High-Side N-Channel Switch with Current Limit

FEATURES

- User Set Over Current Limit From 400 mA to 2.4 A
- Low $\mathrm{r}_{\mathrm{DS}(o n)} 45 \mathrm{~m} \Omega$ (max) at $25^{\circ} \mathrm{C}$
- Fault Indicator
- Under Voltage Lockout

APPLICATIONS

- Notebook Computers Power Management
- USB Power Distribution
- Hot Plug In Power Supplies
- Power Supply/Load Protection
- Battery-Charger Circuits

DESCRIPTION

The Si4779CY n-channel high-side switch combines a low $r_{\text {DS(on) }}$ MOSFET switch with a user set, pulse gate control (PGC) based current limit. This switch is designed to protect the system power supply from overloads and short circuit conditions in applications such as USB. The PGC based approach to the current limiter provides the additional benefit of keeping the MOSFET junction temperature within
specification, thereby eliminating the need for thermal shutdown. The low quiescent current makes the Si4779CY ideal for use in battery powered devices. The Si4779CY operates on both $3-\mathrm{V}$ and $5-\mathrm{V}$ busses, and is packaged in the LITTLE FOOT® SO-8 package.

FUNCTIONAL BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS ($\mathbf{T}_{\mathbf{A}}=\mathbf{2 5}^{\circ} \mathbf{C}$ UNLESS OTHERWISE NOTED)

Parameter		Symbol	Steady State	Unit
Voltage, IN to GND		V_{IN}	-0.3 to 7	V
Voltage, ON		V_{ON}	-0.3 to 7	
Continuous Drain Current $\left(\mathrm{T}_{J}=150{ }^{\text {® }} \mathrm{C}\right)^{\mathrm{a}}$	$\mathrm{T}_{\mathrm{A}}=25{ }^{\text {® }} \mathrm{C}$	ID	2.4	A
	$\mathrm{T}_{\mathrm{A}}=85{ }^{\text {® }} \mathrm{C}$		2.4	
Maximum Power Dissipation ${ }^{\text {a }}$	$\mathrm{T}_{\mathrm{A}}=70^{\oplus} \mathrm{C}$	P_{D}	0.65	W
Operating Junction and Storage Temperature Range		$\mathrm{T}_{\mathrm{j},}$, $\mathrm{stg}^{\text {d }}$	-65 to 125	${ }^{\circ} \mathrm{C}$

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Steady State	Unit
Voltage, IN to GND	$\mathrm{V}_{\mathbb{I N}}$	3.0 to 5.0	V
Voltage, ON or FAULT to GND	$\mathrm{V}_{\mathrm{ON}}, \mathrm{V}_{\text {FAULT }}$	0 to 5.0	
Operating Temperature Range	T_{A}	0 to 85	${ }^{\circ} \mathrm{C}$

THERMAL RESISTANCE RATINGS

Parameter		Symbol	Typical	Maximum	Unit
Junction-to-Ambienta	Steady State	$\mathrm{R}_{\text {thJA }}$	98	120	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Junction-to-Foot (Drain) ${ }^{\text {b }}$		$\mathrm{R}_{\text {thJF }}$	37	46	

Notes
a. Surface mounted on 1" x1" FR4 board, 0.062" thick, 2-oz copper double sided.
b. Junction-to-foot thermal impedance represents the effective thermal impedance of all heat carrying leads in parallel and is intended for use in conjunction with the thermal impedance of the PC board pads to ambient ($\left.\mathrm{R}_{\mathrm{thJA}}=\mathrm{R}_{\mathrm{thJF}}+\mathrm{R}_{\mathrm{thPCB}}-\mathrm{A}\right)$. It can also be used to estimate chip temperature if power dissipation and the lead temperature of a heat carrying (drain) lead is known.

SPECIFICATIONS

Parameter	Symbol	Test Conditions Unless Specified$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{~V}_{\mathrm{IN}}=5 \mathrm{~V}$	Limits			Unit
			Min	Typ ${ }^{\text {a }}$	Max	
Basic Operations						
Operating Voltage	V_{IN}		2.7		5.5	V
On-State Resistance	${ }^{\text {c DS }}$ (on)	$\mathrm{V}_{\text {IN }}=4.75 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=2 \mathrm{~A}$		0.035	0.045	Ω
		$\mathrm{V}_{\mathrm{IN}}=3.0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=2 \mathrm{~A}$		0.045	0.055	
Supply Current	ISUP(off)	$\overline{\mathrm{ON}}=\mathrm{IN}, \mathrm{V}_{\text {IN }}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=0 \mathrm{~V}$			2	$\mu \mathrm{A}$
	ISUP(on)	$\overline{\mathrm{ON}}=\mathrm{GND}, \mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {OUT }}=5.5 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=0 \mathrm{~A}$			70	
$\overline{\text { ON }}$ Input Low Voltage	$\mathrm{V}_{\text {ONL }}$	$\mathrm{V}_{\mathrm{IN}}=2.7$ to 5.5 V			0.8	V
ON Input High Voltage	$\mathrm{V}_{\text {ONH }}$	$\mathrm{V}_{\mathrm{IN}}=2.7$ to 3.6 V	2.0			
		$\mathrm{V}_{\mathrm{IN}}=4.5$ to 5.5 V	2.4			
ON Input Current	ION	$\checkmark \overline{\mathrm{ON}}=5.5 \mathrm{~V}$		0.01	± 1	$\mu \mathrm{A}$
Protection						
Over Current Limit Range ${ }^{\text {b }}$	lıimit	Tolerance $= \pm 20 \%, \mathrm{~V}_{\text {IN }}=5 \mathrm{~V}$	0.4		2.4	A
Under Voltage Lockout (falling edge)	UVLO		2.0	2.3	2.6	V
Under Voltage Hysteresis	Δ UVLO			0.1		
FAULT Output Voltage Low ${ }^{\text {b }}$	$\mathrm{V}_{\text {FAULT }}$	$\mathrm{I}_{\text {SINK }}=100 \mu \mathrm{~A}$			0.4	
FAULT Logic Output Leakage Current	I_{FL}	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {FAULT }}=5.5 \mathrm{~V}$		0.01	1	$\mu \mathrm{A}$
Dynamic ${ }^{\text {b }}$						
Turn-On Time	$\mathrm{t}_{\text {on }}$	$\mathrm{V}_{\mathrm{IN}}=5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=11 \Omega, \mathrm{C}_{\mathrm{L}}=40 \mu \mathrm{~F}$		3		ms
Rise Time	t_{r}			3.5		
Turn-Off Time	$\mathrm{t}_{\text {off }}$	$\mathrm{V}_{\text {IN }}=5 \mathrm{~V}$, $\mathrm{I}_{\text {OUT }}=500 \mathrm{~mA}$		1.5		$\mu \mathrm{S}$
Fall Time	t_{f}			0.5		
Cycle Time	$\mathrm{t}_{\text {cyc }}$	$\mathrm{V}_{\mathrm{IN}}=5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=0.5 \Omega$		8		ms

Notes
a. Typical values at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ are for DESIGN AID ONLY, not guaranteed nor subject to production testing.
b. Guaranteed by design. Derived from ISET current ratio, current-limit amplifier and external set resistor accuracy.

TIMING DIAGRAMS

FIGURE 1.

FIGURE 2.

Vishay Siliconix

TIMING DIAGRAMS

FIGURE 3.

TYPICAL CHARACTERISTICS (25° C UNLESS NOTED)

Supply Current, Output Disalble vs. Ambient Temperature Over Operating Voltage

Normalized On-Resistance vs. Ambient Temperature

$20 \mathrm{~ms} /$ div

CH1: Iout, 2 A/div
CH2: V
CH3: ON, 5 V/div

FIGURE 4. Switch Turn-ON/OFF Time

NOTE: Discharge time based primarily on external R and C
FIGURE 6. Switch Turn-OFF Time

$1 \mathrm{~ms} / \mathrm{div}$

CH1: IOUT, $0.5 \mathrm{~A} / \mathrm{div}$
CH2: Vout, $5 \mathrm{~V} / \mathrm{div}, \mathrm{C}_{\mathrm{L}}=10 \mu \mathrm{~F}$
CH3: ON, 5 V/div

FIGURE 5. Switch Turn-ON Time

$200 \mu \mathrm{~s} / \mathrm{div}$
CH1: lout, 0.5 A/div
CH2: Vout, $5 \mathrm{~V} / \mathrm{div}, \mathrm{C}_{\mathrm{L}}=150 \mu \mathrm{~F}$
CH3: $\overline{O N}, 5 \mathrm{~V} / \mathrm{div}$
NOTE: Discharge time based primarily on external R and C
FIGURE 7. Switch Turn-OFF Time

$2 \mathrm{~ms} / \mathrm{div}$

```
CH1: ON, 5 V/div
CH2: V
CH3: FAULT, 5 V/div
CH4: IOUt, 1 A/div
```

FIGURE 8. FAULT to Short Response ($\mathrm{t}_{\text {cyc }}$)

$2 \mathrm{~ms} / \mathrm{div}$
CH1: ON, 5 V/div
CH2: PS Droops, $50 \mathrm{mV} /$ div, Offset $=5 \mathrm{~V}$
CH3: $\mathrm{V}_{\text {OUT, }} 1 \mathrm{~V} / \mathrm{div}, \mathrm{R}_{\mathrm{L}}=0.5 \Omega, \mathrm{C}_{\mathrm{L}}=100 \mu \mathrm{~F}$
CH4: Iout, 0.5 A/div
NOTE: Special test with $820-\mu \mathrm{F}$ capacitor at PS and RSET setup for 0.5 A .

FIGURE 10. Power Supply Droops vs. Short

$2 \mathrm{~ms} /$ div

CH1: ON, $5 \mathrm{~V} /$ div
CH2: $\mathrm{V}_{\text {RESET, }} 500 \mathrm{mV} / \mathrm{div}$
CH3: $\mathrm{V}_{\text {OUT }} 5 \mathrm{~V} / \mathrm{div}, \mathrm{R}_{\mathrm{L}}=5.6 \Omega, \mathrm{C}_{\mathrm{L}}=100 \mu \mathrm{~F}$ CH4: IOUT, 1 A/div

FIGURE 9. $\mathrm{V}_{\text {RESET }}$ to Over Current Response

$2 \mathrm{~ms} / \mathrm{div}$
CH1: ON, $5 \mathrm{~V} / \mathrm{div}$
CH2: PS Droops, $100 \mathrm{mV} /$ div, Offset $=5 \mathrm{~V}$
CH3: $\mathrm{V}_{\text {OUT }} 1 \mathrm{~V} / \mathrm{div}, \mathrm{R}_{\mathrm{L}}=0.5 \Omega, \mathrm{C}_{\mathrm{L}}=100 \mu \mathrm{~F}$
CH4: lout, 2 A/div
NOTE: Special test with $820-\mu \mathrm{F}$ capacitor at PS and RSET setup for 2.4 A .

FIGURE 11. Power Supply Droops vs. Short

PIN CONFIGURATION

DETAILED BLOCK DIAGRAM

FIGURE 12.

DETAILED DESCRIPTION

The SI4779CY limits the output current to a user-defined level. When the output current passes through the main switch a fraction of this current passes through a replica switch and $\mathrm{R}_{\mathrm{SET}}$.
$R_{\text {SET }}$ is an external sense resistor used to set the level of the over current limit; the over current limit should be set between 0.4 A and 2.4 A (see graph for R $\mathrm{R}_{\text {SET }}$ value vs. current limit). The circuit shuts down the switch when the current flowing through the switch exceeds llimit. After a short period of time, the circuit will slowly turn on the switch again. The length of
time off is based on average power consumption, which is designed to be kept under 500 mW .

If the output is shorted, the circuit will go into an on-off cycle to protect the switch and to prevent the battery from draining down.

The fault output (FAULT) goes low when the circuit is in over current limit or short circuit protection mode. A 100-k Ω pull-up resistor from FAULT to IN provides a logic-control signal.

APPLICATIONS DIAGRAM

FIGURE 13.

