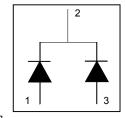


HFA08TA60CS

$\mathsf{HEXFRED}^{\mathsf{TM}}$


Ultrafast, Soft Recovery Diode

Features

- · Ultrafast Recovery
- · Ultrasoft Recovery
- Very Low I_{RRM}
- Very Low Q_{rr}
- Specified at Operating Conditions

Benefits

- · Reduced RFI and EMI
- Reduced Power Loss in Diode and Switching Transistor
- · Higher Frequency Operation
- Reduced Snubbing
- · Reduced Parts Count

Description

International Rectifier's HFA08TA60CS is a state of the art center tap ultra fast recovery diode. Employing the latest in epitaxial construction and advanced processing techniques it features a superb combination of characteristics which result in performance which is unsurpassed by any rectifier previously available. With basic ratings of 600 volts and 4 amps per Leg continuous current, the HFA08TA60CS is especially well suited for use as the companion diode for IGBTs and MOSFETs. In addition to ultra fast recovery time, the HEXFRED product line features extremely low values of peak recovery current (IRRM) and does not exhibit any tendency to "snap-off" during the to portion of recovery. The HEXFRED features combine to offer designers a rectifier with lower noise and significantly lower switching losses in both the diode and the switching transistor. These HEXFRED advantages can help to significantly reduce snubbing, component count and heatsink sizes. The HEXFRED HFA08TA60CS is ideally suited for applications in power supplies and power conversion systems (such as inverters), motor drives, and many other similar applications where high speed, high efficiency is needed.

Absolute Maximum Ratings

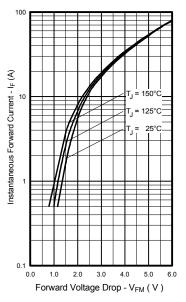
	S S			
Parameter		Max	Units	
V _R	Cathode-to-Anode Voltage	600	V	
I _F @ T _C = 100°C	Continuous Forward Current	4.0		
I _{FSM}	Single Pulse Forward Current	25	Α	
I _{FRM}	Maximum Repetitive Forward Current	16		
P _D @ T _C = 25°C	Maximum Power Dissipation	25	w	
P _D @ T _C = 100°C	Maximum Power Dissipation	10	VV	
TJ	Operating Junction and	55.1	0	
T _{STG}	Storage Temperature Range	-55 to +150	С	

Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

• • • • • • • • • • • • • • • • • • • •						• •		
	Parameter	Min	Тур	Max	Units	Test Conditions		
V_{BR}	Cathode Anode Breakdown Voltage	600			V	I _R = 100μA		
V _{FM}	Max Forward Voltage		1.5	1.8	V	I _F = 4.0A		
			1.8	2.2		I _F = 8.0A See	Fig. 1	
			1.4	1.7		I _F = 4.0A, T _J = 125°C	С	
I _{RM}	Max Reverse Leakage Current		0.17	3.0	μA	V _R = V _R Rated See	Fig. 2	
			44	300		$T_J = 125$ °C, $V_R = 0.8 \times V_R$ Rated		
C _T	Junction Capacitance		4.0	8.0	pF	V _R = 200V See	Fig. 3	
Ls	Series Inductance		8.0		nH	Measured lead to lead 5mm f	rom	
			0.0		ш	package body		

Dynamic Recovery Characteristics @ T_J = 25°C (unless otherwise specified)

•	,	•		•		•	,	
	Parameter	Min	Тур	Max	Units	Test Conditions		
t _{rr}	Reverse Recovery Time		17			$I_F = 1.0A$, $di_f/dt = 200A/\mu s$, $V_R = 30$		
t _{rr1}	See Fig. 5, 6 & 16		28	42	ns	T _J = 25°C		
t _{rr2}	-		38	57		T _J = 125°C	$I_F = 4.0A$	
I _{RRM1}	Peak Recovery Current		2.9	5.2		T _J = 25°C		
I _{RRM2}	See Fig. 7& 8		3.7	6.7		T _J = 125°C	V _R = 200V	
Q _{rr1}	Reverse Recovery Charge		40	60		T _J = 25°C		
Q _{rr2}	See Fig. 9 & 10		70	105		T _J = 125°C	di _f /dt = 200A/µs	
di _{(rec)M} /dt1	Peak Rate of Fall of Recovery Current		280			T _J = 25°C		
$di_{(rec)M}/dt2 \\$	During t _b See Fig. 11 & 12		235			T _J = 125°C		


Thermal - Mechanical Characteristics

	Parameter	Min	Тур	Max	Units
T _{lead} ①	Lead Temperature			300	°C
R _{thJC}	Thermal Resistance, Junction to Case			5.0	- K/W
R _{thJA} ②	Thermal Resistance, Junction to Ambient			80	\ \text{\chi_vv}
Wt	Weight		2.0		g
			0.07		(oz)
Т	Mounting Torque	6.0		12	Kg-cm
		5.0		10	lbf•in

① 0.063 in. from Case (1.6mm) for 10 sec

② Typical Socket Mount

Bulletin PD-20058 01/01

Fig. 1 - Maximum Forward Voltage Drop vs. Instantaneous Forward Current,

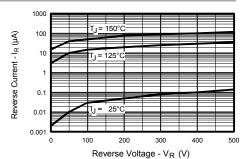



Fig. 2 - Typical Reverse Current vs. Reverse Voltage

Fig. 3 - Typical Junction Capacitance vs. Reverse Voltage

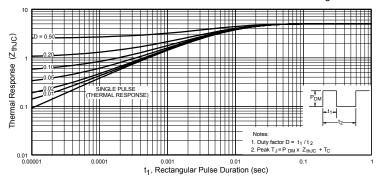


Fig. 4 - Maximum Thermal Impedance Zthic Characteristics

Bulletin PD-20058 01/01

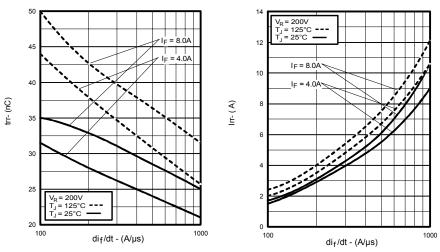
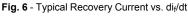
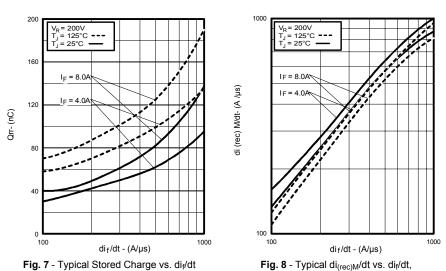




Fig. 5 - Typical Reverse Recovery vs. di_f/dt

4 www.irf.com

Bulletin PD-20058 01/01

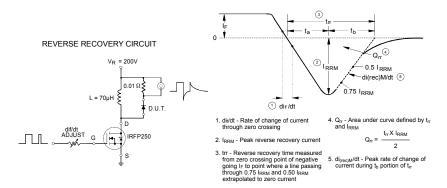
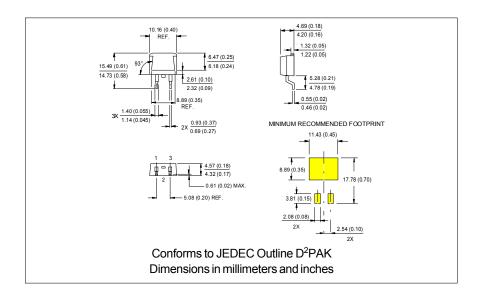



Fig. 9 - Reverse Recovery Parameter Test Circuit

Fig. 10 - Reverse Recovery Waveform and Definitions

HFA08TA60CS

Bulletin PD-20058 01/01

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105

TAC Fax: (310) 252-7309

Visit us at www.irf.com for sales contact information. 01/01

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.