

128K x 8 Static RAM

Features

- High Speed
 - 55ns and 70ns availability
- · Voltage range
 - -2.7V-3.6V
- · Ultra low active power
 - Typical active current: 20 mA @ f = f_{max} (70ns speed)
- · Low standby power
- Easy memory expansion with $\overline{\text{CE}}$ and $\overline{\text{OE}}$ features
- · Automatic power-down when deselected
- CMOS for optimum speed/power

Functional Description

The WCMA1008U1X is a high-performance CMOS static RAM organized as 128K words by 8 bits. Easy memory expansion is provided by an active LOW Chip Enable ($\overline{\text{CE}}_1$), an active HIGH Chip Enable ($\overline{\text{CE}}_2$), an active LOW Output Enable ($\overline{\text{OE}}$) and three-state drivers. These devices have an automat-

ic power-down feature, reducing the power consumption by over 99% when deselected.

Writing to the device is accomplished by taking Chip Enable one (\overline{CE}_1) and Write Enable (\overline{WE}) inputs LOW and the Chip Enable two (\overline{CE}_2) input HIGH. Data on the eight I/O pins (I/O₀ through I/O₇) is then written into the location specified on the address pins (\overline{A}_0 through \overline{A}_{16}).

Reading from the device is accomplished by taking Chip Enable one ($\overline{\text{CE}}_1$) and Output Enable ($\overline{\text{OE}}$) LOW while forcing Write Enable ($\overline{\text{WE}}$) and Chip Enable two ($\overline{\text{CE}}_2$) HIGH. Under these conditions, the contents of the memory location specified by the address pins will appear on the I/O pins.

The eight input/output pins (I/O₀ through I/O₇) are placed in a high-impedance state when the device is deselected (\overline{CE}_1 HIGH or \overline{CE}_2 LOW), the outputs are disabled (\overline{OE} HIGH), or during a write operation (\overline{CE}_1 LOW, \overline{CE}_2 HIGH, and \overline{WE} LOW).

The WCMA1008U1X is available in a 32 Lead TSOP and STSOP packages.

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.) Storage Temperature-65°C to +150°C Ambient Temperature with Power Applied......55°C to +125°C

Supply Voltage to Ground Potential..... -0.5V to +4.6V

DC Voltage Applied to Outputs in High Z State ^[1] 0.5V to	0.01
DC Input Voltage ^[1] –0.5V to	
Output Current into Outputs (LOW)	20 mA
Static Discharge Voltage(per MIL-STD-883, Method 3015)	>2001V
Latch-Up Current	>200 mA

Operating Range

Product	Range	Ambient Temperature	V _{CC}
WCMA1008U1X	Industrial	−40°C to +85°C	2.7V to 3.6V

Product Portfolio

					Po	wer Dissipat	tion (Industr	ial)			
Product	V _{CC} Range			Speed	Operating, I _{CC}		Standb	y (I _{SB2})			
Product				Speed	f = f _{max}		- f = f		Typ. ^[2]	Max.	
	Min.	Typ. ^[2]	Max.		Typ. ^[2]	Max.	тур.	IVIAX.			
WCMA1008U1X		70 ns	20 mA	40 mA	0.4	20 A					
WCWAT0060TX	2.7 V	3.0V	3.6V	55 ns	20 IIIA	40 IIIA	0.4 μΑ	30 μΑ			

Notes:

- V_{IL(min.)} = -2.0V for pulse durations less than 20 ns.
 Typical values are included for reference only and are not guaranteed or tested. Typical values are measured at V_{CC} = V_{CC(typ.)}, T_A = 25°C.

Electrical Characteristics Over the Operating Range

					WCMA	41008U1X	(-70/55	
Parameter	Description	Test Conditions			Min.	Typ. ^[2]	Max.	Unit
V _{OH}	Output HIGH Voltage	$I_{OH} = -1.0 \text{ mA}$	$V_{CC} = 2.7V$		2.4			V
V _{OL}	Output LOW Voltage	I _{OL} = 2.1 mA	V _{CC} = 2.7V				0.4	V
V _{IH}	Input HIGH Voltage				2		V _{CC} + 0.5V	V
V _{IL}	Input LOW Voltage				-0.5		0.8	V
I _{IX}	Input Leakage Cur- rent	$GND \leq V_I \leq V_CC$			-1		+1	μΑ
I _{OZ}	Output Leakage Cur- rent	$GND \le V_O \le V_{CC}$, Outp	$GND \leq V_O \leq V_CC, Output Disabled$				+1	μΑ
I _{CC}	V _{CC} Operating Supply	$f = f_{MAX} = 1/t_{RC}$	$V_{CC} = 3.6V$	70ns		20	40	mA
	Current		I _{OUT} = 0 mA CMOS Levels	55ns		23	50	
I _{SB1}	Automatic CE	Max. V _{CC} , CE ₁ ≥V _{IH} ,	2	70ns		15	300	μΑ
	Power-Down Cur- rent— TTL Inputs	$CE_2 < V_{IH}$ $V_{IN} \ge V_{IH} \text{ or }$ $V_{IN} \le V_{IL}, f = f_{MAX}$ 55ns				17	350	
I _{SB2}	Automatic CE Power-Down Cur- rent— CMOS Inputs	Max. V_{CC} , $\overline{CE}_1 \ge V_{CC}$ $V_{IN} \ge V_{CC} - 0.3V$ or V_{CC}		3		0.4	30	

Capacitance^[3]

Parameter	Description	Test Conditions	Max.	Unit
C _{IN}	Input Capacitance	$T_A = 25$ °C, $f = 1$ MHz, $V_{CC} = V_{CC(typ)}$	6	pF
C _{OUT}	Output Capacitance		8	pF

Thermal Resistance

Description	Test Conditions	Symbol	BGA	Unit
Thermal Resistance ^[3] (Junction to Ambient)	Still Air, soldered on a 4.25 x 1.125 inch, 4-layer printed circuit board	$\Theta_{ m JA}$	55	°C/W
Thermal Resistance ^[3] (Junction to Case)		$\Theta_{ m JC}$	16	°C/W

Note:

3. Tested initially and after any design or process changes that may affect these parameters.

AC Test Loads and Waveforms

Equivalent to: THÉVENIN EQUIVALENT

Parameters	3.3V	Unit
R1	1213	Ohms
R2	1378	Ohms
R _{TH}	645	Ohms
V _{TH}	1.75	Volts

Data Retention Characteristics (Over the Operating Range)

Parameter	Description	Conditions	Min.	Typ. ^[2]	Max.	Unit
V_{DR}	V _{CC} for Data Retention		1.6			V
I _{CCDR}	Data Retention Current	$\begin{aligned} &V_{CC} = 2V, \overline{CE}_1 \ge V_{CC} - 0.3V, \\ &CE_2 < 0.3V \\ &V_{IN} \ge V_{CC} - 0.3V \text{ or } V_{IN} \le 0.3V \end{aligned}$		0.4	20	μА
t _{CDR} ^[3]	Chip Deselect to Data Retention Time		0			ns
t _R ^[4]	Operation Recovery Time		t _{RC}			ns

Data Retention Waveform

Note

4. Full Device AC operation requires linear V_{CC} ramp from V_{DR} to $V_{CC(min.)} \ge 100~\mu s$ or stable at $V_{CC(min.)} \ge 100~\mu s$.

Switching Characteristics Over the Operating Range^[5]

		WCMA10	008U1X-55	WCMA10	08U1X-70	
Parameter	Description	Min.	Max.	Min.	Max.	Unit
READ CYCLE				•		
t _{RC}	Read Cycle Time	55		70		ns
t _{AA}	Address to Data Valid		55		70	ns
t _{OHA}	Data Hold from Address Change	5		10		ns
t _{ACE}	CE ₁ LOW and CE ₂ HIGH to Data Valid		55		70	ns
t _{DOE}	OE LOW to Data Valid		20		35	ns
t _{LZOE}	OE LOW to Low Z ^[6]	10		10		ns
t _{HZOE}	OE HIGH to High Z ^[6, 7]		20		25	ns
t _{LZCE}	CE ₁ LOW and CE ₂ HIGH to Low Z ^[6]	10		10		ns
t _{HZCE}	CE ₁ HIGH or CE ₂ LOW to High Z ^[6, 7]		20		25	ns
t _{PU}	CE ₁ LOW and CE ₂ HIGH to Power-Up	0		0		ns
t _{PD}	CE ₁ HIGH or CE ₂ LOW to Power-Down		55		70	ns
WRITE CYCLE ^[8,]						
t _{WC}	Write Cycle Time	55		70		ns
t _{SCE}	CE ₁ LOW and CE ₂ HIGH to Write End	45		60		ns
t _{AW}	Address Set-Up to Write End	45		60		ns
t _{HA}	Address Hold from Write End	0		0		ns
t _{SA}	Address Set-Up to Write Start	0		0		ns
t _{PWE}	WE Pulse Width	45		55		ns
t _{SD}	Data Set-Up to Write End	25		30		ns
t _{HD}	Data Hold from Write End	0		0		ns
t _{HZWE}	WE LOW to High Z ^[6, 7]		20		25	ns
t _{LZWE}	WE HIGH to Low Z ^[6]	5		5		ns

Notes:

^{5.} Test conditions assume signal transition time of 5 ns or less, timing reference levels of $V_{CC(typ.)}/2$, input pulse levels of 0 to $V_{CC(typ.)}$, and output loading of the

rest conditions assume signal transition time of 5 hs of less, timing reference levels of $V_{CC(typ.)}/2$, input pulse levels of 0 to $V_{CC(typ.)}$, and output loading of the specified I_{QL}/I_{QH} and 30 pF load capacitance. At any given temperature and voltage condition, t_{HZCE} is less than t_{LZCE} , t_{HZOE} is less than t_{LZWE} is less than t_{LZWE} for any given device. t_{HZCE} , and t_{HZWE} transitions are measured when the outputs enter a high impedance state. The internal write time of the memory is defined by the overlap of WE, $\overline{CE}_1 = V_{IL}$ and $CE_2 = V_{IH}$. All signals must be ACTIVE to initiate a write and any of these signals can terminate a write by going INACTIVE. The data input set-up and hold timing should be referenced to the edge of the signal that terminates the write.

Switching Waveforms

Read Cycle No. 1 (Address Transition Controlled) $^{[9,\,10]}$

Read Cycle No. 2 (OE Controlled)[10, 11] ADDRESS t_{RC} \overline{CE}_1 CE_2 t_{ACE} OE t_{HZOE} t_{DOE} ← thzce t_{LZOE} HIGH IMPEDANCE HIGH IMPEDANCE DATA OUT DATA VALID t_{LZCE} t_{PD} t_{PU} I_{CC} V_{CC} SUPPLY 50% 50% CURRENT I_{SB}

Notes:

- <u>Device</u> is continuously selected. \overline{OE} , $\overline{CE}_1 = V_{IL}$, $CE_2 = V_{IH}$.
- 10. WE is HIGH for read cycle.
 11. Address valid prior to or coincident with CE₁ transition LOW and CE₂ transition HIGH.

Switching Waveforms (continued)

Write Cycle No. 1(WE Controlled) [8, 12, 14]

Write Cycle No. 2 ($\overline{\text{CE}}_1$ or CE_2 Controlled) [8, 12, 14]

- Data I/O is high impedance if OE = V_{IH}.
 During this period, the I/Os are in output state and input signals should not be applied.
 If CE₁ goes HIGH and CE₂ goes LOW simultaneously with WE HIGH, the output remains in a high-impedance state.

Switching Waveforms (continued)

Write Cycle No. 3 ($\overline{\text{WE}}$ Controlled, $\overline{\text{OE}}$ LOW) [14]

Truth Table

CE ₁	CE ₂	WE	OE	Inputs/Outputs	Mode	Power
Н	Х	Х	Χ	High Z	Deselect/Power-Down	Standby (I _{SB})
Х	L	Х	Х	High Z	Deselect/Power-Down	Standby (I _{SB})
L	Н	Н	L	Data Out	Read	Active (I _{CC})
L	Н	L	Х	Data In	Write	Active (I _{CC})
L	Н	Н	Н	High Z	Output Disabled	Active (I _{CC})

Ordering Information

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
70	WCMA1008U1X-TF70	T32	32-Lead TSOP	Industrial
	WCMA1008U1X-SF70	S32	32-Lead STSOP	
55	WCMA1008U1X-TF55	T32	32-Lead TSOP	
	WCMA1008U1X-SF55	S32	32-Lead STSOP	

Package Diagrams

32-Lead Thin Small Outline Package, T32

Package Diagrams (continued)

32-Lead Shrunk Thin Small Outline Package, S32

Document Title: WCMA1008U1X, 128K x 8 Static RAM								
REV.	Spec #	ECN#	Issue Date	Orig. of Change	Description of Change			
**	38-14023	115246	4/24/2002	MGN	New Data Sheet			