SEMiX 302GB176HDs

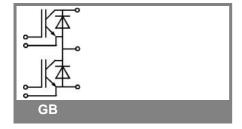
SEMiX[®] 2s

Trench IGBT Modules

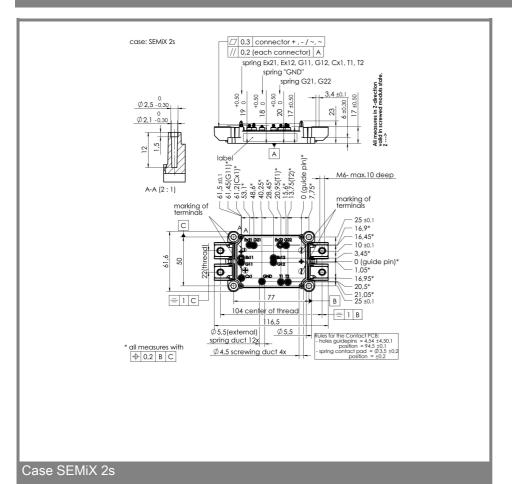
SEMiX 302GB176HDs

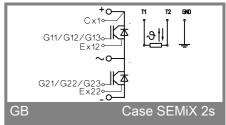
Target Data

Features


- Homogeneous Si
- Trench = Trenchgate technology
- V_{CE(sat)} with positive temperature coefficient
- · High short circuit capability

Typical Applications


- AC inverter drives
- UPS
- Electronic welders


Absolute Maximum Ratings T _{case} = 25°C, unless otherwise s								
Symbol	Conditions	Values	Units					
IGBT								
V_{CES}		1700	V					
V _{CES} I _C	$T_c = 25 (80) ^{\circ}C$	320 (230)	Α					
I _{CRM}	$t_p = 1 \text{ ms}$	400	Α					
V_{GES}	·	± 20	V					
T_{vj} , (T_{stg})	$T_{OPERATION} \leq T_{stg}$	- 40 + 150 (125)	°C					
V _{isol}	AC, 1 min.	4000	V					
Inverse diode								
I _F	T _c = 25 (80) °C	300 (200)	Α					
I _{FRM}	$t_p = 1 \text{ ms}$	400	Α					
I _{FSM}	$t_p = 10 \text{ ms; sin.; } T_j = 25 \text{ °C}$	2000	Α					

Characteristics T _{case} = 25°C, unless otherwise specified								
Symbol	Conditions	min.	typ.	max.	Units			
IGBT		•			•			
$V_{GE(th)}$	$V_{GE} = V_{CE}$, $I_C = 8 \text{ mA}$	5,2	5,8	6,4	V			
I _{CES}	$V_{GE} = 0$, $V_{CE} = V_{CES}$, $T_j = 25$ (125) °C			1,6	mA			
V _{CE(TO)}	T _j = 25 (125) °C		1 (0,9)	1,2 (1,1)	V			
r _{CE}	V _{GE} = 15 V, T _j = 25 (125) °C		5 (7,8)	6,3 (9)	mΩ			
$V_{CE(sat)}$	$I_{Cnom} = 200 \text{ A}, V_{GE} = 15 \text{ V},$		2 (2,45)	2,45 (2,9)	V			
	T _j = 25 (125) °C, chip level							
C _{ies}	under following conditions		14,2		nF			
C _{oes}	$V_{GE} = 0, V_{CE} = 25 V, f = 1 MHz$		0,7		nF			
C _{res}			0,6		nF			
L _{CE}			18		nH			
R _{CC'+EE'}	terminal-chip, T _c = 25 (125) °C				mΩ			
$t_{d(on)}/t_r$	V _{CC} = 1200 V, I _{Cnom} = 200 A				ns			
$t_{d(off)}/t_{f}$	V _{GE} = ± 15 V				ns			
$E_{on} (E_{off})$	$R_{Gon} = R_{Goff} = \Omega$, $T_j = 125 ^{\circ}C$		130 (70)		mJ			
Inverse diode								
$V_F = V_{EC}$	I_{Fnom} = 200 A; V_{GE} = 0 V; T_j = 25 (125) °C, chip level		1,7 (1,7)	1,9 (1,9)	V			
$V_{(TO)}$	T _j = 25 (125) °C		1,1 (0,9)	1,3 (1,1)	V			
r _T	$T_j = 25 (125) ^{\circ}C$		3 (4)	3 (4)	mΩ			
I _{RRM}	I_{Fnom} = 200 A; T_j = 25 (125) °C				A			
Q_{rr}	di/dt = A/μs				μC			
E _{rr}	V _{GE} = -15 V				mJ			
	Thermal characteristics							
R _{th(j-c)}	per IGBT			0,095	K/W			
R _{th(j-c)D}	per Inverse Diode			0,17	K/W			
R _{th(j-c)FD}	per FWD				K/W			
R _{th(c-s)}	per module		0,045		K/W			
Tempera	ture sensor							
R ₂₅	T _c = 25 °C		5 ±5%		kΩ			
B _{25/85}	$R_2 = R_1 \exp[B(1/T_2-1/T_1)]$; T[K];B		3420		K			
Mechanical data								
M_s/M_t	to heatsink (M5) / for terminals (M6)	3/2,5		5 /5	Nm			
w			236		g			
		1						

SEMiX 302GB176HDs

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.