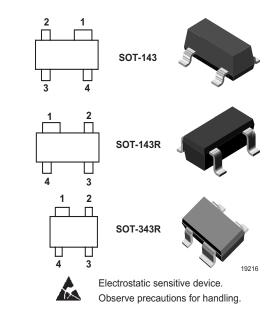
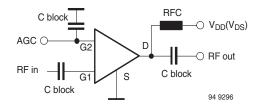


Vishay Semiconductors


MOSMIC® for TV-Tuner Prestage with 9 V Supply Voltage

Comments

MOSMIC - MOS Monolithic Integrated Circuit


Features

- · Integrated gate protection diodes
- · Low noise figure
- · High gain
- · Biasing network on chip
- · Improved cross modulation at gain reduction
- · High AGC-range
- SMD package
- Lead (Pb)-free component
- Component in accordance to RoHS 2002/95/EC and WEEE 2002/96/EC

Applications

Low noise gain controlled input stages in UHF-and VHF- tuner with 9 V supply voltage.

Mechanical Data

Typ: S949T

Case: SOT-143 Plastic case Weight: approx. 8.0 mg

Pinning:

1 = Source, 2 = Drain, 3 = Gate 2, 4 = Gate 1

Typ: S949TR

Case: SOT-143R Plastic case

Weight: approx. 8.0 mg

Pinning:

1 = Source, 2 = Drain, 3 = Gate 2, 4 = Gate 1

Typ: S949TRW

Case: SOT-343R Plastic case

Weight: approx. 6.0 mg

Pinning:

1 = Source, 2 = Drain, 3 = Gate 2, 4 = Gate 1

Rev. 1.4, 02-May-05

Vishay Semiconductors

Parts Table

Part	Marking	Package
S949T	949	SOT-143
S949TR	99R	SOT-143R
S949TRW	W99	SOT-343R

Absolute Maximum Ratings

T_{amb} = 25 °C, unless otherwise specified

Parameter	Test condition	Symbol	Value	Unit
Drain - source voltage		V _{DS}	12	V
Drain current		I _D	30	mA
Gate 1/Gate 2 - source peak current		± I _{G1/G2SM}	10	mA
Gate 1/Gate 2 - source voltage		± V _{G1/G2SM}	6	V
Total power dissipation	T _{amb} ≤ 60 °C	P _{tot}	200	mW
Channel temperature		T _{Ch}	150	°C
Storage temperature range		T _{stg}	- 55 to + 150	°C

Maximum Thermal Resistance

Parameter	Test condition	Symbol	Value	Unit
Channel ambient	1)	R _{thChA}	450	K/W

 $^{^{1)}}$ on glass fibre printed board (25 x 20 x 1.5) mm^3 plated with 35 μm Cu

Electrical DC Characteristics

 T_{amb} = 25 °C, unless otherwise specified

Parameter	Test condition	Symbol	Min	Тур.	Max	Unit
Gate 1 - source breakdown voltage	$\pm I_{G1S} = 10 \text{ mA}, V_{G2S} = V_{DS} = 0$	± V _{(BR)G1SS}	7		10	V
Gate 2 - source breakdown voltage	$\pm I_{G2S} = 10 \text{ mA}, V_{G1S} = V_{DS} = 0$	± V _{(BR)G2SS}	7		10	V
Gate 1 - source leakage current	$+ V_{G1S} = 5 V, V_{G2S} = V_{DS} = 0$	+ I _{G1SS}			50	μΑ
	$-V_{G1S} = 5 \text{ V}, V_{G2S} = V_{DS} = 0$	- I _{G1SS}			100	μΑ
Gate 2 - source leakage current	$\pm V_{G2S} = 5 \text{ V}, V_{G1S} = V_{DS} = 0$	± I _{G2SS}			20	nA
Drain current	$V_{DS} = 9 \text{ V}, V_{G1S} = 0, V_{G2S} = 4 \text{ V}$	I _{DSS}	50		500	μΑ
Self-biased operating current	$V_{DS} = 9 \text{ V}, V_{G1S} = \text{nc}, V_{G2S} = 4 \text{ V}$	I _{DSP}	8	12	16	mA
Gate 2 - source cut-off voltage	$V_{DS} = 9 \text{ V, } V_{G1S} = \text{nc,}$ $I_{D} = 100 \mu\text{A}$	V _{G2S(OFF)}		1.0		V

Caution for Gate 1 switch-off mode:

No external DC-voltage on Gate 1 in active mode!

Switch-off at Gate 1 with V_{G1S} < 0.7 V is feasible.

Using open collector switching transistor (inside of PLL), insert 10 $\text{k}\Omega$ collector resistor.

Vishay Semiconductors

Electrical AC Characteristics

 T_{amb} = 25 °C, unless otherwise specified V_{DS} = 9 V, V_{G2S} = 4 V, f = 1 MHz

Parameter	Test condition	Symbol	Min	Тур.	Max	Unit
Forward transadmittance		y _{21s}	25	30	35	mS
Gate 1 input capacitance		C _{issg1}		2.3	2.7	pF
Feedback capacitance		C _{rss}		25		fF
Output capacitance		C _{oss}		1		pF
Power gain	$G_S = 2 \text{ mS}, G_L = 0.5 \text{ mS},$ f = 200 MHz	G _{ps}		28		dB
	$G_S = 3.3 \text{ mS}, G_L = 1 \text{ mS},$ f = 800 MHz	G _{ps}	17	20		dB
AGC range	$V_{DS} = 9 \text{ V}, V_{G2S} = 1 \text{ to 4 V},$ f = 800 MHz	ΔG_{ps}	45			dB
Noise figure	$G_S = 2 \text{ mS}, G_L = 0.5 \text{ mS},$ f = 200 MHz	F		1		dB
	$G_S = 3.3 \text{ mS}, G_L = 1 \text{ mS},$ f = 800 MHz	F		1.3		dB

Common Emitter S-Parameters

 $\rm V_{DS}$ = 9 V, $\rm V_{G2S}$ = 4 V, $\rm Z_0$ = 50 $\rm \Omega, \, T_{amb}$ = 25 °C, unless otherwise specified

f/MHz	S	11	S21		S12		S22	
	LOG MAG	ANG	LOG MAG	ANG	LOG MAG	ANG	LOG MAG	ANG
		deg		deg		deg		deg
50	-0.01	-4.7	9.57	174.6	-62.54	87.6	-0.17	-2.3
100	-0.03	-9.5	9.48	168.3	-56.18	84.2	-0.23	-3.6
150	-0.12	-14.0	9.38	161.8	-52.86	81.0	-0.24	-5.4
200	-0.19	-18.4	9.26	155.8	-50.58	78.7	-0.26	-7.1
250	-0.29	-23.1	9.11	149.3	-48.96	75.6	-0.28	-9.1
300	-0.40	-27.4	8.96	143.7	-47.89	73.4	-0.33	-10.6
350	-0.52	-31.9	8.73	138.0	-47.02	71.5	-0.36	-12.3
400	-0.66	-35.9	8.57	132.0	-46.44	70.0	-0.40	-14.0
450	-0.80	-39.9	8.33	126.9	-46.25	69.1	-0.44	-15.6
500	-0.95	-44.0	8.14	121.5	-46.08	68.7	-0.48	-17.2
550	-1.08	-47.9	7.93	116.3	-46.21	69.9	-0.51	-18.8
600	-1.25	-51.6	7.70	110.9	-46.22	73.2	-0.55	-20.4
650	-1.40	-55.3	7.48	106.5	-46.19	74.3	-0.59	-21.7
700	-1.53	-59.0	7.25	101.6	-46.47	78.5	-0.61	-23.4
750	-1.68	-62.5	7.10	96.9	-47.15	83.5	-0.62	-24.9
800	-1.83	-66.0	6.90	92.1	-47.48	92.3	-0.65	-26.4
850	-1.98	-69.4	6.71	87.6	-47.39	103.5	-0.67	-28.0
900	-2.08	-72.7	6.52	82.6	-46.82	115.7	-0.70	-29.8
950	-2.21	-76.0	6.36	78.0	-45.32	125.0	-0.71	-31.4
1000	-2.34	-79.4	6.17	74.0	-44.07	129.4	-0.68	-33.0
1050	-2.47	-82.6	6.02	69.7	-43.32	134.1	-0.70	-34.6
1100	-2.62	-85.6	5.80	65.0	-42.50	140.6	-0.74	-36.0
1150	-2.74	-88.8	5.69	60.5	-41.25	145.5	-0.72	-37.8
1200	-2.84	-91.8	5.56	56.3	-39.97	150.1	-0.69	-39.7
1250	-2.92	-94.8	5.52	51.9	-38.65	153.2	-0.60	-41.9
1300	-3.04	-97.7	5.34	47.1	-37.46	154.8	-0.67	-43.3

Document Number 85061 www.vishay.com

Rev. 1.4, 02-May-05

Vishay Semiconductors

Typical Characteristics (Tamb = 25 °C unless otherwise specified)

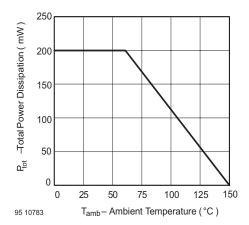


Figure 1. Total Power Dissipation vs. Ambient Temperature

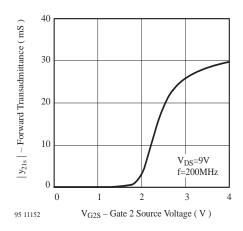


Figure 4. Forward Transadmittance vs. Gate 2 Source Voltage

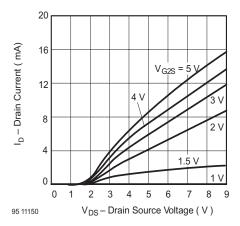


Figure 2. Drain Current vs. Drain Source Voltage

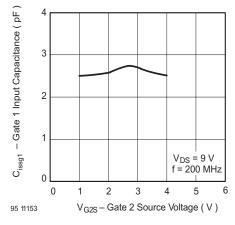


Figure 5. Gate 1 Input Capacitance vs. Gate 2 Source Voltage

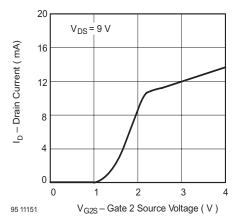


Figure 3. Drain Current vs. Gate 2 Source Voltage

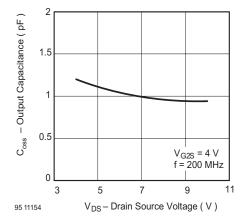


Figure 6. Output Capacitance vs. Drain Source Voltage

Vishay Semiconductors

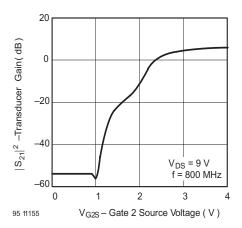


Figure 7. Transducer Gain vs. Gate 2 Source Voltage

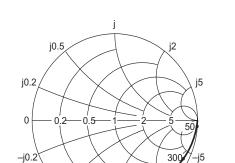



Figure 8. Cross Modulation vs. Gate 2 Source Voltage

Vishay Semiconductors

$$V_{DS}$$
 = 9 V, V_{G2S} = 4 V, Z_0 = 50 Ω S_{11}

300 MHz

Figure 9. Input Reflection Coefficient

1050

800 –j2

S₂₁

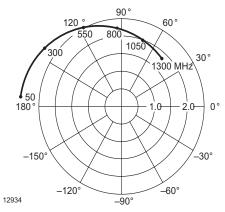


Figure 11. Forward Transmission Coefficient

 S_{12}

12932

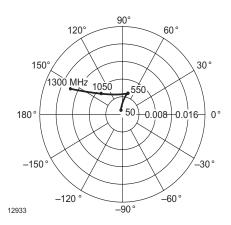
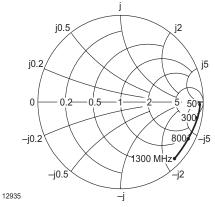
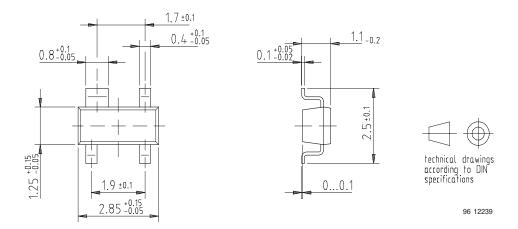
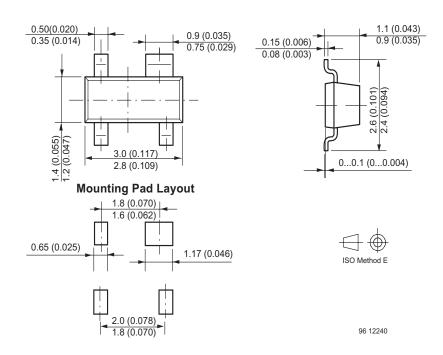


Figure 10. Reverse Transmission Coefficient

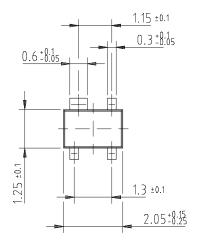
S₂₂

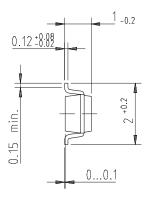




Figure 12. Output Reflection Coefficient

Vishay Semiconductors

Package Dimensions in mm


Package Dimensions in mm



Vishay Semiconductors

Package Dimensions in mm

96 12238

Vishay Semiconductors

Ozone Depleting Substances Policy Statement

It is the policy of Vishay Semiconductor GmbH to

- 1. Meet all present and future national and international statutory requirements.
- 2. Regularly and continuously improve the performance of our products, processes, distribution and operating systems with respect to their impact on the health and safety of our employees and the public, as well as their impact on the environment.

It is particular concern to control or eliminate releases of those substances into the atmosphere which are known as ozone depleting substances (ODSs).

The Montreal Protocol (1987) and its London Amendments (1990) intend to severely restrict the use of ODSs and forbid their use within the next ten years. Various national and international initiatives are pressing for an earlier ban on these substances.

Vishay Semiconductor GmbH has been able to use its policy of continuous improvements to eliminate the use of ODSs listed in the following documents.

- 1. Annex A, B and list of transitional substances of the Montreal Protocol and the London Amendments respectively
- 2. Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the Environmental Protection Agency (EPA) in the USA
- 3. Council Decision 88/540/EEC and 91/690/EEC Annex A, B and C (transitional substances) respectively.

Vishay Semiconductor GmbH can certify that our semiconductors are not manufactured with ozone depleting substances and do not contain such substances.

> We reserve the right to make changes to improve technical design and may do so without further notice.

Parameters can vary in different applications. All operating parameters must be validated for each customer application by the customer. Should the buyer use Vishay Semiconductors products for any unintended or unauthorized application, the buyer shall indemnify Vishay Semiconductors against all claims, costs, damages, and expenses, arising out of, directly or indirectly, any claim of personal damage, injury or death associated with such unintended or unauthorized use.

Vishay Semiconductor GmbH, P.O.B. 3535, D-74025 Heilbronn, Germany

Document Number 85061 www.vishay.com

Rev. 1.4, 02-May-05

Legal Disclaimer Notice

Vishay

Notice

Specifications of the products displayed herein are subject to change without notice. Vishay Intertechnology, Inc., or anyone on its behalf, assumes no responsibility or liability for any errors or inaccuracies.

Information contained herein is intended to provide a product description only. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in Vishay's terms and conditions of sale for such products, Vishay assumes no liability whatsoever, and disclaims any express or implied warranty, relating to sale and/or use of Vishay products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright, or other intellectual property right.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications. Customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Vishay for any damages resulting from such improper use or sale.

www.vishay.com Revision: 08-Apr-05