# SK 80 DTA



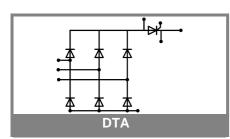
SEMITOP<sup>®</sup> 3

### 3-phase bridge rectifier+ series thyristor

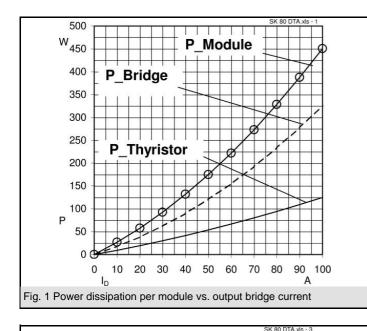
#### SK 80 DTA

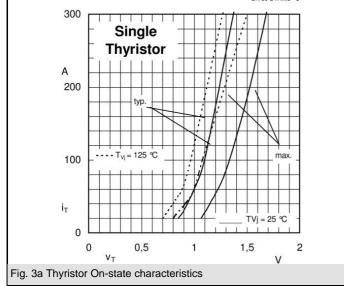
Preliminary Data

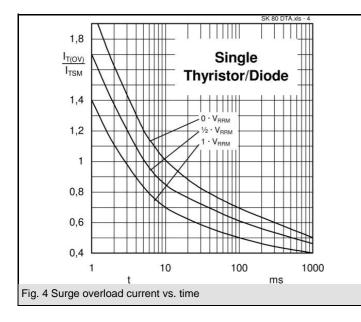
#### Features

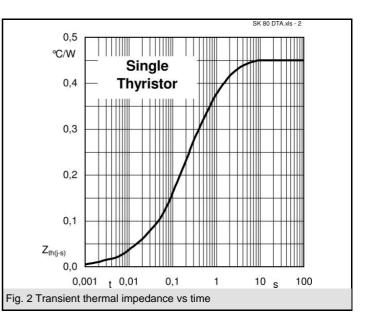

- Compact design
- One screw mounting
- Heat transfer and isolation through direct copper bonded aluminium oxide ceramic (DBC)
- Glass passivated thyristor chips
- Reverse voltage up to 1600 V
- High surge currents

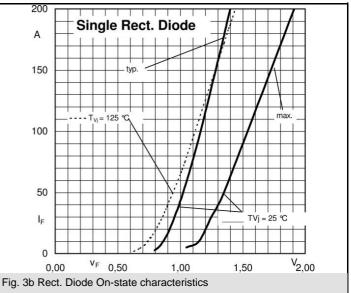
### **Typical Applications**

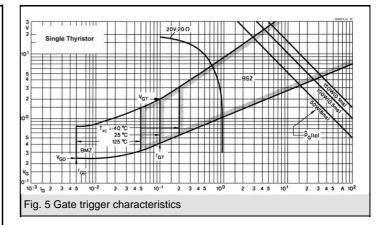

- Soft starters
- Light control
- Temperature control


|                  | -                                   |                          |
|------------------|-------------------------------------|--------------------------|
| V <sub>RSM</sub> | V <sub>RRM</sub> , V <sub>DRM</sub> | I <sub>D</sub> = 81 A    |
| V                | V                                   | (T <sub>s</sub> = 80 °C) |
| 900              | 800                                 | SK 80 DTA 08             |
| 1300             | 1200                                | SK 80 DTA 12             |
| 1700             | 1600                                | SK 80 DTA 16             |


| Characteristics                    |                                                                     | T <sub>s</sub> = 25°C unless otherwise specified |               |       |  |
|------------------------------------|---------------------------------------------------------------------|--------------------------------------------------|---------------|-------|--|
| Symbol                             | Conditions                                                          |                                                  | Values        | Units |  |
| I <sub>D</sub>                     | T <sub>S</sub> = 80°C; Ind. load                                    |                                                  | 81            | А     |  |
| I <sub>TAV</sub>                   | sin. 180°; T <sub>s</sub> = 25 (80) °C per thyristor                |                                                  | 113 (65)      | А     |  |
| I <sub>FAV</sub>                   | sin. 180°; T <sub>s</sub> = 25 (80) °C per diode                    |                                                  | 65 (45)       | А     |  |
| I <sub>TSM</sub> /I <sub>FSM</sub> | T <sub>vi</sub> = 25 (125) °C; 10 ms                                |                                                  | 2000 (1800)   | А     |  |
| l²t                                | T <sub>vi</sub> = 25 (125) °C; 8,3 10 ms                            |                                                  | 20000 (16200) | A²s   |  |
| T <sub>stg</sub>                   |                                                                     |                                                  | -40,+125      | °C    |  |
| T <sub>solder</sub>                | terminals, 10 s                                                     |                                                  | 260           | °C    |  |
| Thyristor                          |                                                                     |                                                  |               |       |  |
| (dv/dt) <sub>cr</sub>              | T <sub>vi</sub> = 125 °C                                            |                                                  | 1000          | V/µs  |  |
| (di/dt) <sub>cr</sub>              | $T_{v_i}^{'j} = 125 \text{ °C}; f = f = Hz$                         |                                                  | 50            | A/µs  |  |
| t <sub>q</sub>                     | T <sub>vi</sub> = 125 °C; typ.                                      |                                                  | 120           | μs    |  |
| I <sub>H</sub>                     | T <sub>vj</sub> = 25 °C; typ. / max.                                |                                                  | 100 / 200     | mA    |  |
| I <sub>L</sub>                     | $T_{vj} = 25 \text{ °C}; R_G = 33 \Omega; \text{ typ. / max.}$      |                                                  | 200 / 500     | mA    |  |
| V <sub>T</sub>                     | T <sub>vi</sub> = 25 °C; (I <sub>T</sub> = 300 A); max.             |                                                  | 1,85          | V     |  |
| V <sub>T(TO)</sub>                 | T <sub>vi</sub> = 125 °C                                            |                                                  | max. 0,9      | V     |  |
| r <sub>T</sub>                     | $T_{vi} = 125 \text{ °C}$                                           |                                                  | max. 3,5      | mΩ    |  |
| I <sub>DD</sub> , I <sub>RD</sub>  | $T_{vj}^{,j}$ = 125 °C; $V_{DD}$ = $V_{DRM}$ ; $V_{RD}$ = $V_{RRM}$ |                                                  | max. 20       | mA    |  |
| R <sub>th(j-s)</sub>               | Cont. per thyristor                                                 |                                                  | 0,45          | K/W   |  |
| T <sub>vj</sub>                    |                                                                     |                                                  | - 40 + 125    | °C    |  |
| V <sub>GT</sub>                    | T <sub>vi</sub> = 25 °C; d.c.                                       |                                                  | 2             | V     |  |
| I <sub>GT</sub>                    | T <sub>vi</sub> = 25 °C; d.c.                                       |                                                  | 100           | mA    |  |
| V <sub>GD</sub>                    | T <sub>vi</sub> = 125 °C; d.c.                                      |                                                  | 0,25          | V     |  |
| I <sub>GD</sub>                    | T <sub>vj</sub> = 125 °C; d.c.                                      |                                                  | 5             | mA    |  |
| Diode                              |                                                                     |                                                  |               |       |  |
| V <sub>F</sub>                     | T <sub>vi</sub> = 25 °C; (I <sub>F</sub> = 75 A); max.              |                                                  | 1,45          | V     |  |
| V <sub>(TO)</sub>                  | $T_{vi} = 125 \text{ °C}$                                           |                                                  | 0,8           | V     |  |
| r <sub>T</sub>                     | T <sub>vi</sub> = 125 °C                                            |                                                  | 4,5           | mΩ    |  |
| I <sub>RD</sub>                    | T <sub>vj</sub> = 125 °C; V <sub>RD</sub> = V <sub>RRM</sub>        |                                                  | 2             | mA    |  |
| R <sub>th(j-s)</sub>               | per diode                                                           |                                                  | 1             | K/W   |  |
| T <sub>vj</sub>                    |                                                                     |                                                  | -40+150       | °C    |  |
| Mechanical data                    |                                                                     |                                                  |               |       |  |
| V <sub>isol</sub>                  | a. c. 50 Hz; r.m.s.; 1 s / 1 min                                    |                                                  | 3000 (2500)   | V     |  |
| M <sub>1</sub>                     | mounting torque                                                     |                                                  | 2,5           | Nm    |  |
| w                                  |                                                                     |                                                  | 30            | g     |  |
| Case                               | SEMITOP <sup>®</sup> 3                                              |                                                  | T 45          |       |  |

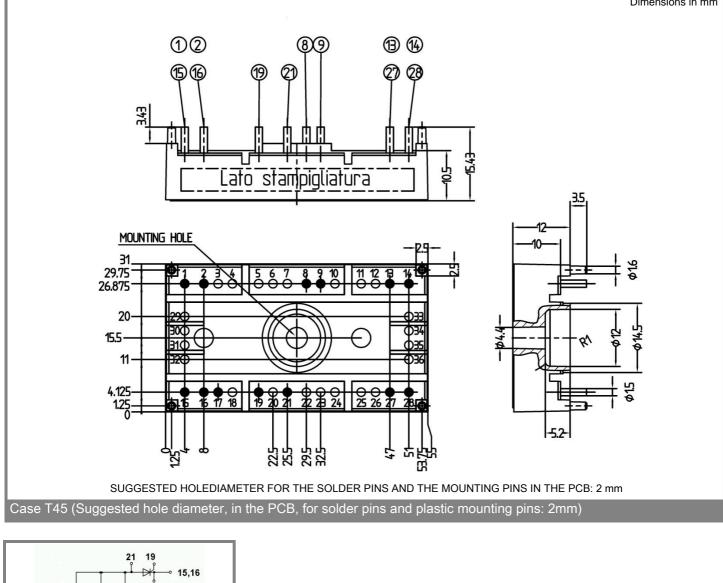


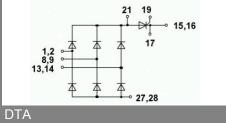


## SK 80 DTA










## SK 80 DTA

Dimensions in mm





This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.