# Energy Management Modular Power Analyzers Type WM2-96 



## Product Description

$\mu$ P-based modular power analyzer with a built-in configuration key-pad. The power, power factor, current and voltage are system and sin-
gle phase measurements and indications. The housing is easy to mount on a panel and ensures a degree of protection (front) of IP 65.

- Class 1 (current/voltage)
- Modular power analyzer
- Front size: $96 x 96$ mm
- 3-dgt/6-dgt $\mu \mathrm{P}$-based indicator
- Manual or automatic scrolling of system and single phase: kW, kVAr, PF, kWh, kVArh, A, VL-L avg, VL1-N, VL2-N, VL3-N.
- TRMS measurement of distorted waves (voltage/current)
- All configuration functions selectable by built-in key-pad
- Password protection of programming parameters
- Degree of protection (front): IP 65
- Optional pulse output (according to DIN43864)
- Optional serial RS 422 /485 port
- MODBUS, JBUS protocol.

| Ordering Key WM2-96 AV53D XXX |
| :--- |
| Model |
| Range code-- |
| System |
| Power supply |
| 1st output |
| 2nd output |

## Type Selection

Range code

AV5: 250/433 VAC - 5 AAC (max. 300 V (L-N)/ 520 V (L-L) - 6 A)
AV7: 400/690 VAC - 5 AAC (max. $480 \mathrm{~V}(\mathrm{~L}-\mathrm{N}) /$ $830 \mathrm{~V}(\mathrm{~L}-\mathrm{L})-6 \mathrm{~A})^{1)}$

## System

3: One phase, three-phase system, 3 or 4 wires, balanced load; three phase system, 3 or 4 wires, unbalanced load

1) On request
${ }^{2)}$ Warning: this power supply cannot be used if the RS485 module is needed
2) Compatible with any kind of output

| Power supply |  | 1st output (pulse) |  |
| :--- | :--- | :--- | :--- |

## Input Specifications

| Accuracy ( 48 to 62 Hz ) | $\begin{aligned} & \text { Un: } 250 \mathrm{~V} \text { (AV5), 400V (AV7) } \\ & \text { In: } 5 \mathrm{~A} \end{aligned}$ |
| :---: | :---: |
| Voltage/current <br> (@ $25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$, R.H. $\leq 60 \%$ ) | $\pm 0.5 \%$ f.s. (0 to 1.2 In , 0.5 to 1.2 Un) |
| Active power <br> (@ $25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$, R.H. $\leq 60 \%$ ) | $\begin{aligned} & \pm 1 \% \text { f.s. (PF } \geq 0.7 \mathrm{~L} / \mathrm{C} \\ & 0 \text { to } 1.2 \text { In, } 0.5 \text { to } 1.2 \text { Un) } \end{aligned}$ |
| Reactive power <br> (@ $25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$, R.H. $\leq 60 \%$ ) | $\begin{aligned} & \pm 1 \% \text { f.s. (PF } \geq 0.7 \mathrm{~L} / \mathrm{C}, \\ & 0 \text { to } 1 \mathrm{In}, 0 \text { to } 1 \mathrm{Un} \text { ) } \end{aligned}$ |
| Power factor (PF) <br> (@ $25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$, R.H. $\leq 60 \%$ ) | $\pm 1 \%$ f.s., PF $\geq 0.7$ L/C, <br> ( 0.6 to 1.2 In, 1 to 1.2 Un) |
| Energy <br> (@ $25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$, R.H. $\leq 60 \%$ ) | $\pm 1 \%$ RDG (kWh), $\pm 2 \%$ RDG (kvarh), (PF $\geq 0.7 \mathrm{~L} / \mathrm{C}, 0$ to $1.2 \mathrm{In}, 0.5$ to 1.2 Un ) |
| Additional errors |  |
| Humidity | < 0.3\% f.s., 60\% to 90\% R.H. |
| Power supply | $\pm 0.5 \%$ rdg, $-15+10 \%$ p.s. |
| Magnetic field | <0.1\% f.s. @ $400 \mathrm{~A} / \mathrm{m}$ |


| Rated input |  |
| :---: | :---: |
| Current | 2 inputs (one/three-phase balanced load) |
|  | 6 inputs (one/three-phase unbalanced load) |
| Voltage | 2 inputs (one/three-phase balanced load) |
|  | 4 inputs (one/three-phase unbalanced load) |
| Insulation | among the voltage and the current inputs: 2000Vrms; among the current inputs: 2000 Vrms |
| Temperature drift | $\pm 250 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ |
| Display | Backlighted LCD, h 13mm, |
|  | 6-dgt (energies) |

Input Specifications (cont.)


|  | Coupling type: Direct Crest factor: $\geq 3$ |
| :---: | :---: |
| Ranges (impedances) |  |
|  | $250 \mathrm{~V} / 433 \mathrm{~V}(\geq 400 \mathrm{k} \Omega)$ <br> $5 \mathrm{AAC}(\leq 0.3 \mathrm{VA} / \leq 0.1 \Omega)$ $400 \mathrm{~V} / 690 \mathrm{~V}(\geq 650 \mathrm{k} \Omega)$ |
| Frequency range | 48 to 62 Hz |
| Over-load protection | $\begin{aligned} & \text { Un: } 250 \mathrm{~V}(\mathrm{AV} 5), 400 \mathrm{~V}(\mathrm{AV} 7) \\ & \text { In: } 5 \mathrm{~A} \end{aligned}$ |
| Continuous: voltage/current | 1.2 Un /ln |
| For 1 s Voltage: Current: | $\begin{aligned} & 2 \mathrm{Un} \\ & 20 \mathrm{In} \end{aligned}$ |
| Keyboard | 4 keys: |
|  | - to enter programming phase and password con firmation; <br> - for value programming and basic measurement scrolling. |
|  | "L": <br> - for confirmation of new programmed values and going ahead to the next programming step, <br> - single phase measurement scrolling. |
|  | "R": <br> - for the reset of the partial counted active and/or reactive energy. |

## Output Specifications



Protocol
Data (bidirectional) Dynamic (reading only)

Data format
Baud-rate
Insulation

System variables:
P, Q, PF, VL-L, energies,
Single phase variables:
$P_{L 1}, Q_{L 1}, P_{L 1}, V_{L 1-N}, A_{L 1}$,
$P_{L 2}, Q_{L 2}, P_{L 2}, V_{L 2}-N, A_{L 2}$,
PL3, QL3, PFL3, VL3-N, AL3
All programming data, reset of energy:

- partial kWh
- partial kVArh
- total kWh
- total kVArh

Stored energy (EEPROM)
$\leq 999999 \mathrm{kWh}$
$\leq 999999$ kVArh
MODBUS/JBUS

1-start bit, 8-data bit, no parity/even parity, 1 stop bit 1200, 2400, 4800 and 9600 selectable bauds By means of optocouplers, 4000 Vrms output to measuring inputs 4000 Vrms output to supply input

## Software Functions

| Password <br> 1st level 2nd level | Numeric code of max. 3 digits; 2 protection levels of the programming data Password "0", no protection Password from 1 to 255 , all data are protected | Single phase: | Example: the CT is a $100 \mathrm{~A} / 5 \mathrm{~A}$ so the ratio is 20 , consequently the maximum counted energy is 299980 kWh or kVArh. Active power (kW), |
| :---: | :---: | :---: | :---: |
| Measurement scrolling System: | Active power (kW), reactive power (kVAr), power factor $(\cos \varphi)$, current (A), average phase-phase voltage $(V)$ |  | reactive power (kVAr), power factor $(\cos \varphi)$, current (A), phase-neutral voltage ( V ) |
|  |  | Transformer ratio | For CT up to 5000 A |
|  |  | Programmable ratio | 0.1 to 999.9 |
|  | total and partial active energy (kWh), | Digital Filter Filter operating range | 0 to 100\% of the |
|  | total and partial reactive energy (kVArh) | Filtering coefficient |  |
|  | Partial energy meters: the counters of kWh and kVArh are automatically reset when the energy reaches the value (14999*CT). | Filter action | On the display and on the variable being transmitted by the serial communication port. |

## Supply Specifications

AC voltage

$$
\begin{aligned}
& 230 \mathrm{VAC}(\text { standard), } \\
& -15 \%+10 \% 50 / 60 \mathrm{~Hz} \\
& 24 \mathrm{VAC}, 48 \mathrm{VAC}, 115 \mathrm{VAC} \\
& \text { (on request), } \\
& -15 \%+10 \% 50 / 60 \mathrm{~Hz} \\
& 18 \text { to } 60 \mathrm{VDC} / \mathrm{AC}
\end{aligned}
$$

|  | 90 to $260 \mathrm{VDC} / \mathrm{AC}$ |
| :--- | :--- |
| Power consumption | $\leq 30 \mathrm{VA} / 12 \mathrm{~W}(90$ to 260 V$)$ |
|  |  |
|  |  |

## General Specifications

| Operating temperature | $0^{\circ}$ to $+50^{\circ} \mathrm{C}\left(32^{\circ}\right.$ to $\left.122^{\circ} \mathrm{F}\right)$ <br> $($ R. $\mathrm{H} .<90 \%$ non-condensing $)$ |
| :--- | :--- |
| Storage temperature | $-10^{\circ}$ to $+60^{\circ} \mathrm{C}\left(14^{\circ}\right.$ to $\left.140^{\circ} \mathrm{F}\right)$ <br> (R.H. $<90 \%$ non-condensing $)$ |
| Insulation reference voltage | 300 Vrms to ground |, | 4000 Vrms between all inputs/ |
| :--- |
| outputs to ground |$|$


| Safety standards | IEC 61010-1, EN 61010-1 |
| :--- | :--- |
| Other standards | Pulse output: DIN43864 |
| Approvals | CE |
| UL, CSA |  | | Connector | Screw-type, <br> max. $2.5 \mathrm{~mm}^{2}$ wires $\times 2$ |
| :--- | :--- |
| Housing <br> Dimensions <br> Material | $96 \times 96 \times 140 \mathrm{~mm}$ <br> ABS, <br> self-extinguishing: UL 94 V-0 |
| Degree of protection | Front: IP65 | | Approx. 500 g |
| :--- |
| (packing included) |

## Mode of Operation

Accuracy class of the instrument as a relation of $\mathrm{PI} / \mathrm{Pn}$ and $\cos \varphi$ (power factor)


Test conditions:
$\mathrm{V}=0.8$ to 1.2 Un ,
$\mathrm{I}=0.1$ to 1.2 In ,
$\mathrm{f}=48$ to 62 Hz

| Input | Star voltage | Delta voltage | Current |
| :---: | :---: | :---: | :---: |
| AV5 | Un: 250 V | Un: 430 V | In: 5 A |

$P_{I} / Q_{1}$ (installation power)
One phase system:

$$
\begin{aligned}
& \mathrm{P}_{\mathrm{I}}=\mathrm{U}_{\mathrm{I}} \cdot \mathrm{I}_{\mathrm{I}} \cdot \cos \varphi \\
& \mathrm{Q}_{\mathrm{I}}=\mathrm{U}_{\mathrm{I}} \cdot \mathrm{I}_{\mathrm{I}} \cdot \sin \varphi
\end{aligned}
$$

Three phase, 3-wire system:

$$
\begin{aligned}
& \mathrm{P}_{\mathrm{I}}=\sqrt{3} \cdot \mathrm{U}_{\mathrm{I}} \cdot \mathrm{II}_{\mathrm{I}} \cdot \cos \varphi \\
& \mathrm{QI}=\sqrt{3} \cdot \mathrm{U}_{\mathrm{I}} \cdot \mathrm{I}_{\mathrm{I}} \cdot \sin \varphi
\end{aligned}
$$

Three phase, 4-wire system:

$$
\begin{aligned}
& \mathrm{P}_{\mathrm{I}}=3 \cdot \mathrm{U}_{\mathrm{I}} \cdot \mathrm{II}_{\mathrm{I}} \cdot \cos \varphi \\
& \mathrm{Q}_{\mathrm{I}}=3 \cdot \mathrm{U}_{\mathrm{I}} \cdot \mathrm{I}_{\mathrm{I}} \cdot \sin \varphi
\end{aligned}
$$

where:
$\mathrm{U}_{\mathrm{I}}=$ the real star voltage of the electrical system being measured.
$\mathrm{I}=$ the maximum phase current of the electrical system being measured.
$\operatorname{Cos} \varphi=$ the average $\cos \varphi$ of the electrical system being measured.

Pn /Qn (rated power of the instrument):
One phase system:

$$
\mathrm{P}_{\mathrm{n}}=\mathrm{Q}_{\mathrm{n}}=\mathrm{U}_{\mathrm{n}} \cdot \mathrm{I}_{\mathrm{n}} \cdot \mathrm{CT}(\text { ratio })
$$

Three phase, 3-wire system:

$$
\mathrm{P}_{\mathrm{n}}=\mathrm{Q}_{\mathrm{n}}=\sqrt{ } 3 \cdot \mathrm{U}_{\mathrm{n}} \cdot \mathrm{I}_{\mathrm{n}} \cdot \mathrm{CT}(\text { ratio })
$$

Three phase, 4-wire system:

$$
\mathrm{P}_{\mathrm{n}}=\mathrm{Q}_{\mathrm{n}}=3 \cdot \mathrm{U}_{\mathrm{n}} \cdot \mathrm{I}_{\mathrm{n}} \cdot \mathrm{CT}(\text { ratio })
$$

where:
$\mathrm{U}_{\mathrm{n}}=$ the rated input voltage of WM2-96.
$\mathrm{I}_{\mathrm{n}}=$ the rated input current of WM2-96.
CT (ratio) = the value of the current transformer ratio.


Test conditions:
$\mathrm{V}=0.8$ to 1.2 Un ,
$\mathrm{I}=0.1$ to 1.2 In ,
$\mathrm{f}=48$ to 62 Hz

## Example 1:

Model AV5.3 (3-wire system).

$$
\begin{aligned}
& \mathrm{U}_{\mathrm{I}}=400 \mathrm{~V} \text { (delta voltage) } \\
& \mathrm{I}_{\mathrm{I}}=265 \mathrm{~A} \text { (single phase cur- } \\
& \text { rent) } \\
& \text { Cos } \varphi=0.85 \text { (system power } \\
& \text { factor) (CT=300A) } \\
& \begin{aligned}
\mathrm{U}_{\mathrm{n}} & =430 \mathrm{~V} \\
\mathrm{I}_{\mathrm{n}} & =5 \mathrm{~A}
\end{aligned} \\
& \text { CT (ratio) }=\frac{300}{5}=60 \\
& \begin{aligned}
\mathrm{P}_{\mathrm{I}} & =\sqrt{3} \cdot \mathrm{U}_{\mathrm{I}} \cdot \mathrm{I}_{\mathrm{I}} \cdot \cos \varphi \\
& =\sqrt{3} \cdot 400 \cdot 265 \cdot 0.85 \\
& =155.87 \mathrm{~kW}
\end{aligned} \\
& \begin{aligned}
\mathrm{P}_{\mathrm{n}} & =\sqrt{3} \cdot \mathrm{U}_{\mathrm{n}} \cdot \mathrm{I}_{\mathrm{n}} \cdot \mathrm{CT} \text { (ratio) } \\
& =\sqrt{3} \cdot 430 \cdot 5 \cdot 6 \\
& =233.17 \mathrm{~kW}
\end{aligned} \\
& \begin{aligned}
\frac{\mathrm{P}_{\mathrm{I}}}{\mathrm{P}_{\mathrm{n}}} & =\frac{155.87}{223.17}=0.698
\end{aligned}
\end{aligned}
$$

## Example 2:

Model AV5.3 (4-wire system).
$\mathrm{U}_{\mathrm{I}}=230 \mathrm{~V}$
$\mathrm{I}_{\mathrm{I}}=110 \mathrm{~A}(\mathrm{CT}=300 \mathrm{~A})$
$\operatorname{Cos} \varphi=0.85(\sin \varphi=0.52)$
$\mathrm{U}_{\mathrm{n}}=250 \mathrm{~V}$
$\mathrm{I}_{\mathrm{n}}=5 \mathrm{~A}$

$$
\mathrm{CT}(\text { ratio })=\frac{300 \mathrm{~A}}{5 \mathrm{~A}}=60
$$

$$
\begin{aligned}
& \mathrm{Qn}_{\mathrm{n}}=3 \cdot \mathrm{U}_{\mathrm{I}} \cdot \mathrm{II}_{\mathrm{I}} \cdot \sin \varphi \\
& =3 \cdot 230 \cdot 110 \cdot 0.52 \\
& =39.46 \mathrm{kvar} \\
& \mathrm{Q}_{\mathrm{n}}=3 \cdot \mathrm{U}_{\mathrm{n}} \cdot \mathrm{I}_{\mathrm{n}} \cdot \mathrm{CT} \text { (ratio) } \\
& =3 \cdot 250 \cdot 5 \cdot 60 \\
& =225 \mathrm{kvar} \\
& \frac{\mathrm{P}_{\mathrm{I}}}{\mathrm{P}_{\mathrm{n}}}=\frac{39.46}{225}=0.175
\end{aligned}
$$

In both examples the accuracy of the measurement is $1 \%$ f.s. when considering the changing of the measured voltage from 0.9 Un to 1 Un and the measured current from 0.1 ln to 0.9 ln with a $\cos \varphi$ of 0.85 ( $\sin \varphi 0.52$ ).

## Mode of Operation (cont.)

## Waveform of the signals that can be measured



Figure G
Sine wave, undistorted
Fundamental content 100\%
Harmonic content
Arms $=$


Figure H
Sine wave, indented
Fundamental content
Harmonic content
10...100\%
0... $90 \%$

Frequency spectrum 3rd to 16th harmonic
Required result: additional error $<1 \%$


Figure I
Sine wave, distorted
Fundamental content 70...90\%
Harmonic content
10... $30 \%$

Frequency spectrum 3rd to 15th harmonic Required result: additional error < 0.5\%

## Wiring Diagrams

Single phase input connections


Three phase 3-wire input connections - Balanced loads


## Wiring Diagrams (cont.)

Three phase, 4-wire input connections - Balanced loads


Direct connection (4-wire system)


Three-phase, 3-wire input connections -
Unbalanced load


Three phase, 4-wire input connections - Unbalanced load


Front Panel Description


1. Key-pad

Set-up and programming procedures are easily controlled by the 4 pushbuttons.
$\triangle$ and $\nabla$

- To scroll all the basic measurements (system variables)
- To increase or decrease programming values
- To enter into the programming procedure and select programming functions together with the "L" key.
" L ":
To scroll all the single phase variable of each basic measurement
"R":
To reset the partial counted energies (kWh, kVArh).

2. Display

Instantaneous measurements:

- 3-digit (maximum read-out 999)

Energies:

- 6-digit (maximum read-out 999999).

Alphanumeric indication by means of LCD display for:

- Displaying the configuration parameters
- All the measured variables.

Sequence of the variables on the display


The available modules

| Type | N. of <br> channels | Ordering code | Note |
| :--- | :---: | :---: | :--- |
| WM2-96 base + AV5.3 input |  | AB1012 |  |
| WM2-96 base + AV7.3 input |  | AB1013 |  |
| 24VAC power supply |  | AP1025 | Neither UL nor CSA approved |
| 48VAC power supply |  | AP1024 | Neither UL nor CSA approved |
| 115VAC power supply |  | AP1023 | Neither UL nor CSA approved |
| 230VAC power supply |  | AP1022 | Neither UL nor CSA approved |
| 18-60VAC/DC power supply |  | AP1021 |  |
| 90-260VAC/DC power supply |  | AP1020 |  |
| RS485 port | 1 | AR1034 |  |
| Relay output | 1 | AO1058 |  |
| Relay output | 2 | AO1035 | The second output can be used as redoundant output |
| Open collector output | 1 | AO1059 |  |
| Open collector output | 2 | AO1036 | The second output can be used as redoundant output |

The possible module combinations

| Slot | B | D | Slot | B | D |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Basic unit | Out 1 | Out 2 | Basic unit | Out 1 | Out 2 |
| RS485 port | $\bigcirc$ |  | RS485 port | $\bigcirc$ |  |
| Single relay output (pulse) |  | $\bigcirc$ | Dual relay output (pulse) |  | $\bullet$ |
| Single open collector output (pulse) |  | $\bullet$ | Dual open collector output (pulse) |  | $\bigcirc$ |

Dimensions


## Terminal boards

Digital output modules


## Other input/output modules



AR1034
RS485 port

Power supply modules


AP1025
24VAC power supply


AP1022
230VAC power supply


AP1024
48VAC power supply


AP1021
18-60VAC/DC power supply


AP1023
115VAC power supply


AP1020
90-260 VAC/DC power supply

