

Current Transducer NNC-920..960A

For the electronic measurement of currents: DC, AC, pulsed, mixed, with a galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit).

$I_{PN} = 2000..6000 A$

Electric	cal data		
Primary D.C. current $I_{PN}(A)$	Primary current measuring range I _P (A)	T	ype
2000			2000A-10V
3000			3000A-10V
4000			4000A-10V
5000			5000A-10V
6000	± 6600	NNC-960A	6000A-10V
$\mathbf{V}_{_{\mathrm{C}}}$	Supply voltage (±5 %)	±1	5 V
I _C	Current consumption	<±3	30 mA
V _d	R.m.s. voltage for AC isolation test, 50/60 Hz,	1 mn 2.5	kV
$R_{_{\rm IS}}$	Isolation resistance @ 500 VDC	>50	00 MΩ
V _{OUT}	Output voltage @ $\pm I_{PN}$, $R_L = 10 \text{ k}\Omega$, $T_A = 25^{\circ}\text{C}$	±10	0 V
$\mathbf{R}_{\!\scriptscriptstyle L}$	Load resistance	10	kΩ

Accuracy - Dynamic performance data						
X	Accuracy @ \mathbf{I}_{PN} , $\mathbf{T}_{A} = 25^{\circ}\text{C}$ (without offset)	<±1	% of I _{PN}			
$\mathbf{e}_{\scriptscriptstyle oldsymbol{oldsymbol{arepsilon}}}$	Linearity (0 ± I _{PN})	<±1	% of I _{PN}			
V_{OE}	Electrical offset voltage, T _A = 25°C	<±50	mV			
\mathbf{V}_{OH}	Hysteresis offset voltage @ $I_p = 0$;					
	after an excursion of 1 x I _{PN}	<±70	mV			
\mathbf{V}_{OT}	Thermal drift of $\mathbf{V}_{_{OE}}$	<±2	mV/K			
$TCe_{\scriptscriptstyleG}$	Thermal drift (% of reading)	<±0.1	%/K			
t _r	Response time @ 90% of $I_{\rm p}$	<25	μs			

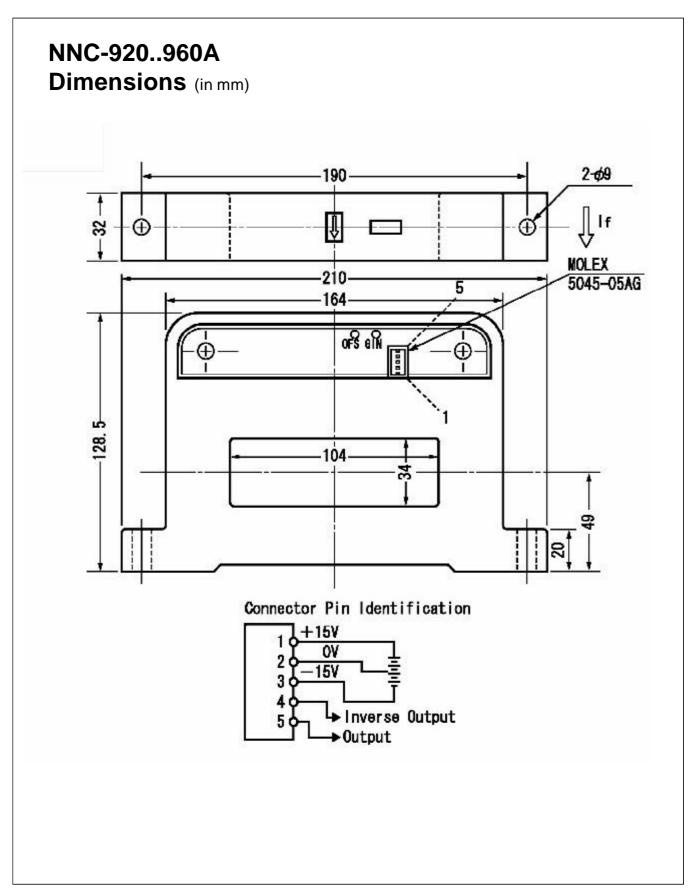
General data						
$\mathbf{T}_{_{\mathrm{A}}}$	Ambient operating temperature	-10 +50	°C			
\mathbf{T}_{s}	Ambient storage temperature	-15 +60	°C			
m	Mass	1.7	Kg			

Features

- Hall effect measuring principle
- Galvanic isolation between primary and secondary circuit
- Isolation voltage 2500V
- Low power consumption

Advantages

- Easy to mount
- Small size and space saving
- Large-current application
- High immunity to external interference.


Applications

- AC variable speed drives
- Uninterruptible Power Supplies (UPS)
- Battery supplied applications
- Power supplies for welding applications, cable TV, communication devices
- Commutator power supplies
- Electric transmission

Notes:

040824/3

