128K x 8 Static RAM #### **Features** - High Speed - 55ns and 70ns availability - · Voltage range - -2.7V-3.6V - · Ultra low active power - Typical active current: 20 mA @ f = f_{max} (70ns speed) - · Low standby power - Easy memory expansion with $\overline{\text{CE}}$ and $\overline{\text{OE}}$ features - · Automatic power-down when deselected - CMOS for optimum speed/power #### **Functional Description** The WCMA1008U1X is a high-performance CMOS static RAM organized as 128K words by 8 bits. Easy memory expansion is provided by an active LOW Chip Enable ($\overline{\text{CE}}_1$), an active HIGH Chip Enable ($\overline{\text{CE}}_2$), an active LOW Output Enable ($\overline{\text{OE}}$) and three-state drivers. These devices have an automat- ic power-down feature, reducing the power consumption by over 99% when deselected. Writing to the device is accomplished by taking Chip Enable one (\overline{CE}_1) and Write Enable (\overline{WE}) inputs LOW and the Chip Enable two (\overline{CE}_2) input HIGH. Data on the eight I/O pins (I/O₀ through I/O₇) is then written into the location specified on the address pins (\overline{A}_0 through \overline{A}_{16}). Reading from the device is accomplished by taking Chip Enable one ($\overline{\text{CE}}_1$) and Output Enable ($\overline{\text{OE}}$) LOW while forcing Write Enable ($\overline{\text{WE}}$) and Chip Enable two ($\overline{\text{CE}}_2$) HIGH. Under these conditions, the contents of the memory location specified by the address pins will appear on the I/O pins. The eight input/output pins (I/O₀ through I/O₇) are placed in a high-impedance state when the device is deselected (\overline{CE}_1 HIGH or \overline{CE}_2 LOW), the outputs are disabled (\overline{OE} HIGH), or during a write operation (\overline{CE}_1 LOW, \overline{CE}_2 HIGH, and \overline{WE} LOW). The WCMA1008U1X is available in a 32 Lead TSOP and STSOP packages. # **Maximum Ratings** (Above which the useful life may be impaired. For user guidelines, not tested.) Storage Temperature-65°C to +150°C Ambient Temperature with Power Applied......55°C to +125°C Supply Voltage to Ground Potential..... -0.5V to +4.6V | DC Voltage Applied to Outputs in High Z State ^[1] 0.5V to | 0.01 | |--|---------| | DC Input Voltage ^[1] –0.5V to | | | Output Current into Outputs (LOW) | 20 mA | | Static Discharge Voltage(per MIL-STD-883, Method 3015) | >2001V | | Latch-Up Current | >200 mA | #### **Operating Range** | Product | Range | Ambient Temperature | V _{CC} | |-------------|------------|---------------------|-----------------| | WCMA1008U1X | Industrial | −40°C to +85°C | 2.7V to 3.6V | #### **Product Portfolio** | | | | | | Po | wer Dissipat | tion (Industr | ial) | | | | |-------------|-----------------------|----------------------------|-------|-------|----------------------------|--------------|---------------|-----------------------|---------------------|------|--| | Product | V _{CC} Range | | | Speed | Operating, I _{CC} | | Standb | y (I _{SB2}) | | | | | Product | | | | Speed | f = f _{max} | | - f = f | | Typ. ^[2] | Max. | | | | Min. | Typ. ^[2] | Max. | | Typ. ^[2] | Max. | тур. | IVIAX. | | | | | WCMA1008U1X | | 70 ns | 20 mA | 40 mA | 0.4 | 20 A | | | | | | | WCWAT0060TX | 2.7 V | 3.0V | 3.6V | 55 ns | 20 IIIA | 40 IIIA | 0.4 μΑ | 30 μΑ | | | | #### Notes: - V_{IL(min.)} = -2.0V for pulse durations less than 20 ns. Typical values are included for reference only and are not guaranteed or tested. Typical values are measured at V_{CC} = V_{CC(typ.)}, T_A = 25°C. # **Electrical Characteristics** Over the Operating Range | | | | | | WCMA | 41008U1X | (-70/55 | | |------------------|--|---|---|------|------|----------------------------|---------------------------|------| | Parameter | Description | Test Conditions | | | Min. | Typ. ^[2] | Max. | Unit | | V _{OH} | Output HIGH Voltage | $I_{OH} = -1.0 \text{ mA}$ | $V_{CC} = 2.7V$ | | 2.4 | | | V | | V _{OL} | Output LOW Voltage | I _{OL} = 2.1 mA | V _{CC} = 2.7V | | | | 0.4 | V | | V _{IH} | Input HIGH Voltage | | | | 2 | | V _{CC} +
0.5V | V | | V _{IL} | Input LOW Voltage | | | | -0.5 | | 0.8 | V | | I _{IX} | Input Leakage Cur-
rent | $GND \leq V_I \leq V_CC$ | | | -1 | | +1 | μΑ | | I _{OZ} | Output Leakage Cur-
rent | $GND \le V_O \le V_{CC}$, Outp | $GND \leq V_O \leq V_CC, Output Disabled$ | | | | +1 | μΑ | | I _{CC} | V _{CC} Operating Supply | $f = f_{MAX} = 1/t_{RC}$ | $V_{CC} = 3.6V$ | 70ns | | 20 | 40 | mA | | | Current | | I _{OUT} = 0 mA
CMOS Levels | 55ns | | 23 | 50 | | | I _{SB1} | Automatic CE | Max. V _{CC} , CE ₁ ≥V _{IH} , | 2 | 70ns | | 15 | 300 | μΑ | | | Power-Down Cur-
rent— TTL Inputs | $CE_2 < V_{IH}$ $V_{IN} \ge V_{IH} \text{ or }$ $V_{IN} \le V_{IL}, f = f_{MAX}$ 55ns | | | | 17 | 350 | | | I _{SB2} | Automatic CE
Power-Down Cur-
rent— CMOS Inputs | Max. V_{CC} , $\overline{CE}_1 \ge V_{CC}$
$V_{IN} \ge V_{CC} - 0.3V$ or V_{CC} | | 3 | | 0.4 | 30 | | # Capacitance^[3] | Parameter | Description | Test Conditions | Max. | Unit | |------------------|--------------------|--|------|------| | C _{IN} | Input Capacitance | $T_A = 25$ °C, $f = 1$ MHz, $V_{CC} = V_{CC(typ)}$ | 6 | pF | | C _{OUT} | Output Capacitance | | 8 | pF | # **Thermal Resistance** | Description | Test Conditions | Symbol | BGA | Unit | |---|---|------------------|-----|------| | Thermal Resistance ^[3] (Junction to Ambient) | Still Air, soldered on a 4.25 x 1.125 inch, 4-layer printed circuit board | $\Theta_{ m JA}$ | 55 | °C/W | | Thermal Resistance ^[3] (Junction to Case) | | $\Theta_{ m JC}$ | 16 | °C/W | #### Note: 3. Tested initially and after any design or process changes that may affect these parameters. #### **AC Test Loads and Waveforms** Equivalent to: THÉVENIN EQUIVALENT | Parameters | 3.3V | Unit | |-----------------|------|-------| | R1 | 1213 | Ohms | | R2 | 1378 | Ohms | | R _{TH} | 645 | Ohms | | V _{TH} | 1.75 | Volts | # Data Retention Characteristics (Over the Operating Range) | Parameter | Description | Conditions | Min. | Typ. ^[2] | Max. | Unit | |---------------------------------|---|---|-----------------|----------------------------|------|------| | V_{DR} | V _{CC} for Data Retention | | 1.6 | | | V | | I _{CCDR} | Data Retention Current | $\begin{aligned} &V_{CC} = 2V, \overline{CE}_1 \ge V_{CC} - 0.3V, \\ &CE_2 < 0.3V \\ &V_{IN} \ge V_{CC} - 0.3V \text{ or } V_{IN} \le 0.3V \end{aligned}$ | | 0.4 | 20 | μА | | t _{CDR} ^[3] | Chip Deselect to Data
Retention Time | | 0 | | | ns | | t _R ^[4] | Operation Recovery
Time | | t _{RC} | | | ns | #### **Data Retention Waveform** #### Note 4. Full Device AC operation requires linear V_{CC} ramp from V_{DR} to $V_{CC(min.)} \ge 100~\mu s$ or stable at $V_{CC(min.)} \ge 100~\mu s$. #### Switching Characteristics Over the Operating Range^[5] | | | WCMA10 | 008U1X-55 | WCMA10 | 08U1X-70 | | |-----------------------------|---|--------|-----------|--------|----------|------| | Parameter | Description | Min. | Max. | Min. | Max. | Unit | | READ CYCLE | | | | • | | | | t _{RC} | Read Cycle Time | 55 | | 70 | | ns | | t _{AA} | Address to Data Valid | | 55 | | 70 | ns | | t _{OHA} | Data Hold from Address Change | 5 | | 10 | | ns | | t _{ACE} | CE ₁ LOW and CE ₂ HIGH to Data Valid | | 55 | | 70 | ns | | t _{DOE} | OE LOW to Data Valid | | 20 | | 35 | ns | | t _{LZOE} | OE LOW to Low Z ^[6] | 10 | | 10 | | ns | | t _{HZOE} | OE HIGH to High Z ^[6, 7] | | 20 | | 25 | ns | | t _{LZCE} | CE ₁ LOW and CE ₂ HIGH to Low Z ^[6] | 10 | | 10 | | ns | | t _{HZCE} | CE ₁ HIGH or CE ₂ LOW to High Z ^[6, 7] | | 20 | | 25 | ns | | t _{PU} | CE ₁ LOW and CE ₂ HIGH to Power-Up | 0 | | 0 | | ns | | t _{PD} | CE ₁ HIGH or CE ₂ LOW to Power-Down | | 55 | | 70 | ns | | WRITE CYCLE ^[8,] | | | | | | | | t _{WC} | Write Cycle Time | 55 | | 70 | | ns | | t _{SCE} | CE ₁ LOW and CE ₂ HIGH to Write End | 45 | | 60 | | ns | | t _{AW} | Address Set-Up to Write End | 45 | | 60 | | ns | | t _{HA} | Address Hold from Write End | 0 | | 0 | | ns | | t _{SA} | Address Set-Up to Write Start | 0 | | 0 | | ns | | t _{PWE} | WE Pulse Width | 45 | | 55 | | ns | | t _{SD} | Data Set-Up to Write End | 25 | | 30 | | ns | | t _{HD} | Data Hold from Write End | 0 | | 0 | | ns | | t _{HZWE} | WE LOW to High Z ^[6, 7] | | 20 | | 25 | ns | | t _{LZWE} | WE HIGH to Low Z ^[6] | 5 | | 5 | | ns | #### Notes: ^{5.} Test conditions assume signal transition time of 5 ns or less, timing reference levels of $V_{CC(typ.)}/2$, input pulse levels of 0 to $V_{CC(typ.)}$, and output loading of the rest conditions assume signal transition time of 5 hs of less, timing reference levels of $V_{CC(typ.)}/2$, input pulse levels of 0 to $V_{CC(typ.)}$, and output loading of the specified I_{QL}/I_{QH} and 30 pF load capacitance. At any given temperature and voltage condition, t_{HZCE} is less than t_{LZCE} , t_{HZOE} is less than t_{LZWE} is less than t_{LZWE} for any given device. t_{HZCE} , and t_{HZWE} transitions are measured when the outputs enter a high impedance state. The internal write time of the memory is defined by the overlap of WE, $\overline{CE}_1 = V_{IL}$ and $CE_2 = V_{IH}$. All signals must be ACTIVE to initiate a write and any of these signals can terminate a write by going INACTIVE. The data input set-up and hold timing should be referenced to the edge of the signal that terminates the write. # **Switching Waveforms** #### Read Cycle No. 1 (Address Transition Controlled) $^{[9,\,10]}$ #### Read Cycle No. 2 (OE Controlled)[10, 11] ADDRESS t_{RC} \overline{CE}_1 CE_2 t_{ACE} OE t_{HZOE} t_{DOE} ← thzce t_{LZOE} HIGH IMPEDANCE HIGH IMPEDANCE DATA OUT DATA VALID t_{LZCE} t_{PD} t_{PU} I_{CC} V_{CC} SUPPLY 50% 50% CURRENT I_{SB} #### Notes: - <u>Device</u> is continuously selected. \overline{OE} , $\overline{CE}_1 = V_{IL}$, $CE_2 = V_{IH}$. - 10. WE is HIGH for read cycle. 11. Address valid prior to or coincident with CE₁ transition LOW and CE₂ transition HIGH. # Switching Waveforms (continued) # Write Cycle No. 1(WE Controlled) [8, 12, 14] # Write Cycle No. 2 ($\overline{\text{CE}}_1$ or CE_2 Controlled) [8, 12, 14] - Data I/O is high impedance if OE = V_{IH}. During this period, the I/Os are in output state and input signals should not be applied. If CE₁ goes HIGH and CE₂ goes LOW simultaneously with WE HIGH, the output remains in a high-impedance state. # Switching Waveforms (continued) # Write Cycle No. 3 ($\overline{\text{WE}}$ Controlled, $\overline{\text{OE}}$ LOW) [14] # **Truth Table** | CE ₁ | CE ₂ | WE | OE | Inputs/Outputs | Mode | Power | |-----------------|-----------------|----|----|----------------|---------------------|----------------------------| | Н | Х | Х | Χ | High Z | Deselect/Power-Down | Standby (I _{SB}) | | Х | L | Х | Х | High Z | Deselect/Power-Down | Standby (I _{SB}) | | L | Н | Н | L | Data Out | Read | Active (I _{CC}) | | L | Н | L | Х | Data In | Write | Active (I _{CC}) | | L | Н | Н | Н | High Z | Output Disabled | Active (I _{CC}) | # **Ordering Information** | Speed
(ns) | Ordering Code | Package
Name | Package Type | Operating
Range | |---------------|------------------|-----------------|---------------|--------------------| | 70 | WCMA1008U1X-TF70 | T32 | 32-Lead TSOP | Industrial | | | WCMA1008U1X-SF70 | S32 | 32-Lead STSOP | | | 55 | WCMA1008U1X-TF55 | T32 | 32-Lead TSOP | | | | WCMA1008U1X-SF55 | S32 | 32-Lead STSOP | | # **Package Diagrams** #### 32-Lead Thin Small Outline Package, T32 # Package Diagrams (continued) #### 32-Lead Shrunk Thin Small Outline Package, S32 | Document Title: WCMA1008U1X, 128K x 8 Static RAM | | | | | | | | | |--|----------|--------|------------|-----------------|-----------------------|--|--|--| | REV. | Spec # | ECN# | Issue Date | Orig. of Change | Description of Change | | | | | ** | 38-14023 | 115246 | 4/24/2002 | MGN | New Data Sheet | | | |