CMOS 8-Bit Microcontroller #### TMP87PP23F The TMP87PP23 is a One-Time PROM microcontroller with low-power 384K bits electrically programmable read only memory for the TMP87CM23A/CP23 system evaluation. The TMP87PP23 is pin compatible with the TMP87CM23A/CP23. The operations possible with the TMP87CM23A/CP23 can be performed by writing programs to PROM. The TMP87PP23 can write and verify in the same way as the TC571000D using an adapter socket BM1185A and an EPROM programmer. | | Product No. | ОТР | RAM | Package | OTP Adapter | |---|-------------|-------------|----------|---------------------|-------------| | I | TMP87PP23F | 48K × 8-bit | 2K×8-bit | P-QFP100-1420-0.65A | BM1185A | For a discussion of how the reliability of microcontrollers can be predicted, please refer to Section 1.3 of the chapter entitled Quality and Reliability Assurance / Handling Precautions. TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc.. ■ The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments traffic signal instruments control instruments medical instruments. all types of transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's The products described in this document are subject to the foreign exchange and foreign trade laws. The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others. The information contained herein is subject to change without notice. 2001-10-03 3-23-111 #### **OPERATIONAL DESCRIPTION** The following explains the TMP87PP23 hardware configuration and operation. The configuration and functions of the TMP87PP23 are the same as those of the TMP87CM23A/CP23, except in that a one-time PROM is used instead of an on-chip mask ROM. The TMP87PP23 is placed in the *single-clock* mode during reset. To use the dual-clock mode, the low-frequency oscillator should be turned on by executing [SET (SYSCR2). XTEN] instruction at the beginning of the program. #### 1. OPERATING MODE The TMP87PP23 has two modes: MCU and PROM. #### 1.1 MCU mode The MCU mode is activated by fixing the TEST / VPP pin at low level. In the MCU mode, operation is the same as with the TMP87CM23A/CP23 (the TEST / VPP pin cannot be used open because it has no built-in pull-down resistance). #### 1.1.1 Program Memory The TMP87PP23 has a $48K \times 8$ -bit (addresses 4000_H -FFFF_H in the MCU mode, addresses 14000_H -1FFFF_H in the PROM mode) of program memory (OTP). When the TMP87PP23 is used as a system evaluation of the TMP87CM23A/P23, the data is written to the program storage area shown in figure 1-1. Figure 1-1. Program Memory Area Note: Either write the data FF_H to the unused area or set the PROM programmer to access only the program storage area. # 1.1.2 Data Memory The TMP87PP23 has an on-chip 2K × 8-bit data memory (static RAM). # 1.1.3 Input/Output Circuitry # (1) Control pins The control pins of the TMP87PP23 are the same as those of the TMP87CM23A/CP23 except that the TEST pin has no built-in pull-down resistance. Figure 1-2. TEST Pin # (2) I/O ports The I/O circuitries of TMP87PP23 I/O ports are the same as the those of TMP87CM23A/CP23. #### 1.2 PROM mode The PROM mode is activated by setting the TEST, RESET pin and the ports P17 to P10, P22 to P20 and P61 as shown in Figure 1-3 The PROM mode is used to write and verify programs with a general-purpose PROM programmer. Note: The high-speed programming mode can be used for program operation. The TMP87PP23 is not supported an electric signature mode, so the ROM type must be set to TC571000D. Figure 1-3. Setting for PROM Mode ## 1.2.1 Programming Flowchart (High-speed Programming Mode) The high-speed programming mode is achieved by applying the program voltage (\pm 12.75 V) to the VPP pin when Vcc = 6.25 V. After the address and input data are stable, the data is programmed by applying a single 0.1 ms program pulse to the \overline{PGM} input. The programmed data is verified. If incorrect, another 0.1 ms program pulse is applied. This process should be repeated (up to 25 times) until the program operates correctly. After that, change the address and input data, and program as before. When programming has been completed, the data in all addresses should be verified with Vcc = Vpp = 5 V. Figure 1-4. Flow Chart of High-speed Programming #### 1.2.2 Writing method for general-purpose PROM program (1) Adapters BM1185A: TMP87PP23F (2) Adapter setting Switch (SW1) is set to side N. (3) PROM programmer specifying i) PROM type is specified to TC571000D. Writing voltage: 12.75 V (high-speed program mode) ii) Data transfer (copy) (Note 1) In the TMP87PP23, EPROM is within the addresses 14000_H to 1FFFF_H. Data is required to be transferred (copied) to the addresses where it is possible to write. The program area in MCU mode and PROM mode is referred to "Program memory area" in figure 1-1. Ex. In the block transfer (copy) mode, executed as below. ROM capacity of 48KB: transferred addresses 04000_H to 0FFFF_H to addresses 14000 to 1FFFF_H iii) Writing address is specified. (Note 1) Start address: 14000_H End address: 1FFFF_H (4) Writing Writing/Verifying is required to be executed in accordance with PROM programmer operating procedure. - Note 1: The specifying method is referred to the PROM programmer description. Either write the data FF_H to the unused area or set the PROM programmer to access only the program storage area. - Note 2: When MCU is set to an adapter or the adapter is set to PROM programmer, a position of pin 1 must be adjusted. If the setting is reversed, MCU, the adapter and PROM program is damaged. - Note 3: The TMP87PP23 does not support the electric signature mode (hereinafter referred to as "signature"). If the signature is used in PROM program, a device is damaged due to applying $12V \pm 0.5V$ to the address pin 9 (A9). The signature must not be used. #### Pin Assignments (Top View) P-QFP100-1420-0.65A ### **Pin Function** The TMP87PP23 has two modes: MCU and PROM. ### (1) MCU mode In this mode, the TMP87PP23 is pin compatible with the TMP87CM23A/CP23 (fix the TEST pin at low level.) # (2) PROM mode | Pin Name (PROM mode) | Input / Output | Function | Pin Name (MCU mode) | | | | |--------------------------------|--------------------|--|---------------------|--|--|--| | A16 | | | P60 | | | | | A15 to A8 | Input | PROM address inputs | P77 to P70 | | | | | A7 to A0 | | | P87 to P80 | | | | | D7 to D0 | I/O | PROM data input/outputs | P07 to P00 | | | | | CE | | Chip enable signal input (active low) | P13 | | | | | ŌĒ | Input | Output enable signal input (active low) | P14 | | | | | PGM | | Program mode signal input (active low) | P15 | | | | | VPP | | + 12.75 V / 5 V (Program supply voltage) | TEST | | | | | vcc | Power supply | +6.25 V / 5 V | VDD | | | | | GND | | 0 V | VSS | | | | | P36 to P30 | | | | | | | | P47 to P40 | | | | | | | | P57 to P50 | | Pull-up with resistance for input processing. | | | | | | P67 to P62 | | | | | | | | P93 to P90 | 1/0 | | | | | | | P11 | I/O | | | | | | | P21 | | PROM mode setting pin. Be fixed at high level. | | | | | | P61 | | | | | | | | P17, P16, P12, P10
P22, P20 | | DDOM made setting via De fived et level | | | | | | RESET | | PROM mode setting pin. Be fixed at low level. | | | | | | XIN | Input | Compart on ONALL conflict and a stabilities the internet | al state | | | | | хоит | Output | Connect an 8MHz oscillator to stabilize the intern | iai state. | | | | | VAREF | Davisan seessa lee | OVYCND | | | | | | VASS | Power supply | 0 V (GND) | | | | | | COM3 to COM0 | Output | | | | | | | SEG11 to SEG0 | Output | Open | | | | | | VLC | Power supply | | | | | | #### **Electrical Characteristics** $(V_{SS} = 0 V)$ **Absolute Maximum Ratings** | Parameter | Symbol | Pin | Ratings | Unit | | |---------------------------------|---------------------|---|--------------------------|------|--| | rarameter | Symbol | FIII | Raurigs | Unit | | | Supply Voltage | V_{DD} | | - 0.3 to 6.5 | V | | | Program Voltage | V_{PP} | TEST/V _{PP} | – 0.3 to 13.0 | V | | | Input Voltage | V_{IN} | | -0.3 to $V_{DD} + 0.3$ | V | | | Output Voltage | V _{OUT} | | -0.3 to $V_{DD} + 0.3$ | V | | | Output Current (Per 1 pin) | I _{OUT1} | Ports P0, P1, P2, P3, P5, P6, P7, P8, P9, P4 (except P41) | 3.2 | mA | | | | I _{OUT2} | P41 | 30 | | | | Output Current (Total) | Σ I _{OUT1} | Ports P0, P1, P2, P3, P5, P6, P7, P8, P9, P4 (except P41) | 120 | mA | | | | ΣI _{OUT2} | P41 | 30 | | | | Power Dissipation [Topr = 70°C] | PD | | 350 | mW | | | Soldering Temperature (time) | Tsld | | 260 (10 s) | °C | | | Storage Temperature | Tstg | | – 55 to 125 | °C | | | Operating Temperature | Topr | | - 30 to 70 | °C | | Note1: The absolute maximum ratings are rated values which must not be exceeded during operation, even for an instant. Any one of the ratings must not be exceeded. If any absolute maximum rating is exceeded, a device may break down or its performance may be degraded, causing it to catch fire or explode resulting in injury to the user. Thus, when designing products which include this device, ensure that no absolute maximum rating value will ever be exceeded. Note 2: The absolute maximum input/output voltage ratings for the TMP87CM23A/CP23/PP23 are - 0.3 to VDD + 0.3 [V] at all I/O ports including sink open drain output ports. (However, the VPP pin of TMP87PP23 is not contained in these condition.) Recommended Operating Conditions (V_{SS} = 0V, Topr = -30 to 70°C) | Parameter | Symbol | Pin | (| Condition | Min | Max | Unit | |--------------------|------------------|-------------------------|---------------------------------------|-----------------------|----------------------|----------------------|------| | | | | C. O.B. | NORMAL1, 2 mode | 4.5 | | | | | | | fc = 8 MHz | IDLE1, 2 mode | 4.5 | | | | | | | f. 4 2 NALL- | NORMAL1, 2 mode | | 5.5 | | | Supply Voltage | V_{DD} | | fc = 4.2 MHz | IDLE1, 2 mode | 2.7 | | V | | | | | fs = | SLOW mode | 2.7 | | | | | | | 32.768 kHz | SLEEP mode | | | | | | | | | STOP mode | 2.0 | | | | | V _{IH1} | Except hysteresis input | V _{DD} ≧ 4.5 V | | $V_{DD} \times 0.70$ | | V | | Input High Voltage | V _{IH2} | Hysteresis input | | | $V_{DD} \times 0.75$ | V_{DD} | | | | V _{IH3} | | V | _{DD} <4.5 V | $V_{DD} \times 0.90$ | | | | | V _{IL1} | Except hysteresis input | cept hysteresis input | | | $V_{DD} \times 0.30$ | | | Input Low Voltage | V_{IL2} | Hysteresis input | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | _{DD} ≧ 4.5 V | 0 | $V_{DD} \times 0.25$ | l v | | | V _{IL3} | | V | _{DD} <4.5 V | | $V_{DD} \times 0.10$ | | | | fc XIN, X | XIN, XOUT | V _{DD} = 4.5 to 5.5 V | | 0.4 | 8.0 | MHz | | Clock Frequency | | AIIV, AUUT | V _{DD} = 2.7 to 5.5 V | | | 4.2 | | | | fs | XTIN, XTOUT | | | 30.0 | 34.0 | kHz | Note 1: The recommended operating conditions for a device are operating conditions under which it can be guaranteed that the device will operate as specified. If the device is used under operating conditions other than the recommended operating conditions (supply voltage, operating temperature range, specified AC/DC values etc.), malfunction may occur. Thus, when designing products which include this device, ensure that the recommended operating conditions for the device are always adhered to. Note 2: Clock frequency fc: Supply voltage range is specified in NORMAL1/2 mode and IDLE1/2 mode. #### **DC Characteristics** $(V_{SS} = 0 \text{ V, Topr} = -30 \text{ to } 70^{\circ}\text{C})$ | Parameter | Symbol | Pin | Condition | Min | Тур. | Max | Unit | |--|--------------------|--|---|-----|------|-----|------| | Hysteresis Voltage | V_{HS} | Hysteresis inputs | | _ | 0.9 | _ | ٧ | | | I _{IN1} | TEST | | | | | | | Input Current | I _{IN2} | Open drain ports and tri-state ports | $V_{DD} = 5.5 \text{ V},$
$V_{IN} = 5.5 \text{ V} / 0 \text{ V}$ | _ | _ | ± 2 | μΑ | | | I _{IN3} | RESET, STOP | | | | | | | Input Low Current | I _{IL} | Push-pull ports | $V_{DD} = 5.5 \text{ V}, V_{IN} = 0.4 \text{ V}$ | _ | _ | - 2 | mA | | Input Resistance | R _{IN2} | RESET | | 100 | 220 | 450 | kΩ | | Output Leakage
Current | I _{LO} | Open drain ports | V _{DD} = 5.5 V, V _{OUT} = 5.5 V | _ | _ | 2 | μΑ | | Segment Output
Low Resistance | R _{OS1} | SEG39 to SEG0 | | | 20 | _ | kΩ | | Common Output
Low Resistance | R _{OC1} | COM3 to COM0 | | _ | 20 | _ | K22 | | Segment Output
High Resistance | R _{O\$2} | SEG39 to SEG0 | V _{DD} = 5 V, | | 200 | | kΩ | | Common Output
High Resistance | R _{OC2} | COM3 to COM0 | $V_{DD} - V_{LC} = 3 V$ | _ | 200 | _ | K77 | | | V _{O 2/3} | |] | 3.8 | 4.0 | 4.2 | | | Segment/Common Output Voltage | V _{O 1/2} | SEG39 to SEG0 and COM3 to COM0 | | 3.3 | 3.5 | 3.7 | V | | Output Voltage | V _{O 1/3} | CONS to COMO | | 2.8 | 3.0 | 3.2 | | | | V _{OH1} | Push-pull ports (P4 port) | $V_{DD} = 4.5 \text{ V}, I_{OH} = -200 \mu\text{A}$ | 2.4 | _ | _ | | | Output High Voltage | V _{OH2} | Tri- state ports
(P0, P1, P5 ports) | $V_{DD} = 4.5 \text{ V}, \ I_{OH} = -0.7 \text{ mA}$ | 4.1 | _ | _ | V | | Output Low Voltage | V _{OL} | Except XOUT and P41 | $V_{DD} = 4.5 \text{ V}, I_{OL} = 1.6 \text{ mA}$ | _ | _ | 0.4 | ٧ | | Output Low Current | I _{OL3} | P41 | $V_{DD} = 4.5 \text{ V}, \ V_{OL} = 1.0 \text{ V}$ | _ | 20 | _ | mA | | Supply Current in
NORMAL 1 , 2 mode | | | V _{DD} = 5.5 V
fc = 8 MHz | _ | 12 | 18 | | | Supply Current in IDLE 1, 2 mode | | | fs = 32.768 kHz
V _{IN} = 5.3 V / 0.2 V | _ | 6 | 10 | mA | | Supply Current in SLOW mode | I _{DD} | | V _{DD} = 3.0 V
fs = 32.768 kHz | _ | 30 | 60 | μΑ | | Supply Current in
SLEEP mode | | | V _{IN} = 2.8 V / 0.2 V
LCD driver is not enable | _ | 15 | 30 | μΑ | | Supply Current in STOP mode | | | V _{DD} = 5.5 V
V _{IN} = 5.3 V / 0.2 V | _ | 0.5 | 10 | μΑ | Note 1: Typical values show those at $Topr = 25^{\circ}C$, $V_{DD} = 5 V$. Note 2: Input Current; The current through pull-up or pull-down resistor is not included. Note 3: I_{DD} ; Except for I_{REF} Note 4: Output resistors Ros, Roc indicate "on" when switching levels. Note 5: $V_{O2/3}$ indicates an output voltage at the 2/3 level when operating in the 1/4 or 1/3 duty mode. Note 6: $V_{O1/2}$ indicates an output voltage at the 1/2 level when operating in the 1/2 duty or static mode. Note 7: $V_{O1/3}$ indicates an output voltage at the 1/3 level when operating in the 1/4 or 1/3 duty mode. Note 8: When using LCD, it is necessary to consider values of Ros1/2 and Rbc1/2. Note 9: Times for SEG/COM output switching on: Ros1, Roc1: 26/fc, 2/fc (s) Ros2, Roc2: 1/(n, f_F) (1/n: duty, f_F : frame frequency) ### **AD Conversion Characteristics** $(V_{SS} = 0V, V_{DD} = 2.7 \text{ to } 5.5V, Topr = -30 \text{ to } 70^{\circ}C)$ | ParameteR | Symbol | Condition | Min | Тур. | Max | Unit | |--------------------------|-------------------|--|------------------|------|-------------------|------| | | V _{AREF} | | 2.7 | _ | V _{DD} | | | Analog Reference Voltage | V _{ASS} | $V_{AREF} - V_{ASS} \ge 2.5 V$ | V _{SS} | _ | 1.5 | V | | Analog Input Voltage | V _{AIN} | | V _{ASS} | _ | V _{AREF} | ٧ | | Analog Supply Current | I _{REF} | $V_{AREF} = 5.5 \text{ V}, \ V_{ASS} = 0.0 \text{ V}$ | _ | 0.5 | 1.0 | mA | | Nonlinearity Error | | $V_{DD} = 5.0 \text{ V}, V_{SS} = 0.0 \text{ V}$
$V_{\Delta RFF} = 5.000 \text{ V}$ | _ | _ | ± 1 | | | Zero Point Error | | V _{ASS} = 0.000 V | _ | _ | ± 1 | | | Full Scale Error | | or $V_{DD} = 2.7 \text{ V}, V_{SS} = 0.0 \text{ V}$ | _ | _ | ± 1 | LSB | | Total Error | | V _{AREF} = 2.700 V
V _{ASS} = 0.000 V | _ | _ | ± 2 | | Note: Quantizing error is not contained in those errors. #### AC Characteristics $(V_{SS} = 0 \text{ V}, V_{DD} = 4.5 \text{ to } 5.5 \text{ V}, Topr = -30 \text{ to } 70^{\circ}\text{C})$ | Parameter | Symbol | Condition | Min | Тур. | Max | Unit | |------------------------------|------------------|-------------------------------|-------|------|-------|---------| | | | In NORMAL 1, 2 mode | 0.05 | | 10 | | | Machine Cycle Time | ١. | In IDLE 1, 2 mode | 0.95 | _ | | _ | | | t _{cy} | In SLOW mode | 117.6 | | 133.3 | μ S | | | | In SLEEP mode | 117.6 | _ | | | | High Level Clock Pulse Width | t _{WCH} | For external clock operation | F0 | _ | _ | | | Low Level Clock Pulse Width | t _{WCL} | (XIN input), fc = 8 MHz | 50 | | | ns | | High Level Clock Pulse Width | t _{WSH} | For external clock operation | 44.7 | | | _ | | Low Level Clock Pulse Width | t _{WSL} | (XTIN input), fs = 32.768 kHz | 14.7 | 1 | _ | μ S | ## $(V_{SS} = 0 \text{ V}, V_{DD} = 2.7 \text{ to } 5.5 \text{ V}, Topr = -30 \text{ to } 70^{\circ}\text{C})$ | Parameter | Symbol | Condition | Min | Тур. | Max | Unit | |------------------------------|------------------|-------------------------------|-------------|------|---------|------| | | | In NORMAL 1, 2 mode | 0.95 | | 10 | | | Machine Cuele Time | | In IDLE 1, 2 mode | 0.95 | _ | 10 | μS | | Machine Cycle Time | t _{cy} | In SLOW mode | ode 117.6 - | | - 133.3 | | | | | In SLEEP mode | 117.6 | _ | 133.3 | | | High Level Clock Pulse Width | t _{WCH} | For external clock operation | 110 | _ | _ | | | Low Level Clock Pulse Width | t _{WCL} | (XIN input), fc = 8 MHz | | | | ns | | High Level Clock Pulse Width | t _{WSH} | For external clock operation | 14.7 | | | | | Low Level Clock Pulse Width | t _{WSL} | (XTIN input), fs = 32.768 kHz | 14.7 | _ | ı | μS | #### **Recomended Oscillating Condition-1** $(VSS = 0 \text{ V}, VDD = 4.5 \text{ to } 5.5 \text{ V}, Topr = -30 \text{ to } 70^{\circ}\text{C})$ | Parameter | Osillator | Frequency | Recomm | | Recommended
COndition | | |---------------|--------------------|------------|---------------------------------|-----------------|--------------------------|----------------| | | | | Oscill | iator | C ₁ | C ₂ | | | | | KYOCERA | KBR8.0M | 30pF | 30pF | | | | | Standard/Lead Type | CSA8.00MTZ | Built-in | Built-in | | | | | (MURATA) | CST8.00MTW | 30pF | 30pF | | | Ceramic Resonator | 8 MHz | Standard/SMP Type | CSAC8.00MT | 30pF | 30pF | | | | | (MURATA) Standard/Small ChipTyp | pe CSTC8.00MT | Built-in | Built-in | | High- | | | (MURATA) | De C31C8.00IVII | 30pF | 30pF | | frequency | | 4 MHz | KYOCERA | KBR4.0MS | 30pF | 30pF | | | | 8 MHz | тоуосом | 210B 8.0000 | | | | | Crystal Oscillator | 4 MHz | тоуосом | 204B 4.0000 | 20pF | 20pF | | Low-frequency | Crystal Oscillator | 32.768 kHz | NDK | MX-38T | 15pF | 15pF | ## **Recomended Oscillating Condition-2** $(VSS = 0 \text{ V}, \text{ VDD} = 2.7 \text{ to } 5.5 \text{ V}, \text{ Topr} = -30 \text{ to } 70^{\circ}\text{C})$ | Parameter | Osillator | Frequency | Recommer
Oscillate | | Recommended
Condition | | | |-----------|-----------|-----------|-------------------------------|----------------------------|--------------------------|------------------|--| | | | | Oscillate | or | C ₁ | C ₂ | | | | | | Standard/Lead Type | CSA4.00MG | 30pF | 30pF | | | | | | (MURATA) | CST4.00MGW | Built-in
30pF | Built-in
30pF | | | High- | | 4 MHz | Standard/SMD Type
(MURATA) | CSA4.00MGC
CSAC4.00MGCM | 30pF | 30pF | | | frequency | | | | CSTC4.00MG | Built-in | Built-in | | | | | | | | 30pF | 30pF | | | | | | Standard/Small Chin Type | CSTCS 4 DONAC | Built-in | Built-in | | | | | | Standard/Small Chip Type | C31C34.00IVIG | 10pF | 10pF | | (1) High-frequency (2) Low-frequency - Note 1: When used in high electric field such as a picture tube, the package is recommended to be electrically shielded to maintain a regular operation. - Note 2: The product numbers and specifications of the resonators by Murata Manufacturing Co., Ltd. are subject to change. For up-to-date information, please refer to the following URL; http://www.murata.co.jp/search/index.html D.C./A.C. Characteristics (PROM mode) $(V_{SS} = 0 V)$ # (1) Read Operation | Parameter | Symbol | Condition | Min | Тур. | Max | Unit | |------------------------------|------------------|--------------------------------|-----------------------|---------------|------------------------|------| | Input High Voltage | V _{IH4} | | V _{CC} × 0.7 | _ | V _{CC} | ٧ | | Input Low Voltage | V _{IL4} | | 0 | _ | V _{CC} × 0.12 | V | | Power Supply Voltage | V _{CC} | | 4.75 | 5.0 | 5.25 | V | | Program Power Supply Voltage | V_{PP} | | 4.75 | 5.0 | 5.25 | ' | | Address Access Time | t _{ACC} | V _{CC} = 5.0 ± 0.25 V | _ | 1.5tcyc + 300 | _ | ns | Note: tcyc = 500 ns at 8 MHz #### (2) High-Speed Programming Operation | Parameter | Symbol | Condition | Min | Тур. | Max | Unit | |------------------------------|------------------|-------------------------|-----------------------|-------|------------------------|------| | Input High Voltage | V _{IH4} | | V _{CC} × 0.7 | - | V _{CC} | ٧ | | Input Low Voltage | V_{IL4} | | 0 | _ | V _{CC} × 0.12 | ٧ | | Power Supply Voltage | V _{CC} | | 6.0 | 6.25 | 6.5 | > | | Program Power Supply Voltage | V _{PP} | | 12.5 | 12.75 | 13.0 | ٧ | | Initial Program Pulse Width | t _{PW} | V _{CC} = 6.0 V | 0.095 | 0.1 | 0.105 | ms | Note 1: When V_{cc} power supply is turned on or after, V_{pp} must be increased. When V_{cc} power supply is turned off or before, V_{pp} must be increased. Note 2: The device must not be set to the EPROM programmer or picked op from it under applying the program voltage (12.5 V \pm 0.5 V = V) to the V_{pp} pin as the device is damaged. Note 3: Be sure to execute the recommended programing mode with the recommended programing adaptor. If a mode or an adaptor except the above, the misoperation sometimes occurs.