MicroCapacitance (MC) SA SIDACtor Device The DO-214AA SA MC *SIDACtor* series is intended for applications sensitive to load values. Typically, high speed connections require a lower capacitance. C_0 values for the MicroCapacitance device are 40% lower than a standard SA part. This MC *SIDACtor* series is used to enable equipment to meet various regulatory requirements including GR 1089, ITU K.20, K.21, and K.45, IEC 60950, UL 60950, and TIA-968-A (formerly known as FCC Part 68). #### **Electrical Parameters** | Part
Number * | V _{DRM}
Volts | V _S
Volts | V _T
Volts | I _{DRM}
μAmps | I _S
mAmps | I _T
Amps | I _H
mAmps | C _O
pF | |------------------|---------------------------|-------------------------|-------------------------|---------------------------|-------------------------|------------------------|-------------------------|----------------------| | P0080SA MC | 6 | 25 | 4 | 5 | 800 | 2.2 | 50 | 45 | | P0300SA MC | 25 | 40 | 4 | 5 | 800 | 2.2 | 50 | 25 | ^{*} For surge ratings, see table below. #### General Notes: - All measurements are made at an ambient temperature of 25 °C. IPP applies to -40 °C through +85 °C temperature range. - IPP is a repetitive surge rating and is guaranteed for the life of the product. - · Listed SIDACtor devices are bi-directional. All electrical parameters and surge ratings apply to forward and reverse polarities. - V_{DRM} is measured at I_{DRM}. - V_S is measured at 100 V/µs. - Special voltage (V_S and V_{DRM}) and holding current (I_H) requirements are available upon request. - Off-state capacitance (C_O) is measured at 1 MHz with a 2 V bias. ## Surge Ratings | Series | I _{PP}
2x10 µs
Amps | I _{PP}
8x20 μs
Amps | I _{PP}
10x160 μs
Amps | I _{PP}
10x560 μs
Amps | I _{PP}
10x1000 μs
Amps | I _{TSM}
60 Hz
Amps | di/dt
Amps/µs | |--------|------------------------------------|------------------------------------|--------------------------------------|--------------------------------------|---------------------------------------|-----------------------------------|------------------| | Α | 150 | 150 | 90 | 50 | 45 | 20 | 500 | t_r = rise time to peak value t_d = decay time to half value Half Value t - Time (µs) Peak Value Waveform = $t_r \times t_d$ ### **Thermal Considerations** | Package | Symbol | Parameter | Value | Unit | |----------|---------------|---|-------------|------| | DO-214AA | TJ | Operating Junction Temperature Range | -40 to +150 | °C | | | TS | Storage Temperature Range | -65 to +150 | °C | | | $R_{ hetaJA}$ | Thermal Resistance: Junction to Ambient | 90 | °C/W | t_{r} x t_{d} Pulse Wave-form Ipp - Peak Pulse Current - %Ipp 100 50 0 L Normalized V_S Change versus Junction Temperature Normalized DC Holding Current versus Case Temperature