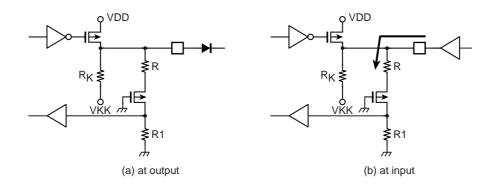


Figure 17-6 External Circuit Interface

18. Input/Output Circuitry

18.1 Control Pins

The input/output circuitries of the TMP86CM72FG control pins are shown below.

Control Pin	1/0	Input/Output Circuitry	Remarks
XIN XOUT	Input Output	Osc. enable VDD Rf Ro VDD XIN XOUT	Resonator connecting pins (high-frequency) $R_f = 1.2 \ M\Omega \ (typ.)$ $R_O = 500 \ \Omega \ (typ.)$
XTIN XTOUT	Input Output	Osc. enable VDD Rf Ro XTEN VDD XTIN XTOUT	Resonator connecting pins (low-frequency) $R_f = 6 \ M\Omega \ (typ.)$ $R_O = 220 \ k\Omega \ (typ.)$
RESET	Input	R RIN T	Hysteresis input Pull-up resistor R_{IN} = 220 k Ω (typ.) R = 1 k Ω (typ.)
TEST	Input	R D ₁	Pull-down resistor $R_{\text{IN}} = 70 \text{ k}\Omega \text{ (typ.)}$ $R = 1 \text{ k}\Omega \text{ (typ.)}$

Note: The TEST pin of TMP86PM72 does not have a pull-down resistor and protect diode (D1). Fix the TEST pin at low-level in MCU mode.

18.2 Input/Output port

Control Pin	1/0	Input/Output Circuitry	Remarks
P1	1/0	Initial "High-Z" Pch control Data output Pin input	Programmable Open drain output Hysteresis input
P2	1/0	Initial "High-Z" VDD Data output Pin input	Sink open drain output Hysteresis input
P3	1/0	Initial "High-Z" VDD VDD Data output Pin input	Sink open drain output Large current output
P4 (P40, P41)	1/0	Initial "High-Z" Pch control Data output Pin input	Programmable open drain output Hysteresis input
P4 (P42 to P47)	1/0	Initial "High-Z" Data output Disable Pin input	Tri state I/O Hysteresis input
P 5	1/0	Initial "High-Z" Data output Disable Pin input	Tri state I/O Hysteresis input

Port	I/O	Input/Output Circuitry	Remarks
P6 P7	I/O	Initial "High-Z"	Source open drain I/O High breakdown voltage (large current) $R_{K} = 80 \text{ k}\Omega \text{ (typ.)}$ $R1 = 200 \text{ k}\Omega \text{ (typ.)}$
P8 P9	I/O	Initial "High-Z"	Source open drain I/O High breakdown voltage (middle current) $R_{K}=80~k\Omega~(typ.)$ $R1=200~k\Omega~(typ.)$

19. Electrical Characteristics

19.1 Absolute Maximum Ratings

The absolute maximum ratings are rated values which must not be exceeded during operation, even for an instant. Any one of the ratings must not be exceeded. If any absolute maximum ratings is exceeded, a device may break down or its performance may be degraded, causing it to catch fire or explode resulting in injury to the user. Thus, when designing products, which include this device, ensure that no absolute maximum rating value will ever be exceeded.

 $(V_{SS} = 0 \ V)$

Parameter		Symbol	Pins	Ratings	Unit
Supply voltage		V_{DD}		-0.3 to 6.5	V
Input voltage		V _{IN}		−0.3 to V _{DD} + 0.3	V
Output voltage		V _{OUT1}		-0.3 to V _{DD} + 0.3	V
		V _{OUT2}	Sink open drain port	$V_{DD} - 41 \text{ to } V_{DD} + 0.3$	V
	IOL	I _{OUT1}	P1, P2, P4 (P43 to P47), P5 ports	5	
Output current (Per 1 pin)	IOL	I _{OUT2}	P4 (P40, P41) port	40	
	ЮН	I _{OUT3}	P1, P4, P5 ports	-3	mA
		I _{OUT4}	P6, P7 ports	-30	
		I _{OUT5}	P8, P9 ports	-20	
0.1.1.17.17	IOL	Σ l _{OUT1}	P1, P2, P4, P5 ports	120	
Output current (Total)	IOH	Σ I _{OUT2}	P6, P7, P8, P9 ports	-120	
Power dissipation [Topr = 25°C]	•	P _D		1200	mW
Soldering temperture (Time)		Tsld		260 (10 s)	
Storage temperature		Tstg		-55 to 125	°C
Operating temperature	_	Topr		-30 to 70	

Note 1: All V_{DDs} should be connected externally for keeping the same voltage level.

Note 2: Power Dissipation (P_D): For P_D , it is necessary to decrease $-11.5 \ mW/^{\circ}C$.

19.2 Operating Conditions

The Operating Conditions shows the conditions under which the device be used in order for it to operate normally while maitaining its quality. If the device is used outside the range of Operating Conditions (power supply voltage, operating temperature range, or AC/DC rated values), it may operate erratically. Therefore, when designing your application equipment, always make sure its intended working conditions will not exceed the range of Operating Conditions.

Parameter	Symbol	Pins		Condition		Max	Unit
			fc = 16 MHz	NORMAL1/2 modes	4.5		
				IDLE1/2 modes	4.5		
			fc = 8 MHz	NORMAL1/2 modes			
Supply voltage	V_{DD}		IC = O IVII IZ	IDLE1/2 modes		5.5	
			fs = 32.768 kHz	SLOW mode	2.7		
				SLEEP mode	1		V
				STOP mode			
Output voltage	V _{OUT3}	Sink open drain pins			V _{DD} – 38	V_{DD}	
Input high voltage	V _{IH1}	Except hysteresis input				V _{DD}	
input night voltage	V _{IH2}	Hysteresis input			$V_{DD} \times 0.75$	V DD	
Input low voltage	V _{IL1}	Except hysteresis input			0	$V_{DD} \times 0.30$	
input low voltage	V _{IL2}	Hysteresis input				V _{DD} × 0.25	
	fc	XIN, XOUT	V _{DD} = 2.7 V	V _{DD} = 2.7 V to 5.5 V		8.0	MHz
Clock frequency	10	Ally, AUUT	V _{DD} = 4.5 V to 5.5 V		1.0	16.0	
	fs	XTIN, XTOUT			30.0	34.0	kHz

19.3 How to Calculate Power Consumption

The share of VFT driver loss (VFT driver output loss + pull-down resistor (RK) loss) in power consumption Pmax of TMP86CM72FG is high. When using a fluorescent display tube with a large number of segments, the maximum power consumption PD must not be exceeded.

19.3.1 Power consumption Pmax = Operating power consumption + Normal output port loss + VFT driver loss.

Where,

Operating power consumption: VDD × IDD

Normal output port loss: $\Sigma I_{OUT1} \times 0.4$

VFT driver loss: VFT driver output loss + pull-down resistor (R_K) loss

Example:

When $Ta = -10^{\circ}\text{C}$ to 50°C (When using a fluorescent display tube with a conventional type which can use only one grid output at the same time.) and a fluorescent display tube with segment output = 3 mA, digit output = 12 mA, $V_{KK} = -34.5 \text{ V}$ is used.

Operating conditions; $VDD = 5 V \pm 10\%$, fc = 8 MHz, VFT dimmer time (DIM) = (14/16) × t_{SFG},

Power consumption Pmax = (1) + (2) + (3)

Where.

- 1. Operating power consumption: $VDD \times IDD = 5.5 \text{ V} \times 10 \text{ mA} = 55 \text{ mW}$
- 2. Normal output port loss: Σ I_{OUT2} \times 0.4 = 60 mA \times 0.4 V = 24 mW
- 3. VFT driver loss:

Segment pin =
$$3 \text{ mA} \times 2 \text{ V} \times \text{Number of segments } X = 6 \text{ mW} \times X$$

Grid pin =
$$12 \text{ mA} \times 2 \text{ V} \times 14/16 \text{ (DIM)} \times \text{Number of grids Y} = 21 \text{ mW} \times \text{Y}$$

$$R_K loss = (5.5 \text{ V} + 34.5 \text{ V})^2 / 50 \text{ k}\Omega \times (\text{Number of segments } X + \text{Number of grids } Y)$$
$$= 32 \text{ mW} \times (X + Y)$$

Therefore, Pmax =
$$55 \text{ mW} + 24 \text{ mW} + 6 \text{ mW} \times X + 21 \text{ mW} + 32 \text{ mW} \times (X + Y)$$

= $132 \text{ mW} + 38 \text{ mWXÅc}$

Maximum power consumption PD when $Ta = 50^{\circ}C$ is determined by the following equation;

$$PD = 1200 \text{ mW} - (11.5 \text{ mW} \times 25^{\circ}\text{C}) = 912.5 \text{ mW}$$

The number of segments X that can be lit is:

$$912.5 \text{ mW} > 132 + 38X$$

Thus, a fluorescent display tube with less than 20 segments can be used. If a fluorescent display tube with 20 segments or more is used, the number of segments to be lit must be kept to less than 20 by software.

19.4 DC Characteristics

19.4.1 DC Characteristics (1) $(V_{DD} = 5 V)$

[Condition] $V_{DD} = 5.0 \text{ V} \pm 10\%$, $V_{SS} = A_{VSS} = 0 \text{ V}$, Topr = $-30 \text{ to } 70^{\circ}\text{C}$ (Typ.: $V_{DD} = 5.0 \text{ V}$, Topr = 25°C , $V_{DD} = 5.0 \text{ V}$, Topr = 25°C , $V_{DD} = 5.0 \text{ V}$, Topr = 25°C , $V_{DD} = 5.0 \text{ V}$, Topr = 25°C , $V_{DD} = 5.0 \text{ V}$, $V_{$

Parameter	Symbol	Pins	Condition	on	Min	Тур.	Max	Unit
Hysteresis voltage	V_{HS}	Hysteresis input			-	0.9	-	V
	I _{IN1}	TEST						
Input current	I _{IN2}	Sink open-drain, Tri-st	V_{DD} = 5.5 V, V_{IN} = 5.5 V/0 V		-	-	±2	μΑ
	I _{IN3}	RESET, STOP						
Input resistance	R _{IN}	RESET pull-up			100	220	450	l-O
Pull-down resistance (Note4)	R _K	Sink open-drain	$V_{DD} = 5.5 \text{ V}, V_{KK} = -30 \text{ V}$		50	_	120	kΩ
Outset leeks as summer	I _{LO1}	Sink open-drain, Tri-st	V _{DD} = 5.5 V, V _{OUT}	= 5.5 V	-	-	±2	^
Output leakage current	I _{LO2}	Sink open-drain	V _{DD} = 5.5 V, V _{KK} =	= -32 V	-	-	±2	μА
Output high voltage	V _{OH}	Tri-st port	V _{DD} = 4.5 V, I _{OH} =	−0.7 mA	4.1	-	-	
Output low voltage	V _{OL}	Except XOUT (P40, P41 port)	V _{DD} = 4.5 V, I _{OL} =	V _{DD} = 4.5 V, I _{OL} = 1.6 mA		-	0.4	V
Output high current	I _{OH1}	P6, P7 port	V _{DD} = 4.5 V, V _{OH} =	= 2.4 V	-18	-28	-	
	I _{OH2}	P8, P9, P _D port	V _{DD} = 4.5 V, V _{OH} =	= 2.4 V	-9	-14	-	1
Output low current	I _{OL}	High-current (P40, P41 port)	V _{DD} = 4.5 V, V _{OL} =	= 1.0 V	-	20	-	
Supply current in			fc = 16.0 MHz fs = 32.768 kHz		-	12	18	
NORMAL1/2 modes			fc = 8.0 MHz fs = 32.768 kHz	AD converte	-	6	9	mA
Supply current in IDLE0/1/2			fc = 16.0 MHz fs = 32.768 kHz	disable (IREF off)	-	6	9	
modes	I _{DD}		fc = 8.0 MHz fs = 32.768 kHz		-	3	4.5	
Supply current in NORMAL1/2 modes			fc = 16.0 MHz fs = 32.768 kHz	AD	-	13	19	
			fc = 8.0 MHz fs = 32.768 kHz	enable	-	7	10	
Supply current in STOP			Topr = to 50°C	AD	-		5	
mode			Topr = to 70°C	converter disable	-	0.5	10	μΑ

Note 1: Typical values show those at Topr = 25° C, $V_{DD} = 5$ V.

Note 2: Input current (I_{IN1} , I_{IN3}); The current through pull-up or pull-down resistor is not included.

Note 3: I_{DD} does not include I_{REF} current.

Note 4: Topr = -10 to 70° C

19.4.2 DC Characteristics (2) $(V_{DD} = 3 V)$

[Condition] $V_{DD} = 3.0 \text{ V} \pm 10\%$, $V_{SS} = A_{VSS} = 0 \text{ V}$, Topr = $-30 \text{ to } 70^{\circ}\text{C}$ (Typ.: $V_{DD} = 3.0 \text{ V}$, Topr = 25°C ,

Parameter	Symbol	Pins	Condition	on	Min	Тур.	Max	Unit
Hysteresis voltage	V _{HS}	Hysteresis input			-	0.4	-	V
	I _{IN1}	TEST						
Input current	I _{IN2}	Sink open-drain, Tri-st	V_{DD} = 3.3 V, V_{IN} = 3.3 V/0 V		-	-	±2	μΑ
	I _{IN3}	RESET, STOP	1					
Input resistance	R _{IN}	RESET pull-up			100	220	450	kΩ
Pull-down resistance (Note5)	R _K	Sink open-drain	$V_{DD} = 3.3 \text{ V, } V_{KK} =$	= -30 V	45	_	115	K\$2
Output lookage current	I _{LO1}	Sink open-drain, Tri-st	$V_{DD} = 3.3 \text{ V}, V_{OUT}$	-= 3.3 V/0 V	_	_	±2	
Output leakage current	I _{LO2}	Sink open-drain	$V_{DD} = 3.3 \text{ V, } V_{KK} =$	= -32 V	-	-	±2	μА
Output high voltage	V _{OH}	Tri-st	V _{DD} = 2.7 V, I _{OH} =	-0.6 mA	2.3	-	-	
Output low voltage	V _{OL}	Except XOUT (P40, P41 port)	V _{DD} = 2.7 V, I _{OL} =	V _{DD} = 2.7 V, I _{OL} = 0.9 mA		-	0.4	V
Output high current	I _{OH1}	P6, P7 port	V _{DD} = 2.7 V, V _{OH} :	$V_{DD} = 2.7 \text{ V}, V_{OH} = 1.5 \text{ V}$		-8	-	
	I _{OH2}	P8, P9, P _D port	V _{DD} = 2.7 V, V _{OH} :	$V_{DD} = 2.7 \text{ V}, V_{OH} = 1.5 \text{ V}$		-4.5	_	
Output low current	I _{OL}	High-current (P40, P41 port)	V _{DD} = 2.7 V, V _{OL} =	= 1.0 V	-	6	-	
Supply current in NORMAL1/2 modes			fc = 8.0 MHz fs = 32.768 kHz	AD converter	-	3	4.5	mA
Supply current in IDLE0/1/2 modes			fc = 8.0 MHz fs = 32.768 kHz	disable (IREF off)	-	2	2.5	
Supply current in NORMAL1/2 modes	I _{DD}		fc = 8.0 MHz fs = 32.768 kHz	AD converter enable	-	3.5	5	
Supply current in SLOW1/2 modes	55		fo 22.760 kHz		-	30	60	
Supply current in SLEEP0/1/2 modes			fs = 32.768 kHz AD converter	-	15	30	μΑ	
Supply current in STOP			Topr = to 50°C	disable	-	0.5	5	
mode			Topr = to 70°C		-	0.0	10	

Note 1: Typical values show those at Topr = 25° C, $V_{DD} = 3$ V.

Note 2: Input current (I_{IN1} , I_{IN3}); The current through pull-up or pull-down resistor is not included.

Note 3: $I_{\mbox{\scriptsize DD}}$ does not include $I_{\mbox{\scriptsize REF}}$ current.

Note 4: The supply currents of SLOW2 and SLEEP2 modes are equivalent to IDLE0, 1, 2.

Note 5: Topr = -10 to 70° C

19.5 AD Characteristics

(V_{SS} = 0 V, 4.5 V \leq V_{DD} \leq 5.5 V, Topr = -30 to 70° C)

Parameter	Symbol	Condition	Min	Тур.	Max	Unit
Analog reference voltage	V _{AREF}		V _{DD} – 1.5	-	V_{DD}	
Analog reerence voltage range	ΔV_{AREF}		3.0	-	-	V
Analog input voltage	V_{AIN}		0	-	V _{AREF}	
Analog supply current	I _{REF}	$V_{DD} = V_{AREF} = 5.5 \text{ V},$ $V_{SS} = A_{VSS} = 0.0 \text{ V}$	-	0.6	1.0	mA
Non linearity error			-	-	±1	
Zero point error		$V_{DD} = V_{AREF} = 4.5 \text{ to } 5.5 \text{ V},$	-	-	±1	LSB
Full scale error		$V_{SS} = A_{VSS} = 0.0 \text{ V}$	-	-	±1	LOB
Total error			-	_	±2	

(V_{SS} = 0 V, 2.7 V \leq V_{DD} < 4.5 V, Topr = -30 to 70° C)

Parameter	Symbol	Condition	Min	Тур.	Max	Unit
Analog reference voltage	V _{AREF}		V _{DD} – 1.5	-	V_{DD}	
Analog reerence voltage range	ΔV_{AREF}		2.5	-	-	V
Analog input voltage	V _{AIN}		0	-	V_{AREF}	
Analog supply current	I _{REF}	$V_{DD} = V_{AREF} = 4.5 \text{ V},$ $V_{SS} = A_{VSS} = 0.0 \text{ V}$	-	0.5	0.8	mA
Non linearity error			-	-	±1	
Zero point error		$V_{DD} = V_{AREF} = 2.7 \text{ to } 4.5 \text{ V},$	_	-	±1	LSB
Full scale error		$V_{SS} = A_{VSS} = 0.0 \text{ V}$	_	_	±1	LOB
Total error		1	-	-	±2	

- Note 1: Total errors includes all errors, except quantization error, and is defined as a maximum deviation from the ideal conversion
- Note 2: Conversion time is different in recommended value by power supply voltage. About conversion time, please refer to "Register Configuration".
- Note 3: Please use input voltage to AIN input pin in limit of V_{AREF} V_{SS}. When voltage of range outside is input, conversion value becomes unsettled and gives affect to other channel conversion value.
- Note 4: Analog Reference Voltage Range: $\Delta V_{AREF} = V_{AREF} V_{SS}$

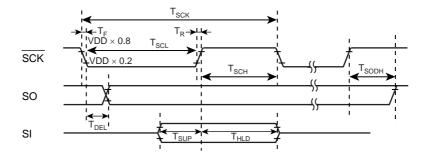
19.6 AC Characteristics

(V_{SS} = 0 V, 4.5 V \leq V_{DD} \leq 5.5 V, Topr = -30 to $70^{\circ}C)$

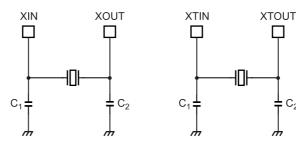
Parameter	Symbol	Conditions	Min	Тур.	Max	Unit
		NORMAL1/2 modes	0.25		4	
Machine cycle time	40.40	IDLE0/1/2 modes	0.25	_		
	tcyc	SLOW1/2 modes	117.6	-	133.3	μS
		SLEEP0/1/2 modes	117.6			
High level clock pulse width	t _{WCH}	For external clock operation		31.25	-	
Low level clock pulse width	t _{WCL}	(XIN input) fc = 16 MHz	_			ns
High level clock pulse width	t _{WCH}	For external clock operation			-	
Low level clock pulse width	t _{WCL}	(XTIN input) fs = 32.768 kHz	_	15.26		μS

(V_{SS} = 0 V, 2.7 V \leq V_{DD} \leq 4.5 V, Topr = -30 to $70^{\circ}C)$

Parameter	Symbol	Conditions	Min	Тур.	Max	Unit
		NORMAL1/2 modes	0.5		8	
Machine cycle time	tovo	IDLE0/1/2 modes	0.3	_		
	tcyc	SLOW1/2 modes	117.6		133.3	μ\$
		SLEEP0/1/2 modes	117.6			
High level clock pulse width	t _{WCH}	For external clock operation				
Low level clock pulse width	t _{WCL}	(XIN input) fc = 8 MHz	_	62.5	_	ns
High level clock pulse width	t _{WCH}	For external clock operation		45.00		
Low level clock pulse width	t _{WCL}	(XTIN input) fs = 32.768 kHz	_	15.26	_	μS


19.7 HSIO AC Characteristics

(V_{SS} = 0 V, 2.7 V \leq V_{DD} \leq 5.5 V, Topr = -30 to $70^{\circ}C)$


Parameter	Symbol	Conditions	Min	Тур.	Max	Unit
SCK output period (Internal clock)	T _{SCK1}		16/fc	-	-	
SCK output low width (Internal clock)	T _{SCL1}	8 MHz < fc ≤ 16 MHz V _{DD} = 4.5 V to 5.5 V	8/fc – 100 ns	-	-	
SCK output high width (Internal clock)	T _{SCH1}		8/fc – 100 ns	-	-	
SCK output period (Internal clock)	T _{SCK2}		8/fc	-	-	
SCK output low width (Internal clock)	T _{SCL2}	4 MHz < fc \leq 8 MHz V_{DD} = 2.7 V to 5.5 V	4/fc – 100 ns	-	-	s
SCK output high width (Internal clock)	T _{SCH2}		4/fc – 100 ns	-	-	
SCK output period (Internal clock)	T _{SCK3}	$fc \le 4 \text{ MHz}$ $V_{DD} = 2.7 \text{ V to } 5.5 \text{ V}$	4/fc	-	-	
SCK output low width (Internal clock)	T _{SCL3}		2/fc – 100 ns	-	-	
SCK output high width (Internal clock)	T _{SCH3}		2/fc – 100 ns	-	-	
SCK input period (External clock)	T _{SCK4}		800	-	-	
SCK input low width (External clock)	T _{SCL4}	fc \leq 8 MHz (V _{DD} = 2.7 V to 5.5 V) fc \leq 16 MHz (V _{DD} = 4.5 V to 5.5 V)	300 (Note1)	-	-	
SCK input low width (External clock)	T _{SCH4}		300 (Note1)	-	-	
SI input setup time	T _{SUP}		150	-	-	
SI input hold time	T _{HLD}		150	-	-	ns
SO output delay time	T _{DEL}		-	-	200	
Rising time	T _R	V _{DD} = 3.0 V, CL ≤ 50 pF (Note2)	-	-	100	
Falling time	T _F		-	-	100	
SO last bit hold time	T _{SODH}		16.5/fc	-	32.5/fc	

Note 1: T_{SCKL} , $T_{SCKH} \ge 2.5/fc$ (High-frequency clock mode), T_{SCKL} , $T_{SCKH} \ge 2.5/fc$ (Low-frequency clock mode)

Note 2: CL, external capacitance

19.8 Recommended Oscillating Conditions

- (1) High-frequency oscillation
- (2) Low-frequency oscillation
- Note 1: To ensure stable oscillation, the resonator position, load capacitance, etc. must be appropriate. Because these factors are greatly affected by board patterns, please be sure to evaluate operation on the board on which the device will actually be mounted.
- Note 2: For the resonators to be used with Toshiba microcontrollers, we recommend ceramic resonators manufactured by Murata Manufacturing Co., Ltd.

For details, please visit the website of Murata at the following URL:

http://www.murata.com

19.9 Handling Precaution

- The solderability test conditions for lead-free products (indicated by the suffix G in product name) are shown below.
 - 1. When using the Sn-37Pb solder bath

Solder bath temperature = 230 °C

Dipping time = 5 seconds

Number of times = once

R-type flux used

2. When using the Sn-3.0Ag-0.5Cu solder bath

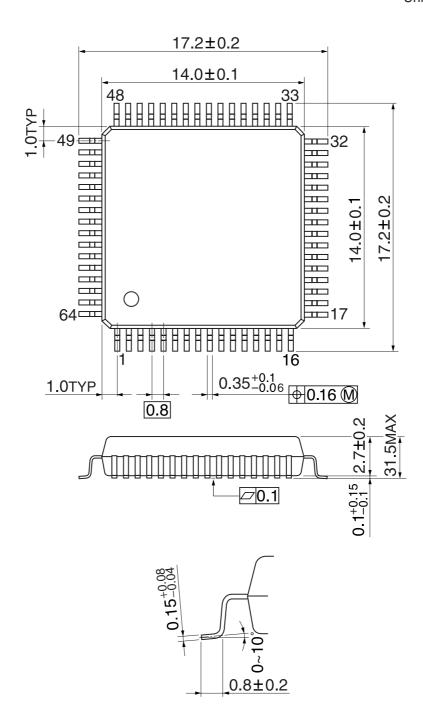
Solder bath temperature = 245 °C

Dipping time = 5 seconds

Number of times = once

R-type flux used

Note: The pass criteron of the above test is as follows:


Solderability rate until forming $\geq 95\%$

- When using the device (oscillator) in places exposed to high electric fields such as cathode-ray tubes, we recommend electrically shielding the package in order to maintain normal operating condition.

20. Package Dimensions

QFP64-P-1414-0.80C Rev 01

Unit: mm

This is a technical document that describes the operating functions and electrical specifications of the 8-bit microcontroller series TLCS-870/C (LSI).

Toshiba provides a variety of development tools and basic software to enable efficient software development.

These development tools have specifications that support advances in microcomputer hardware (LSI) and can be used extensively. Both the hardware and software are supported continuously with version updates.

The recent advances in CMOS LSI production technology have been phenomenal and microcomputer systems for LSI design are constantly being improved. The products described in this document may also be revised in the future. Be sure to check the latest specifications before using.

Toshiba is developing highly integrated, high-performance microcomputers using advanced MOS production technology and especially well proven CMOS technology.

We are prepared to meet the requests for custom packaging for a variety of application areas. We are confident that our products can satisfy your application needs now and in the future.