TOSHIBA Photointerrupter Infrared LED + Phototransistor

TLP833(F)

Lead(Pb)-Free

Copiers, Printers, Fax Machines
VCRS, Microwave Ovens, Air Conditioners

Automatic Vending Machines
 Various Position Detection Sensors

The TLP833(F) is a photointerrupter which incorporates a high radiant power GaAs LED and a fast-response Si phototransistor. The package has a deep gap.

- Package with deep gap (gap: 12 mm)
- Designed for direct mounting on printed circuit boards (positioning pins included).
- Gap: 5 mm
- Resolution: Slit width 0.5 mm
- High current transfer ratio: $\mathrm{IC} / \mathrm{IF}=5 \%(\mathrm{~min})$
- High temperature operation: $\mathrm{T}_{\mathrm{opr}}=95^{\circ} \mathrm{C}(\max)$
- Package materialः Polybutylene terephthalate
(UL94-V-0)

Weight: 1g (typ.)

- Detector impermeable to visible light

Absolute Maximum Ratings ($\mathbf{T a}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$)

Characteristic			Symbol	Rating	Unit
믈	Forward current		I_{F}	50	mA
	Forward current derating	$25^{\circ} \mathrm{C}<\mathrm{Ta} \leqq 85^{\circ} \mathrm{C}$	$\Delta \mathrm{I}_{\mathrm{F}} /{ }^{\circ} \mathrm{C}$	-0.33	$\mathrm{mA} /{ }^{\circ} \mathrm{C}$
		Ta>85 ${ }^{\circ} \mathrm{C}$		-2	
	Reverse voltage		V_{R}	5	V
$\grave{\vdots}$ 	Collector-emitter voltage		$\mathrm{V}_{\text {CEO }}$	35	V
	Emitter-collector voltage		$\mathrm{V}_{\text {ECO }}$	5	V
	Collector power dissipation		P_{C}	75	mW
	Collector power dissipation derating$\left(\mathrm{Ta}>25^{\circ} \mathrm{C}\right)$		$\Delta \mathrm{PC} /{ }^{\circ} \mathrm{C}$	-1	$\mathrm{mW} /{ }^{\circ} \mathrm{C}$
Collector current			IC	50	mA
Operating temperature range			Topr	-30~85	${ }^{\circ} \mathrm{C}$
Storage temperature range			$\mathrm{T}_{\text {stg }}$	-40~100	${ }^{\circ} \mathrm{C}$
Soldering temperature (5 s)			$\mathrm{T}_{\text {sol }}$	260	${ }^{\circ} \mathrm{C}$

Note: Using continuously under heavy loads (e.g. the application of high temperature/current/voltage and the significant change in temperature, etc.) may cause this product to decrease in the reliability significantly even if the operating conditions (i.e. operating temperature/current/voltage, etc.) are within the absolute maximum ratings and the operating ranges.
Please design the appropriate reliability upon reviewing the Toshiba Semiconductor Reliability Handbook ("Handling Precautions"/"Derating Concept and Methods") and individual reliability data (i.e. reliability test report and estimated failure rate, etc).

Markings

Operating Ranges

Characteristic	Symbol	Min	Typ.	Max	Unit
Supply voltage	V_{CC}	-	5	24	V
Forward current	I_{F}	-	-	25	mA
Operating temperature	$\mathrm{T}_{\mathrm{opr}}$	-10	-	75	${ }^{\circ} \mathrm{C}$

Optical Electrical Characteristics $\left(\mathbf{T a}=25^{\circ} \mathrm{C}\right)$

Characteristic		Symbol	Test Condition		Min	Typ.	Max	Unit
블	Forward voltage	V_{F}	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$		1.00	1.15	1.30	V
	Reverse current	I_{R}	$V_{R}=5 \mathrm{~V}$		-	-	10	$\mu \mathrm{A}$
	Peak emission wavelength	λ_{P}	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$		-	940	-	nm
¢ ¢ 0 0	Dark current	Id (ICEO)	$\mathrm{V}_{\mathrm{CE}}=24 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=0$		-	-	0.1	$\mu \mathrm{A}$
	Peak sensitivity wavelength	λ_{P}	-		-	870	-	nm
$\begin{aligned} & \text { D } \\ & \frac{\mathbf{0}}{0} \\ & \text { O} \end{aligned}$	Current transfer ratio	$\mathrm{IC}_{\mathrm{C}} / \mathrm{I}_{\mathrm{F}}$	$\mathrm{V}_{C E}=2 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$		5	-	100	\%
	Collector-emitter saturation voltage	$\mathrm{V}_{C E}$ (sat)	$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}, \mathrm{I}_{\mathrm{C}}=0.5 \mathrm{~mA}$		-	0.1	0.35	V
	Rise time	t_{r}	$\begin{aligned} & V_{C C}=5 \mathrm{~V}, I_{C}=1 \mathrm{~mA} \\ & R_{L}=1 \mathrm{k} \Omega \end{aligned}$	(Note)	-	15	-	$\mu \mathrm{s}$
	Fall time	t_{f}			-	15	-	

(Note): Switching time measurement circuit and waveform

Precautions

1. Clean only the soldered part of the leads. Do not immerse the entire package in the cleaning solvent.
2. The package is made of polybutylene-terephthalate. Oil or chemicals may cause the package to melt or crack. Care must be taken in relation to the environment in which the device is to be installed.
3. Mount the device on a level surface.
4. Keep the device away from external light. Although the phototransistor is of low optical sensitivity, the device may malfunction if external light with a wavelength of 700 nm or more is allowed to impinge on it.
5. Conversion efficiency falls over time due to the current which flows in the infrared LED. When designing a circuit, take into account this change in conversion efficiency over time.
The ratio of fluctuation in conversion efficiency to fluctuation in infrared LED optical output is $1: 1$.

$$
\frac{\mathrm{I}^{\mathrm{C}} / \mathrm{I} \mathrm{~F}(\mathrm{t})}{\mathrm{I}_{\mathrm{C}} / \mathrm{F}(\mathrm{~F}(0)}=\frac{\mathrm{P}_{\mathrm{O}}(\mathrm{t})}{\mathrm{P}_{\mathrm{O}}(0)}
$$

Package Dimensions

Weight: 1 g (typ.)

Pin Connection

1. Anode
2. Cathode
3. Collector
4. Emitter

A

B

Switching Time Test Circuit

Switching Characteristics (saturated operation)

Relative Positioning Of Shutter And Device

For normal operation position the shutter and the device as shown in the figure below. By considering the device's detection direction characteristic and switching time, determine the shutter slit width and pitch.

