SOLID STATE DEVICES, INC. 14005 Stage Road * Santa Fe Springs, Ca 90670 Phone: (562) 404-4474 * Fax: (562) 404-1773 ## **DESIGNER'S DATA SHEET** ### **FEATURES:** - Rugged construction with poly silicon gate - Low RDS (on) and high transconductance - Excellent high temperature stability - Very fast switching speed - Fast recovery and superior dv/dt performance - · Increased reverse energy capability - Low input transfer capacitance for easy paralleling - Hermetically sealed surface mount package - TX, TXV and Space Level screening available # SFF75N06-28 $30~\text{AMP}^{~1\prime}$ 60~VOLTS $25\text{m}\Omega$ N-CHANNEL POWER MOSFET | MAXIMUM RATINGS | | | | |---|----------------|------------------------------|-------| | CHARACTERISTIC | SYMBOL | VALUE | UNIT | | Drain to Source Voltage | $ m V_{DS}$ | 100 | Volts | | Drain to Gate Voltage (RGS = 1.0 m Ω) | $V_{ m DG}$ | 60 | Volts | | Gate to Source Voltage | $ m V_{GS}$ | ± 20 | Volts | | Continuous Drain Current @ TC = 25°C | I _D | 30 | Amps | | Operating and Storage Temperature | Top & Tstg | Γ _{stg} -55 to +150 | | | Thermal Resistance, Junction to Case (All Four) | $R_{ heta JC}$ | 3.5 | °C/W | | Total Device Dissipation @ TC = 25°C | P _D | 35 | Watts | # SFF75N06-28 ## **PRELIMINARY** SOLID STATE DEVICES, INC. 14005 Stage Road * Santa Fe Springs, Ca 90670 Phone: (562) 404-4474 * Fax: (562) 404-1773 | ELECTRICAL CHARACTERISTICS @ T _J =25°C (Unless Otherwise Specified) | | | | | | | | | |---|--|--|-------------|----------------------|-----------------------|--------------------|--|--| | RATING | | SYMBOL | MIN | TYP | MAX | UNIT | | | | Drain to Source Breakdown Voltage
(VGS =0 V, ID =250µA) | | BV _{DSS} | 60 | - | - | V | | | | ON State Resistance ^{2/} | Rated ID, $T_C = 25^{\circ}C$
Rated ID, $T_C = 25^{\circ}C$
Rated ID, $T_C = 150^{\circ}C$ | R _{DS(on)} | 1 1 1 | 23
25
27 | 25
27
- | $\mathbf{m}\Omega$ | | | | Gate Threshold Voltage
(VDS = VGS, ID = 250µA) | | V _{GS(th)} | 2 | - | 4 | V | | | | Forward Transconductance
(VDS > ID(on) x RDS (on) Max,
IDS =60% rated ID) | | gf_{S} | 15 | 35 | - | S (U) | | | | Zero Gate Voltage Drain Current
(VDS =80% rated VDS, VGS =0 V, T _A
(VDS =80% rated VDS, VGS =0 V, T _A | | I _{DSS} | - | -
- | 10
100 | μ Α | | | | Gate to Source Leakage Forward
Gate to Source Leakage Reverse | At rated VGS | I _{GSS} | - | - | 100
100 | nA | | | | Total Gate Charge Gate to Source Charge Gate to Drain Charge | VGS =10 Volts
50% rated VDS
Rated ID | Qg
Qgs
Qgd | -
-
- | 83
13
40 | 100
20
55 | nC | | | | Turn on Delay Time
Rise Time
Turn off DELAY Time
Fall Time | VDD = 50%
rated VDS
rated ID
RG = 6.2 Ω | $t_{ m d~(on)} \ tr \ t_{ m d~(off)} \ tf$ | -
-
- | 20
35
65
40 | 40
70
130
80 | nsec | | | | Diode Forward Voltage (I _S = rated I _D , V _{GS} = 0V, T _J = 25°C) | | V _{SD} | - | 1.47 | 1.6 | V | | | | Diode Reverse Recovery Time
Reverse Recovery Charge | $TJ = 25^{\circ}C$ $IF = 10A$ $di/dt = 100A/\mu sec$ | t _{rr} | - | 70 | 150 | nsec | | | | Input Capacitance
Output Capacitance
Reverse Transfer Capacitance | VGS =0 Volts
VDS =25 Volts
f =1 MHz | Ciss
Coss
Crss | - | 2600
700
260 | 2900
1100
275 | pF | | | For thermal derating curves and other characteristic curves please contact SSDI Marketing Department. ## **NOTES:** - 1/ Die Rating: 75Amps. - 2/ All package pins of the same terminations (Drain/Source/Gate) must be connected together to minimize $R_{DS(on)}$ and maximize current carrying capability.