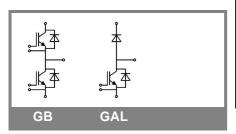


SEMITRANS[®] 3

IGBT Modules


SKM 150GB123D SKM 150GAL123D

Features

- MOS input (voltage controlled)
- N channel, Homogeneous Si
- · Low inductance case
- Very low tail current with low temperature dependence
- High short circuit capability, self limiting to 6 x I_{cnom}
- · Latch-up free
- Fast & soft inverse CAL diodes
- Isolated copper baseplate using DCB Direct Copper Bonding
- Large clearance (12 mm) and creepage distances (20 mm)

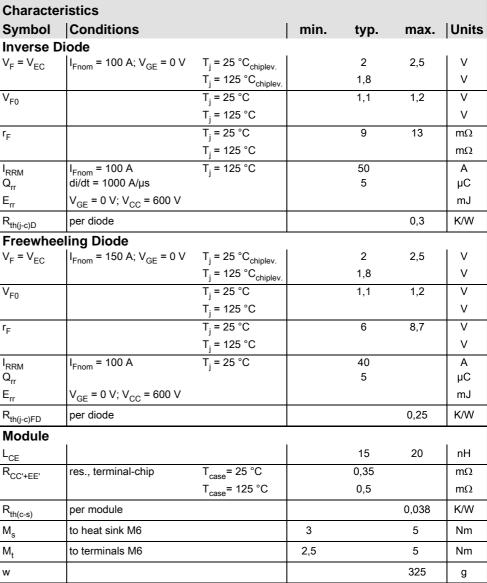
Typical Applications

- AC inverter drives
- UPS

Absolut	te Maximum Ratings	T _c =	25 °C, unless otherwise	specified
Symbol	Conditions		Units	
IGBT				
V_{CES}	T _j = 25 °C T _i = 150 °C		1200	V
I _C	T _j = 150 °C	T _{case} = 25 °C	150	А
		T _{case} = 80 °C	110	Α
I_{CRM}	I _{CRM} =2xI _{Cnom}		200	Α
V _{GES}			± 20	V
t _{psc}	V_{CC} = 600 V; $V_{GE} \le 20$ V; $V_{CES} < 1200$ V	T _j = 125 °C	10	μs
Inverse	Diode			
I_{F}	T _j = 150 °C	T_{case} = 25 °C	150	Α
		T _{case} = 80 °C	100	Α
I_{FRM}	I _{FRM} =2xI _{Fnom}		200	Α
I _{FSM}	$t_p = 10 \text{ ms}; \sin.$	T _j = 150 °C	1100	Α
Freewh	eeling Diode			
I_{F}	T _j = 150 °C	T_{case} = 25 °C	200	Α
		T_{case} = 80 °C	135	Α
I _{FRM}			300	Α
I _{FSM}	$t_p = 10 \text{ ms}; \sin.$	T _j = 150 °C	1440	Α
Module				
$I_{t(RMS)}$			500	Α
T_{vj}			- 40 + 150	°C
T _{stg}			-40 + 125	°C
V _{isol}	AC, 1 min.		2500	V

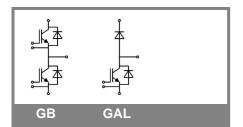
Characte	25 °C, unless otherwise specified					
Symbol	Conditions		min.	typ.	max.	Units
IGBT						
$V_{GE(th)}$	$V_{GE} = V_{CE}$, $I_C = 4 \text{ mA}$		4,5	5,5	6,5	V
I _{CES}	$V_{GE} = 0 V, V_{CE} = V_{CES}$	T _j = 25 °C		0,1	0,3	mA
		T _j = 125 °C				mA
V _{CE0}		T _j = 25 °C		1,4	1,6	V
		T _j = 125 °C		1,6	1,8	V
r _{CE}	V _{GE} = 15 V	T _j = 25°C		11	14	mΩ
		T _j = 125°C		15	19	mΩ
V _{CE(sat)}	I _{Cnom} = 100 A, V _{GE} = 15 V	T _j = °C _{chiplev.}		2,5	3	V
C _{ies}				6,5	8,5	nF
C _{oes}	$V_{CE} = 25, V_{GE} = 0 V$	f = 1 MHz		1	1,5	nF
C _{res}				0,5	0,6	nF
Q_G	V _{GE} = -8V - +20V			1000		nC
R _{Gint}	T _j = °C			2,5		Ω
t _{d(on)}				160	320	ns
t _r	R_{Gon} = 6,8 Ω	V _{CC} = 600V		80	160	ns
E _{on}		I _{Cnom} = 100A		13		mJ
$t_{d(off)}$	$R_{Goff} = 6.8 \Omega$	T _j = 125 °C		400	520	ns
t _f		$V_{GE} = \pm 15V$		70	100	ns
E _{off}				11		mJ
R _{th(j-c)}	per IGBT				0,15	K/W

IGBT Modules


SKM 150GB123D SKM 150GAL123D

Features

- MOS input (voltage controlled)
- · N channel, Homogeneous Si
- · Low inductance case
- Very low tail current with low temperature dependence
- High short circuit capability, self limiting to 6 x I_{cnom}
- · Latch-up free
- . Fast & soft inverse CAL diodes
- Isolated copper baseplate using DCB Direct Copper Bonding
- Large clearance (12 mm) and creepage distances (20 mm)

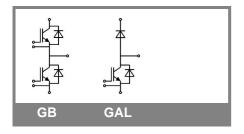

Typical Applications

- · AC inverter drives
- UPS

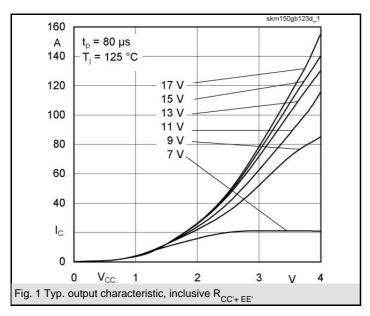
This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

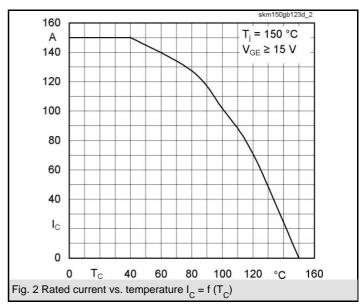
This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.

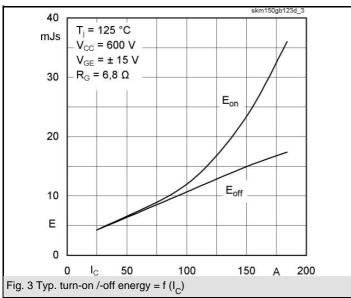
IGBT Modules

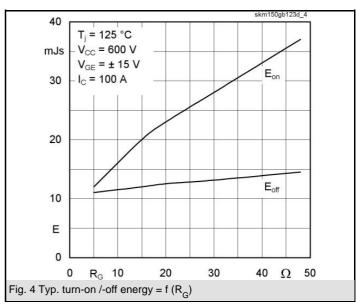

SKM 150GB123D SKM 150GAL123D

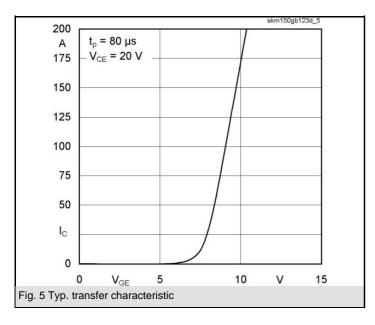
Featu	ures
-------	------

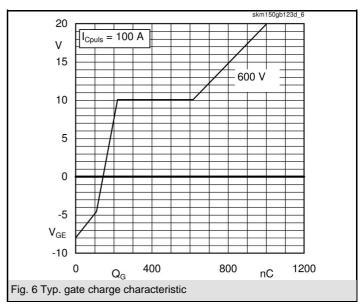

- MOS input (voltage controlled)
- N channel, Homogeneous Si
- · Low inductance case
- Very low tail current with low temperature dependence
- High short circuit capability, self limiting to 6 x I_{cnom}
- Latch-up free
- Fast & soft inverse CAL diodes
- Isolated copper baseplate using DCB Direct Copper Bonding
- Large clearance (12 mm) and creepage distances (20 mm)

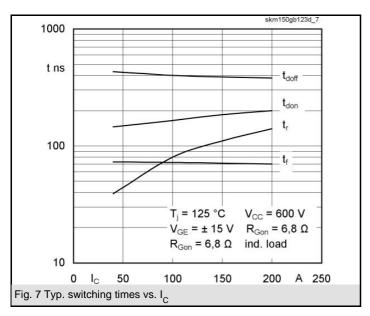

Typical Applications

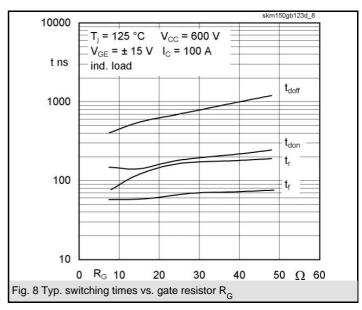

- AC inverter drives
- UPS

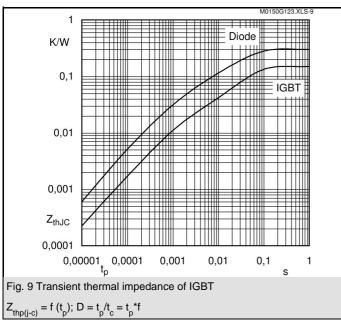


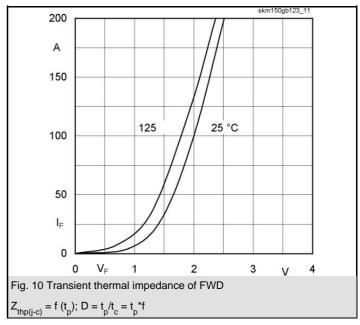

Z _{th} Symbol	Conditions	Values	Units
Z _{th(j-c)l}			
R _i	i = 1	105	mk/W
R _i	i = 2	35	mk/W
R _i	i = 3	8	mk/W
R _i	i = 4	2	mk/W
tau _i	i = 1	0,03	S
tau _i	i = 2	0,03	s
tau _i	i = 3	0,0014	s
tau _i	i = 4	0,0001	s
Z _{th(j-c)D}			·
R _i	i = 1	210	mk/W
Ri	i = 2	70	mk/W
R _i	i = 3	16	mk/W
Ri	i = 4	4	mk/W
tau _i	i = 1	0,0623	s
tau _i	i = 2	0,0083	s
tau _i	i = 3	0,003	s
tau _i	i = 4	0,0002	s

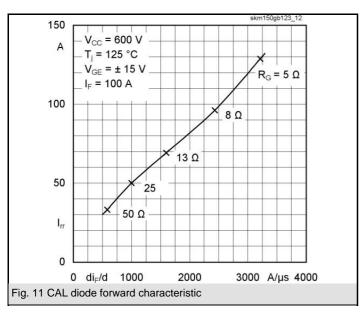


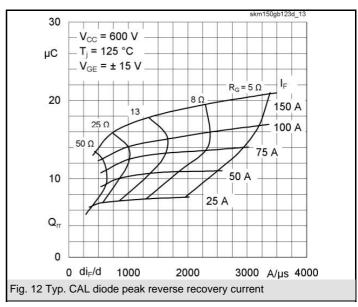


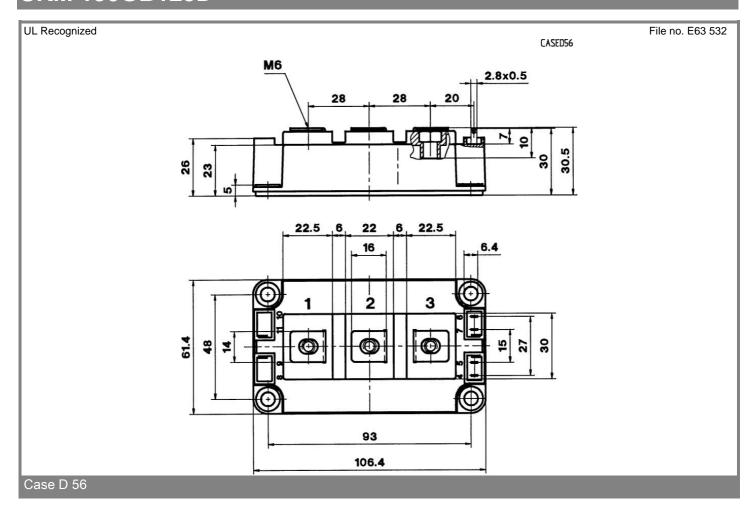


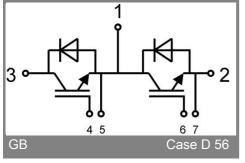


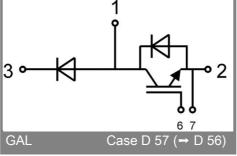












6 11-09-2006 RAA © by SEMIKRON