

SHANGHAI SUNRISE ELECTRONICS CO., LTD.

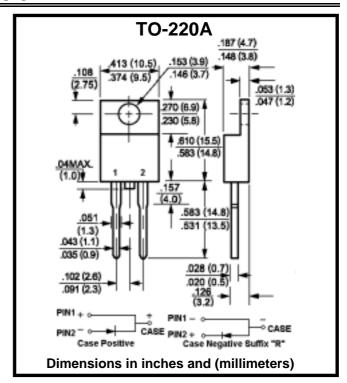
SB820 THRU SB860

SCHOTTKY BARRIER **RECTIFIER**

TECHNICAL SPECIFICATION

VOLTAGE: 20 TO 60V CURRENT: 8.0A

FEATURES


- Epitaxial construction for chip
- High current capability
- Low forward voltage drop
- Low power loss, high efficiency
- High surge capability
- High temperature soldering guaranteed: 250°C/10sec/0.375"(9.5mm) lead length at 5 lbs tension

MECHANICAL DATA

 Terminal: Plated leads solderable per MIL-STD 202E, method 208C

 Case: Molded with UL-94 Class V-O recognized flame retardant epoxy

 Polarity: As marked Mounting position: Any

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

(Single-phase, half-wave, 60Hz, resistive or inductive load rating at 25°C, unless otherwise stated, for capacitive load, derate current by 20%)

SYMBOL	SB 820	SB 830	SB 835	SB 840	SB 850	SB 860	UNITS
V_{RRM}	20	30	35	40	50	60	V
V_{RMS}	14	21	25	28	35	42	V
V_{DC}	20	30	35	40	50	60	V
I _{F(AV)}	8.0						А
I _{FSM}	150					Α	
V_{F}	0.65 0.75				75	V	
I _R	5.0 50.0					mA mA	
C_J	700			450		pF	
$R_{\theta}(ja)$	2.5					°C/W	
T_J	-65 to +125 -65 to			+150	°C		
T_{STG}	-65 to +150					°C	
	$\begin{array}{c} V_{RRM} \\ V_{RMS} \\ V_{DC} \\ I_{F(AV)} \\ \\ I_{FSM} \\ V_{F} \\ I_{R} \\ C_{J} \\ R_{\theta}(ja) \\ T_{J} \end{array}$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	SYMBOL 820 830 V _{RRM} 20 30 V _{RMS} 14 21 V _{DC} 20 30 I _{F(AV)} V _F 0. I _R C _J 70 R _θ (ja) T _J -65 to	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

Note:

- 1.Measured at 1.0 MHz and applied reverse voltage of 4.0Vdc
- 2. Thermal resistance from junction to case
- 3. Suffix "R" for reverse polarity