N- and P- Channel Enhancement-Mode Dual MOSFET

Features

- Low threshold
- Low on resistance
- Low input capacitance
- Fast switching speeds
- Freedom from secondary breakdown
- Low input and output leakage
- Independent, electrically isolated N- and Pchannels

Applications

- Medical ultrasound transmitters
- High voltage pulsers
- Amplifiers
- Buffers
- Piezoelectric transducer drivers
- General purpose line drivers

General Description

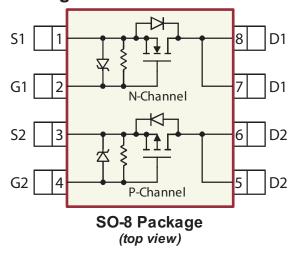
The Supertex TC6320 consists of high voltage low threshold N-channel and P-channel MOSFETs in an SO-8 package. Both MOSFETs have integrated gate-source resistors and gate-source zener diode clamps which are desired for high voltage pulser applications. The TC6320 is a complimentary, high-speed, high voltage, gate-clamped N- and P-channel MOSFET pair in an SO-8 package. These low threshold enhancement-mode (normally-off) transistors utilize an advanced vertical DMOS structure and Supertex's well-proven silicon-gate manufacturing process. This combination produces devices with the power handling capabilities of bipolar transistors and with the high input impedance and positive temperature coefficient inherent in MOS devices. Characteristic of all MOS structures, these devices are free from thermal runaway and thermally induced secondary breakdown.

Supertex's vertical DMOS FETs are ideally suited to a wide range of switching and amplifying applications where very low threshold voltage, high breakdown voltage, high input impedance, low input capacitance, and fast switching speeds are desired.

Ordering Information

Device	Package Options		BV _{DSS}	BV _{DGS}	R _{DS(ON)} (MAX)	
Device	8-Lead SOIC (Narrow Body)		N-Channel	P-Channel	N-Channel	P-Channel
TC6320	TC6320TG	TC6320TG-G	200V	-200V	7.0Ω	8.0Ω

-G indicates package is RoHS compliant ('Green')

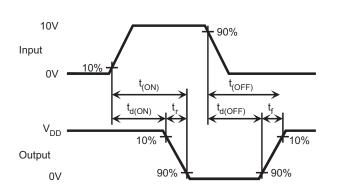

Absolute Maximum Ratings

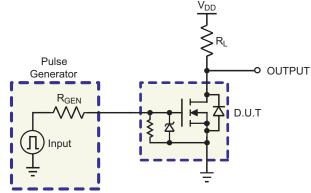
Parameter	Value
Drain to source voltage	BV _{DSS}
Drain to gate voltage	BV_{DGS}
Operating and storage temperature	-55°C to +150°C
Soldering temperature ¹	+300°C

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied. Continuous operation of the device at the absolute rating level may affect device reliability. All voltages are referenced to device ground.

Note 1. Distance of 1.6mm from case for 10 seconds.

Pin Configuration

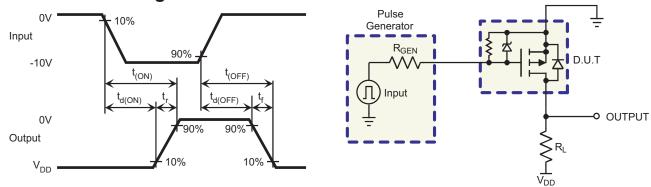

N- Channel Electrical Characteristics (T_J = 25°C unless otherwise specified)


Symbol	Parameter	Min	Тур	Max	Units	Conditions	
BV _{DSS}	Drain-to-source breakdown voltage	200	-	-	V	$V_{GS} = 0V, I_{D} = 2.0 \text{mA}$	
$V_{GS(th)}$	Gate threshold voltage	1.0	-	2.0	V	$V_{GS} = V_{DS}$, $I_D = 1.0 \text{mA}$	
$\Delta V_{GS(th)}$	Change in V _{GS(th)} with temperature	-	-	-4.5	mV/°C	$V_{GS} = V_{DS}$, $I_D = 1.0 \text{mA}$	
R_{gs}	Gate-Source Shunt Resistor	10	-	50	ΚΩ	I _{GS} = 100μA	
ΔR_{GS}	Change in RGS with Temperature	-	-	TBD	%/°C	I _{GS} = 100μA	
VZ_{GS}	Gate-Source Zener Voltage	13.2	-	25	V	I _{GS} = 2.0mA	
ΔVZ_{GS}	Change in VZGS with Temperature	-		TBD	mV/°C	I _{GS} = 2.0mA	
		-	-	10.0	μA	V_{DS} = Max rating, V_{GS} = 0V	
I _{DSS}	Zero gate voltage drain current	-	-	1.0	mA	$V_{DS} = 0.8$ Max Rating, $V_{GS} = 0V$, $T_A = 125^{\circ}C$	
	ONI state drain surment	1.0	-	-	А	$V_{GS} = 4.5V, V_{DS} = 25V$	
I _{D(ON)}	ON-state drain current	2.0	-	-		$V_{GS} = 10V, V_{DS} = 25V$	
ь (Static drain-to-source ON-state resistance	-	-	8.0	Ω	$V_{GS} = 4.5V, I_{D} = 150mA$	
R _{DS(ON)}		-	-	7.0		$V_{GS} = 10V, I_{D} = 1.0A$	
$\Delta R_{DS(ON)}$	Change in R _{DS(ON)} with temperature	-	-	1.0	%/°C	$V_{GS} = 4.5V, I_{D} = 150 \text{mA}$	
G _{FS}	Forward transconductance	400	-	-	mmho	$V_{DS} = 25V, I_{D} = 200mA$	
C _{ISS}	Input capacitance	-	-	110		$V_{GS} = 0V,$	
C _{oss}	Common source output capacitance	-	-	60	pF	V _{DS} = 25V, f = 1MHz	
C _{RSS}	Reverse transfer capacitance	-	-	23			
t _{d(ON)}	Turn-ON delay time	-	-	10			
t _r	Rise time	-	-	15	no	$V_{DD} = 25V,$ $I_{D} = 1.0A,$ $R_{GFN} = 25\Omega$	
t _{d(OFF)}	Turn-OFF delay time	-	-	20	ns		
t _f	Fall time	-	-	15			
V _{SD}	Diode forward voltage drop	-	-	1.8	V	$V_{GS} = 0V, I_{SD} = 0.5A$	
t _{rr}	Reverse recovery time	-	300	-	ns	$V_{GS} = 0V, I_{SD} = 0.5A$	
Notes:					•		

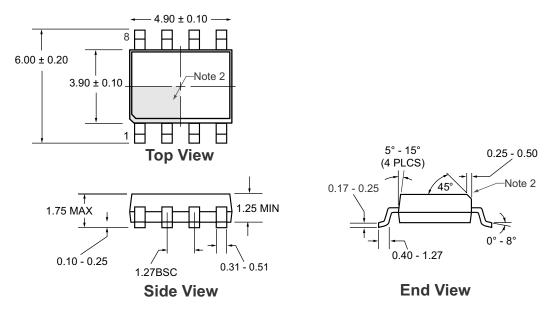
Notes

1.All D.C. parameters 100% tested at 25C unless otherwise stated. (Pulse test: 300s pulse, 2% duty cycle.) 2.All A.C. parameters sample tested.

N- Channel Switching Waveforms and Test Circuit


P- Channel Electrical Characteristics (T_J = 25°C unless otherwise specified)

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Symbol	Parameter	Min	Тур	Max	Units	Conditions	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	BV _{DSS}	Drain-to-source breakdown voltage	-200	-	1	V	$V_{GS} = 0V, I_{D} = -2.0 \mu A$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$V_{GS(th)}$	Gate threshold voltage	-1.0	-	-2.4	V		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\Delta V_{GS(th)}$	Change in V _{GS(th)} with temperature	-	-	4.5	mV/°C	$V_{GS} = V_{DS}$, $I_D = -1.0$ mA	
$ \begin{array}{ c c c c c c c c } \hline VZ_{GS} & {\sf Gate-source zener voltage} & 13.2 & - & 25 & V & {\sf I}_{GS} = -2mA \\ \hline \Delta VZ_{GS} & {\sf Change in RGS with temperature} & - & - & TBD & mV/^{\circ}C & {\sf I}_{GS} = -2mA \\ \hline \\ I_{DSS} & {\sf Zero gate voltage drain current} & - & -10 & \mu A & V_{DS} = Max rating, V_{GS} = 0V \\ \hline \\ I_{D(ON)} & {\sf Change in RGS with temperature} & - & -1.0 & mA & V_{DS}^{\circ} = 0.8 Max Rating, V_{GS} = 0V, T_A = 125^{\circ}C \\ \hline \\ I_{D(ON)} & {\sf Change in RGS with temperature} & - & -1.0 & - & - & - & - & - & - & - & - & - & $		Gate-source shunt resistor	10	-	50	ΚΩ	I _{GS} = 100μA	
$ \begin{array}{ c c c c c } \hline \Delta VZ_{GS} & Change in RGS with temperature & - & - & TBD & mV/^{O}C & I_{GS} = -2mA \\ \hline \\ I_{DSS} & Zero gate voltage drain current & - & - & -10 & \mu A & V_{DS} = Max rating, V_{GS} = 0V \\ \hline \\ I_{D(ON)} & Change in RGS with temperature & - & - & -1.0 & mA & V_{DS} = 0.8 Max Rating, V_{GS} = 0V, T_{A} = 125^{\circ}C \\ \hline \\ I_{D(ON)} & Change in R_{DS(ON)} & - & - & A & V_{CS} = -4.5V, V_{DS} = -25V \\ \hline \\ I_{D(ON)} & Change in R_{DS(ON)} & With temperature & - & - & 10 & 0 \\ \hline \\ I_{D(ON)} & Change in R_{DS(ON)} & With temperature & - & - & 1.0 & 0 \\ \hline \\ I_{D(ON)} & Change in R_{DS(ON)} & With temperature & - & - & 1.0 & 0 \\ \hline \\ I_{D(ON)} & Change in R_{DS(ON)} & With temperature & - & - & 1.0 & 0 \\ \hline \\ I_{D(ON)} & Change in R_{DS(ON)} & With temperature & - & - & 1.0 & 0 \\ \hline \\ I_{D(ON)} & Change in R_{DS(ON)} & With temperature & - & - & 1.0 & 0 \\ \hline \\ I_{D(ON)} & Change in R_{DS(ON)} & With temperature & - & - & 1.0 & 0 \\ \hline \\ I_{D(ON)} & Change in R_{DS(ON)} & With temperature & - & - & 1.0 & 0 \\ \hline \\ I_{D(ON)} & Change in R_{DS(ON)} & With temperature & - & - & 1.0 & 0 \\ \hline \\ I_{D(ON)} & Change in R_{DS(ON)} & With temperature & - & - & 1.0 & 0 \\ \hline \\ I_{D(ON)} & Change in R_{DS(ON)} & With temperature & - & - & 1.0 & 0 \\ \hline \\ I_{D(ON)} & Change in R_{DS(ON)} & With temperature & - & - & 1.0 & 0 \\ \hline \\ I_{D(ON)} & Change in R_{DS(ON)} & With temperature & - & - & 1.0 & 0 \\ \hline \\ I_{D(ON)} & V_{DS} = -25V, I_{D} = -200mA \\ \hline \\ I_{D(ON)} & V_{DS} = -25V, I_{D} = -200mA \\ \hline \\ I_{D(ON)} & V_{DS} = -25V, I_{D} = -200mA \\ \hline \\ I_{D(ON)} & V_{DS} = -25V, I_{D} = -25V, I_{D$	ΔR_{gs}	Change in R _{GS} with temperature	-	-	TBD	%/°C	I _{GS} = 100μA	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	VZ _{GS}	Gate-source zener voltage	13.2	-	25	V	I _{GS} = -2mA	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	ΔVZ_{GS}	Change in RGS with temperature	-	-	TBD	mV/°C	I _{GS} = -2mA	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			-	-	-10	μA	V_{DS} = Max rating, V_{GS} = 0V	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	I _{DSS}	Zero gate voltage drain current	-	-	-1.0	mA		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		ON-state drain current	-1.0	-	1	Α	$V_{GS} = -4.5V, V_{DS} = -25V$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	D(ON)		-2.0	-	-		V _{GS} = -10V, V _{DS} = -25V	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	В	Static drain-to-source ON-state resis-	_	-	10	Ω	$V_{GS} = -4.5V, I_{D} = -150mA$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	N _{DS(ON)}	tance	-	-	8.0		V _{GS} = -10V, I _D = -1.0A	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\Delta R_{DS(ON)}$	Change in R _{DS(ON)} with temperature	-	-	1.0	%/°C	V _{GS} = -10V, I _D =-200mA	
		Forward transconductance	400	-	-	mmho	$V_{DS} = -25V, I_{D} = -200mA$	
	C _{ISS}	Input capacitance	-	-	200		V = 0V.	
$t_{d(ON)}$ Reverse transfer capacitance 30 $t_{d(ON)}$ Turn-ON delay time - 10 t Rise time - 15 $v_{DD} = -25V$,	C _{oss}	Common source output capacitance	-	-	55	pF	$V_{DS} = -25V,$	
t Rise time 15 V _{DD} = -25V,	C _{RSS}	Reverse transfer capacitance	-	-	30		f = 1MHz	
t Rise time 15 $V_{DD} = -25V$,	t _{d(ON)}	Turn-ON delay time	-	-	10			
	t _r	Rise time	-	-	15		I _D = -1.0A,	
$t_{d(OFF)}$ Turn-OFF delay time 20 ns $I_D = -1.0A$, $R_{GEN} = 25\Omega$	t _{d(OFF)}	Turn-OFF delay time	-	-	20	ris		
t _f Fall time 15		Fall time	-	-	15		OLIY	
V_{SD} Diode forward voltage drop1.8 V $V_{GS} = 0V$, $I_{SD} = -0.5A$	V _{SD}	Diode forward voltage drop	-	-	-1.8	V	$V_{GS} = 0V, I_{SD} = -0.5A$	
t_{rr} Reverse recovery time - 300 - ns $V_{gs} = 0V$, $I_{gD} = -0.5A$		Reverse recovery time	-	300	-	ns	$V_{GS} = 0V, I_{SD} = -0.5A$	


Notes

1.All D.C. parameters 100% tested at 25C unless otherwise stated. (Pulse test: 300s pulse, 2% duty cycle.) 2.All A.C. parameters sample tested.

P- Channel Switching Waveforms and Test Circuit

8-Lead SO (TG) Package Outline

Notes:

- 1. All dimensions in millimeters. Angles in degrees.
- 2. If the corner is not chamfered, then a Pin 1 identifier must be located within the area indicated.

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to http://www.supertex.com/packaging.html.)

Supertex inc. does not recommend the use of its products in life support applications, and will not knowingly sell its products for use in such applications, unless it receives an adequate "product liability indemnification insurance agreement". **Supertex** does not assume responsibility for use of devices described and limits its liability to the replacement of the devices determined defective due to workmanship. No responsibility is assumed for possible omissions or inaccuracies. Circuitry and specifications are subject to change without notice. For the latest product specifications, refer to the **Supertex** website: http://www.supertex.com.

©2007 **Supertex inc.** All rights reserved. Unauthorized use or reproduction is prohibited.