

Si4779CY Vishay Siliconix

High-Side N-Channel Switch with Current Limit

FEATURES

- User Set Over Current Limit From 400 mA to 2.4 A
- Low r_{DS(on)} 45 mΩ (max) at 25°C
- Fault Indicator
- Under Voltage Lockout

APPLICATIONS

- Notebook Computers Power Management
- USB Power Distribution
- Hot Plug In Power Supplies
- Power Supply/Load Protection
- Battery-Charger Circuits

DESCRIPTION

The Si4779CY n-channel high-side switch combines a low $r_{DS(on)}$ MOSFET switch with a user set, pulse gate control (PGC) based current limit. This switch is designed to protect the system power supply from overloads and short circuit conditions in applications such as USB. The PGC based approach to the current limiter provides the additional benefit of keeping the MOSFET junction temperature within

specification, thereby eliminating the need for thermal shutdown. The low quiescent current makes the Si4779CY ideal for use in battery powered devices. The Si4779CY operates on both 3-V and 5-V busses, and is packaged in the LITTLE FOOT[®] SO-8 package.

FUNCTIONAL BLOCK DIAGRAM

Si4779CY Vishay Siliconix

ABSOLUTE MAXIMUM RATINGS (T _A = 25° C UNLESS OTHERWISE NOTED)					
Parameter		Symbol	Steady State	Unit	
Voltage, IN to GND		V _{IN}	-0.3 to 7	v	
Voltage, ON		V _{ON}	-0.3 to 7		
Continuous Drain Current (T _J = 150®C) ^a	$T_A = 25^{\circ}C$		2.4		
	$T_A = 85^{\ensuremath{\oplus}}C$	I _D	2.4	A	
Maximum Power Dissipation ^a	$T_A = 70^{\circ}C$	PD	0.65	W	
Operating Junction and Storage Temperature Range		T _j , T _{stg}	-65 to 125	°C	

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

RECOMMENDED OPERATING CONDITIONS				
Parameter	Symbol Steady State		Unit	
Voltage, IN to GND	V _{IN}	3.0 to 5.0	V	
Voltage, ON or FAULT to GND	V _{ON} , V _{FAULT}	0 to 5.0	v	
Operating Temperature Range	T _A	0 to 85	°C	

THERMAL RESISTANCE RATINGS						
Parameter		Symbol	Typical	Maximum	Unit	
Junction-to-Ambient ^a		R _{thJA}	98	120	°C/W	
Junction-to-Foot (Drain) ^b	Steady State	R _{thJF}	37	46		

Notes

a. Surface mounted on 1" x1" FR4 board, 0.062" thick, 2-oz copper double sided.

b. Junction-to-foot thermal impedance of the PC board pads to ambient (R_{thJA} = R_{thJF} + R_{thPCB-A}). It can also be used to estimate chip temperature if power dissipation and the lead temperature of a heat carrying (drain) lead is known.

Vishay Siliconix

SPECIFICATIONS							
		Test Conditions Unless Specified		Limits			
Parameter	Symbol	$T_A = 25^{\circ}C, V_{IN} = 5 V$	Min	Тур ^а	Max	Unit	
Basic Operations							
Operating Voltage	V _{IN}		2.7		5.5	V	
		V _{IN} = 4.75 V, I _D = 2 A		0.035	0.045	- Ω	
On-State Resistance	r _{DS(on)}	V _{IN} = 3.0 V, I _D = 2 A		0.045	0.055		
	I _{SUP(off)}	$\overline{\text{ON}}$ = IN, V _{IN} = 5.5 V, V _{OUT} = 0 V			2		
Supply Current	I _{SUP(on)}	$\overline{\text{ON}}$ = GND, V _{IN} = V _{OUT} = 5.5 V, I _{OUT} = 0 A			70	μΑ	
ON Input Low Voltage	V _{ONL}	V _{IN} = 2.7 to 5.5 V			0.8	V	
	V _{ONH}	V _{IN} = 2.7 to 3.6 V	2.0				
ON Input High Voltage		V _{IN} = 4.5 to 5.5 V	2.4				
ON Input Current	I _{ON}	V _{ON} = 5.5 V		0.01	±1	μΑ	
Protection				-	-		
Over Current Limit Rangeb	I _{LIMIT}	Tolerance = $\pm 20\%$, V _{IN} = 5 V	0.4		2.4	А	
Under Voltage Lockout (falling edge)	UVLO		2.0	2.3	2.6		
Under Voltage Hysteresis	ΔUVLO			0.1		V	
FAULT Output Voltage Lowb	V _{FAULT}	I _{SINK} = 100 μA			0.4		
FAULT Logic Output Leakage Current	I _{FL}	V _{IN} = V _{FAULT} = 5.5 V		0.01	1	μΑ	
Dynamic ^b				-	-		
Turn-On Time	t _{on}			3			
Rise Time	t _r	$V_{IN} = 5 \text{ V}, \text{ R}_L = 11 \Omega, \text{ C}_L = 40 \mu\text{F}$		3.5		ms	
Turn-Off Time	t _{off}			1.5			
Fall Time	t _f	V _{IN} = 5 V, I _{OUT} = 500 mA		0.5		μs	
Cycle Time	t _{cyc}	V_{IN} = 5 V, R_L = 0.5 Ω		8		ms	

Notes
a. Typical values at T_A = 25°C are for DESIGN AID ONLY, not guaranteed nor subject to production testing.
b. Guaranteed by design. Derived from I_{SET} current ratio, current-limit amplifier and external set resistor accuracy.

TIMING DIAGRAMS

FIGURE 2.

Si4779CY

Vishay Siliconix

New Product

TIMING DIAGRAMS

TYPICAL CHARACTERISTICS (25°C UNLESS NOTED)

www.vishay.com

Si4779CY

Vishay Siliconix

TYPICAL WAVEFORMS (V_{IN} = 5 V, T_A = 25° UNLESS OTHERWISE NOTED)

Vishay Siliconix

New Product

TYPICAL WAVEFORMS (V_{IN} = 5 V, T_A = 25 $^{\circ}$ UNLESS OTHERWISE NOTED)

2 ms/div

- CH1: ON, 5 V/div
- CH2: V_{OUT} , 5 V/div, R_L = 0.5 Ω , C_L = 47 μ F CH3: FAULT, 5 V/div

CH4: IOUT, 1 A/div

CH1: ON, 5 V/div

CH2: V_{RESET}, 500 mV/div CH3: V_{OUT}, 5 V/div, R_L = 5.6 Ω , C_L = 100 μ F CH4: I_{OUT}, 1 A/div

FIGURE 9. VRESET to Over Current Response

FIGURE 10. Power Supply Droops vs. Short

NOTE: Special test with 820- μ F capacitor at PS and R_{SET} setup for 2.4 A.

FIGURE 11. Power Supply Droops vs. Short

PIN CONFIGURATION

PIN DESCRIPTION					
Pin	Symbol Description				
1, 2	IN	Input. N-channel MOSFET drain, bypass IN with a $100\mathchar`\mu F$ capacitor to GND.			
3	ŌN	Active-low switch-on input, logic low turns switch on. \overline{ON} needs to be connected to V_{IN} during power up, then connect to GND to activate the switch after power up.			
4	SET	Current-limit input. A resistor from SET to GND sets the current limit for the switch.			
5	GND	Ground			
6	FAULT	Fault indicator output. This open drain output goes low when the circuit is in current limit or in short circuit protection mode.			
7, 8	OUT	Switch output. N-channel MOSFET source.			

DETAILED BLOCK DIAGRAM

DETAILED DESCRIPTION

The SI4779CY limits the output current to a user-defined level. When the output current passes through the main switch a fraction of this current passes through a replica switch and R_{SET} .

 R_{SET} is an external sense resistor used to set the level of the over current limit; the over current limit should be set between 0.4 A and 2.4 A (see graph for R_{SET} value vs. current limit). The circuit shuts down the switch when the current flowing through the switch exceeds llimit. After a short period of time, the circuit will slowly turn on the switch again. The length of

time off is based on average power consumption, which is designed to be kept under 500 mW.

If the output is shorted , the circuit will go into an on-off cycle to protect the switch and to prevent the battery from draining down.

The fault output (FAULT) goes low when the circuit is in over current limit or short circuit protection mode. A 100-k Ω pull-up resistor from FAULT to IN provides a logic-control signal.

APPLICATIONS DIAGRAM

FIGURE 13.