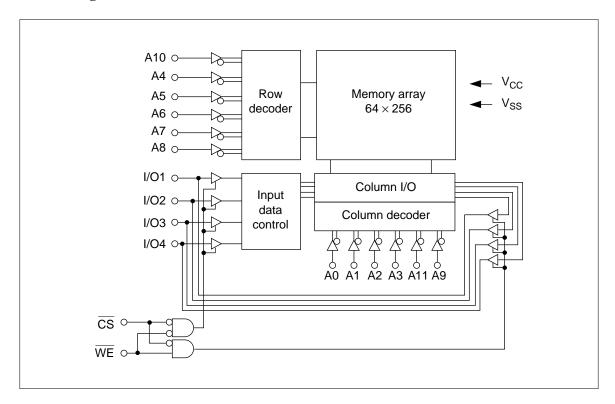

4096-word × 4-bit High-Speed CMOS Static RAM

Features

- Single 5 V supply and high density 20-pin package
- High speed: fast access time 25/35/45 ns (max)
- Low power
 - Active: 250 mW (typ)
 - Standby: 100 μW (typ), 5 μW (typ) (L-version)
- Completely static memory: no clock or timing strobe required
- Equal access and cycle times
- Directly TTL compatible—all inputs and outputs
- Battery back-up operation capability (L-version)

Pin Arrangement



Ordering Information

Type No.	Access time	Package	
HM6268P-25	25 ns	300-mil 20-pin, plastic DIP	
HM6268P-35	35 ns	(DP-20N)	
HM6268P-45	45 ns		
HM6268LP-25	25 ns		
HM6268LP-35	35 ns		
HM6268LP-45	45 ns		

Note: This device is not available for new application.

Block Diagram

Truth Table

CS	WE	Mode	V _{CC} current	I/O pin	Cycle
Н	х	Not Selected	I _{SB} , I _{SB1}	High-Z	_
L	Н	Read	I _{CC}	Dout	Read cycle
L	L	Write	I _{CC}	Din	Write cycle

Absolute Maximum Ratings

Parameter	Symbol	Rating	Unit
Voltage on any pin relative to V _{SS}	V_{T}	-0.5 *1 to +7.0	V
Power dissipation	P _T	1.0	W
Operating temperature	Topr	0 to + 70	°C
Storage temperature	Tstg	-55 to +125	°C
Temperature under bias	Tbias	-10 to + 85	°C

Note: 1. -3.5 V for pulse width ≤ 10 ns.

Recommended DC Operating Conditions ($Ta = 0 \text{ to } + 70^{\circ}\text{C}$)

Parameter	Symbol	Min	Тур	Max	Unit
Supply voltage	V_{CC}	4.5	5.0	5.5	V
	V_{SS}	0	0	0	V
Input high (logic 1) voltage	V_{IH}	2.2	_	6.0	V
Input low (logic 0) voltage	V _{IL}	-0.5 *1	_	0.8	V

1. -3.0 V for pulse width $\leq 10 \text{ ns}$. Note:

DC Characteristics ($V_{CC} = 5 \text{ V} \pm 10\%$, $V_{SS} = 0 \text{ V}$, $Ta = 0 \text{ to } +70^{\circ}\text{C}$)

Parameter	Symbol	Min	Typ *1	Max	Unit	Test condition
Input leakage current	14	_	_	2.0	μΑ	V_{CC} = 5.5 V, Vin = V_{SS} to V_{CC}
Output leakage current	I _{LO}	_	_	2.0	μΑ	$\overline{\text{CS}} = V_{\text{IH}},$ $V_{\text{I/O}} = V_{\text{SS}}$ to V_{CC}
Operating power supply current	I _{CC}	_	50 *3	90	mA	$\overline{\text{CS}} = \text{V}_{\text{IL}}, \text{I}_{\text{I/O}} = 0 \text{mA},$ min. cycle
Standby power supply current	I_{SB}	_	15	25	mA	$\overline{\text{CS}} = V_{\text{IH}}$, min. cycle
Standby power supply current (1)	I _{SB1}		0.02	2.0	mA	$\overline{\text{CS}} \ge \text{V}_{\text{CC}} - 0.2 \text{ V},$
		_	1 *2	50 *2	μΑ	$^{-0} \text{ V} \le \text{V}_{\text{IN}} \le 0.2 \text{ V or}$ $\text{V}_{\text{CC}} - 0.2 \text{ V} \le \text{V}_{\text{IN}}$
Output low voltage	V _{OL}	_	_	0.4	V	I _{OL} = 8 mA
Output high voltage	V _{OH}	2.4	_	_	V	I _{OH} = -4.0 mA

Notes: 1. Typical limits are at V_{CC} = 5.0 V, Ta = +25°C and specified loading 2. This characteristic is guaranteed only for L-version.

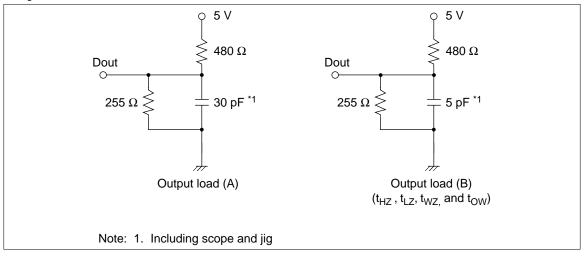
3. 40 mA typical for 45 ns version.

Capacitance (Ta = 25°C, f = 1.0 MHz) *1

Parameter	Symbol	Test conditions	Min	Max	Unit
Input capacitance	Cin	Vin = 0 V	_	6	pF
Input/output capacitance	C _{I/O}	$V_{I/O} = 0 V$	_	9	pF

Note: 1. These parameters are sampled and not 100% tested.

AC Characteristics ($V_{CC} = 5 \text{ V} + 10\%$, $Ta = 0 \text{ to } +70^{\circ}\text{C}$, unless otherwise noted)

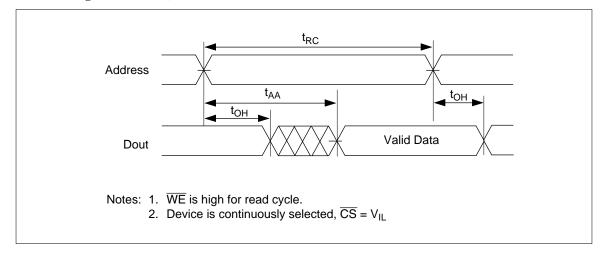

AC Test Conditions:

Input pulse levels: V_{SS} to 3.0 V
Input rise and fall times: 5 ns

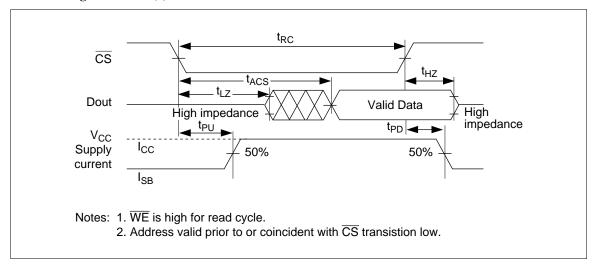
• Input and output timing reference levels: 1.5 V

· Output load: See figure

Output Load



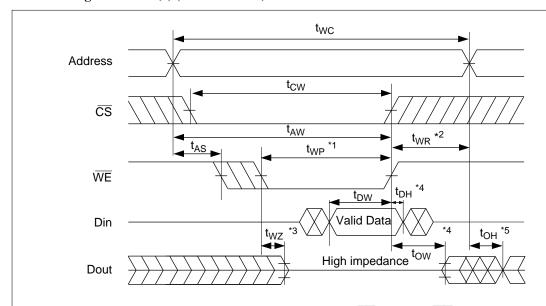
Read Cycle


		HM62	268-25	HM62	268-35	HM62	268-45	
Parameter	Symbol	Min	Max	Min	Max	Min	Max	Unit
Read cycle time	t _{RC}	25	_	35	_	45	_	ns
Address access time	t_{AA}	_	25	_	35	_	45	ns
Chip select access time	t _{ACS}	_	25	_	35	_	45	ns
Output hold from address change	t _{OH}	5	_	5	_	5	_	ns
Chip selection to output in low-Z	t _{LZ} *1	10	_	10	_	10	_	ns
Chip deselection to output in high-Z	t _{HZ} *1	0	15	0	20	0	20	ns
Chip selection to power up time	t _{PU}	0	_	0	_	0	_	ns
Chip deselection to power down time	t _{PD}	_	25	_	25	_	30	ns

Note: 1. Transition is measured +200 mV from steady state voltage with load (B). These parameters are sampled and not 100% tested.

Read Timing Waveform (1)

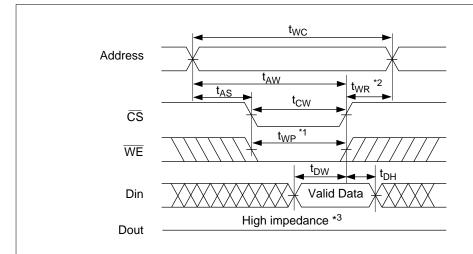
Read Timing Waveform (2)



Write Cycle

		HM62	68-25	HM62	68-35	HM62	68-45	
Parameter	Symbol	Min	Max	Min	Max	Min	Max	Unit
Write cycle time	t_{WC}	25	_	35	_	45	_	ns
Chip selection to end of write	t_{CW}	20	_	30	_	40	_	ns
Address valid to end of write	t_{AW}	20	_	30	_	40	_	ns
Address setup time	t _{AS}	0	_	0	_	0	_	ns
Write pulse width	t_{WP}	20	_	30	_	35	_	ns
Write recovery time	t_{WR}	0	_	0	_	0	_	ns
Data valid to end of write	t_{DW}	12	_	20	_	20	_	ns
Data hold time	t _{DH}	0	_	0	_	0	_	ns
Write enabled to output in high-Z	t _{WZ} *1	0	8	0	10	0	15	ns
Output active from end of write	t _{OW} *1	0	_	0	_	0	_	ns

Note: 1. Transition is measured +200 mV from steady state voltage with load (B). These parameters are sampled and not 100% tested.


Write Timing Waveform (1) (WE Controlled)

Notes:

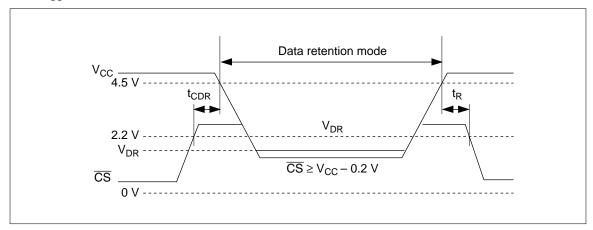
- 1. A write cycle occurs during the overlap of a low $\overline{\text{CS}}$ and a low $\overline{\text{WE}}$ (t_{WP}).
- 2. t_{WR} is measured from the earlier of \overline{CS} or \overline{WE} going high to the end of the write cycle.
- 3. During this period, I/O pins are in the output state so input signals of opposite phase to the outputs must not be applied.
- 4. If $\overline{\text{CS}}$ is low during this period, I/O pins are in the output state, so data input signals of opposite phase to the outputs must not be applied.
- 5. Dout has the same phase as write data in this write cycle, if t_{WR} is long enough.

Write Timing Waveform (2) (CS Controlled)

- 1. A write cycle occurs during the overlap of a low $\overline{\text{CS}}$ and a low $\overline{\text{WE}}$ (t_{WP}).
- 2. t_{WR} is measured from the earlier of \overline{CS} or \overline{WE} going high to the end of the write cycle.

 3. If the \overline{CS} low transition occurs simultaneously with the \overline{WE} low transition or after the WE transition, the output buffers remain in a high impedance state.

8


Low V_{CC} Data Retention Characteristics $(0^{\circ}C \le Ta \le 70^{\circ}C)$

These characteristics are guaranteed only for L-version.

Parameter	Symbol	Min	Тур	Max	Unit	Test conditions
V _{CC} for data retention	V_{DR}	2.0	_	_	٧	$\overline{\text{CS}} \ge V_{\text{CC}} - 0.2 \text{ V},$
Data retention current	I _{CCDR}	_	_	30 * 2 20 * 3	μΑ	$V_{IN} \ge V_{CC} - 0.2 \text{ V, or}$ 0 V \le V_{IN} \le 0.2 V
Chip deselect to data retention time	t _{CDR}	2.0	_	_	ns	See retention
Operation recovery time	t _R	t _{RC} *1	_	_	ns	waveform

- Notes: 1. Read cycle time
 - 2. $V_{CC} = 3.0 \text{ V}$ 3. $V_{CC} = 2.0 \text{ V}$

Low V_{CC} Data Retention Waveform

