32Mb Ultra-Low Power Asynchronous CMOS Pseudo SRAM

w/ Page Mode Operation (2M x 16 bit)

Overview

The N32T1630C1C is an integrated memory device containing a 32 Mbit SRAM built using a self-refresh DRAM array organized as 2,097,152 words by 16 bits. The device is designed and fabricated using NanoAmp's advanced CMOS technology to provide both high-speed performance and ultra-low power. It is designed to be identical in operation and interface to standard 6T SRAMS. Byte controls (\overline{UB} and \overline{LB}) allow the upper and lower bytes to be accessed independently and can also be used to deselect the device. The N32T1630C1C offers a very high speed page mode operation for improved performance and operating power savings. The device is optimal for various applications where low-power is critical such as battery backup and hand-held devices. Also included are several power savings modes: a deep sleep mode and partial array refresh mode where data is retained in a portion of the array. The device can operate over a very wide temperature range of -25°C to +85°C and is available in a JEDEC standard VFRBGA package compatible with other standard 2Mb x 16 SRAMs.

Features

- Dual voltage for Optimum Performance: VccQ 2.7 to 3.6 Volts Vcc 2.7 to 3.6 Volts (Vcc \leq VccQ)
- Fast random access time 70ns at 2.7V
- Very fast page mode access time 25ns page cycle and access
- Very low standby current 80µA V (Typical)
- Very low operating current 1.0mA at 1µs (Typical)
- Simple memory control Byte control for independent byte operation Output Enable (OE) for memory expansion
- Automatic power down to standby mode
- PAR and RMS power saving modes
- Deep sleep option
- TTL compatible three-state output driver

Product Family

Part Number	Package Type	Operating Temperature	Power Supply	Speed	Standby Current (I _{SB}), Max	Operating Current (Icc), Max
N32T1630C1CZ	48-VFRBGA	-25°C to +85°C	2.7V - 3.6V (V _{CC})	70ns	135 μA @ 3.3V	3 mA @ 1MHz

Pin Configuration (Top View)

Pin Descriptions

Pin Name	Pin Function	
A ₀ -A ₂₀	Address Inputs	
WE	Write Enable Input	
CE	Chip Enable Input	
OE	Output Enable Input	
UB,LB	Byte Enable Inputs	
ZZ	Deep Sleep Input	
I/O ₀ -I/O ₁₅	Data Inputs/Outputs	
V _{CC}	Core Power	
V _{CCQ}	I/O Power	
V _{SS}	Ground	
V _{SSQ}	I/O Ground	
DNU	Do Not Use	

(DOC# 14-02-005 Rev C ECN 01-0918)

1. When $\overline{\text{UB}}$ and $\overline{\text{LB}}$ are in select mode (low), I/O₀ - I/O₁₅ are affected as shown. When $\overline{\text{LB}}$ only is in the select mode only I/O₀ - I/O₇ are affected as shown. When $\overline{\text{UB}}$ is in the select mode only I/O₈ - I/O₁₅ are affected as shown.

High Z

Deep Sleep

Deep Sleep

2. When the device is in standby mode, control inputs (\overline{WE} , \overline{OE} , \overline{UB} , and \overline{LB}), address inputs and data input/outputs are internally isolated from any external influence and disabled from exerting any influence externally.

3. When WE is invoked, the OE input is internally disabled and has no effect on the circuit.

Х

Х

Capacitance¹

L

Х

Х

Х

Item	Symbol	Test Condition	Min	Мах	Unit
Input Capacitance	C _{IN}	V _{IN} = 0V, f = 1 MHz, T _A = 25 ^o C		6	pF
I/O Capacitance	C _{I/O}	V _{IN} = 0V, f = 1 MHz, T _A = 25 ^o C		8	pF

1. These parameters are verified in device characterization and are not 100% tested

Absolute Maximum Ratings¹

Item	Symbol	Rating	Unit
Voltage on any pin relative to V_{SS}	V _{IN,OUT}	–0.2 to V _{CCQ} +0.3	V
Voltage on V_{CC} Supply Relative to V_{SS}	V _{CC}	–0.2 to 4.0	V
Power Dissipation	P _D	500	mW
Storage Temperature	T _{STG}	–55 to 125	°C
Operating Temperature	T _A	-25 to +85	°C
Soldering Temperature and Time	T _{SOLDER}	240°C, 10sec(Lead Only)	Oo

1. Stresses greater than those listed above may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operating section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

Operating Characteristics (Over Specified Temperature Range)

Item	Symbol	Test Conditions	Min.	Typ ¹	Мах	Unit
Supply Voltage	V _{CC}		2.7	3.0	3.6	V
Supply Voltage for I/O	V _{CCQ}	$V_{CC} = V_{CCQ}$ (Note 4)	2.7	3.0	3.6	V
Input High Voltage	V _{IH}		$0.8V_{CCQ}$		V _{CCQ} +0.2	V
Input Low Voltage	V _{IL}		-0.2		0.4	V
Output High Voltage	V _{OH}	I _{OH} = 0.2mA	0.8VccQ			V
Output Low Voltage	V _{OL}	I _{OL} = -0.2mA			0.2	V
Input Leakage Current	Ι _{LI}	V_{IN} = 0 to V_{CC}			0.5	μA
Output Leakage Current	I _{LO}	$\overline{OE} = V_{IH}$ or Chip Disabled			0.5	μA
Read/Write Operating Supply Current @ 1 µs Cycle Time ²	I _{CC1}	V _{CC} = 3.3V, V _{IN} =CMOS levels- Chip Enabled, I _{OUT} = 0			3.0	mA
Read/Write Operating Supply Current @ 70 ns Cycle Time ²	I _{CC2}	V _{CC} = 3.3V, V _{IN} =CMOS levels Chip Enabled, I _{OUT} = 0			25.0	mA
Maximum Standby Current ³	I _{SB1}	V _{CC} = 3.3V, V _{IN} =CMOS levels Chip Disabled		80	135.0	μA

1. Typical values are measured at Vcc=Vcc Typ., T_A=25°C and not 100% tested.

2. This parameter is specified with the outputs disabled to avoid external loading effects. The user must add current required to drive output capacitance expected in the actual system.

3. This device assumes a standby mode if the chip is disabled (either \overline{CE} high or both \overline{UB} and \overline{LB} high). In order to achieve low standby current all inputs must be within 0.2V of either VCC or VSS

4. During testing, Vcc = VccQ.

The device will require 100 μ s to complete its self-initialization process. During the initialization period, CE# pin should remain HIGH.

FIGURE 1: Output Load Circuit

NanoAmp Solutions, Inc.

N32T1630C1C

Timing

		70	70ns		
Item	Symbol	Min.	Max.	Units	
Read Cycle Time	t _{RC}	70		ns	
Address Access Time	t _{AA}		70	ns	
Page Mode Read Cycle Time	t _{PC}	25	20000	ns	
Page Mode Access Time	t _{PA}		25	ns	
Chip Enable to Valid Output	t _{co}		70	ns	
Output Enable to Valid Output	t _{OE}		20	ns	
Byte Select to Valid Output	t _{LB} , t _{UB}		70	ns	
Chip Enable to Low-Z output	t _{LZ}	10		ns	
Output Enable to Low-Z Output	t _{OLZ}	5		ns	
Byte Select to Low-Z Output	t _{LBZ} , t _{UBZ}	10		ns	
Chip Disable to High-Z Output	t _{HZ}	0	20	ns	
Output Disable to High-Z Output	t _{OHZ}	0	20	ns	
Byte Select Disable to High-Z Output	t _{LBHZ} , t _{UBHZ}	0	20	ns	
Output Hold from Address Change	t _{OH}	5		ns	
Write Cycle Time	t _{WC}	70		ns	
Page Mode Write Cycle Time	t _{PWC}	25	20000	ns	
Chip Enable to End of Write	t _{CW}	60		ns	
Address Valid to End of Write	t _{AW}	60		ns	
Byte Select to End of Write	t _{LBW} , t _{UBW}	60		ns	
Write Pulse Width	t _{WP}	55	20000	ns	
Address Setup Time	t _{AS}	0		ns	
Write Recovery Time	t _{WR}	0		ns	
Write to High-Z Output	t _{WHZ}		20	ns	
Data to Write Time Overlap	t _{DW}	25		ns	
Page Mode Data to Write Time Overlap	t _{PDW}	20		ns	
Data Hold from Write Time	t _{DH}	0		ns	
Page Mode Data Hold from Write Time	t _{PDH}	0		ns	
End Write to Low-Z Output	t _{ow}	5		ns	
CE Precharge	t _{CP}	10		ns	
Maximum Page Mode Cycle	t _{PGMAX}		20000	ns	

(DOC# 14-02-005 Rev C ECN 01-0918)

N32T1630C1C

NanoAmp Solutions, Inc.

(DOC# 14-02-005 Rev C ECN 01-0918)

NanoAmp Solutions, Inc.

(DOC# 14-02-005 Rev C ECN 01-0918)

Power Savings Modes

The N32T1630C1C has several power savings modes and the three modes are: Reduced Memory Size Partial Array Refresh Deep Sleep Mode

The operation of the power saving modes is controlled by setting the Variable Address Register (VAR). This VAR is shown in Figure 8 and is used to enable/disable the various low power modes. The VAR is set by using the timings defined in figure 9. The register must be set in less then 1us after \overline{ZZ} is enabled low.

1) Reduced Memory Size (RMS)

In this mode of operation, the 32Mb PSRAM can be operated as a 8Mb or 16Mb device. The mode and array size are determined by the settings in the VA register. The VA register is set according to the timings of Figure 9 and the bit setting of Table 12. The RMS mode is enabled at the time of ZZ transitioning high and the mode remains active until the register is updated. To return to the full 32Mb address space, the VA register must be reset using the previously defined procedures.

2) Partial Array Refresh (PAR)

In this mode of operation, the internal refresh operation can be restricted to a 8Mb or 16Mb portion of the array. The mode and array partition to be refreshed are determined by the settings in the VAR register. The VAR register is set according to the timings of Figure 9 and the bit settings of Table 11. In this mode, when \overline{ZZ} is taken low, only the portion of the array that is set in the register is refreshed. The operating mode is only available during standby time and once \overline{ZZ} is returned high, the device resumes full array refresh. All future PAR cycles will use the contents of the VA register. To change the address space of the PAR mode, the VA register must be reset using the previously defined procedures.

There are two different device versions that have different default settings for the PAR mode.

In the first version, the default state for the \overline{ZZ} enable/disable register will be \overline{ZZ} enabled where \overline{ZZ} low will initiate a deep sleep mode after 1us. This device is referred to as Deep Sleep Active, or DSA device. In the second version, the default state for the \overline{ZZ} register will be such that \overline{ZZ} low will put the device into PAR mode after 1us and never initiate a deep sleep mode unless appropriate register is updated. This device is referred to as Deep Sleep Sleep Inactive, or DSI device. In either device, once the SRAM enters Deep Sleep Mode, the VAR contents are destroyed and the default register settings are reset.

3) Deep Sleep Mode

In this mode of operation, the internal refresh is turned off and all data integrity of the array is lost. Deep Sleep is entered by bringing \overline{ZZ} low. After 1 us, if the VAR register corresponding to A4 is not set to Deep Sleep Disabled, the device will enter Deep Sleep Mode. The device will remain in this mode as long as \overline{ZZ} remains low.

(DOC# 14-02-005 Rev C ECN 01-0918)

(DOC# 14-02-005 Rev C ECN 01-0918)

Table 1: VAR Update and Deep Sleep Timings

Item	Symbol	Min	Max	Unit
PAR and RMS ZZ low to WE low	t _{zzwe}		1000	ns
Chip (\overline{CE} , $\overline{UB}/\overline{LB}$) deselect to ZZ low	t _{cdzz}	0		ns
Deep Sleep Mode	t _{zzmin}	10		us
Deep Sleep Recovery	t _r	200		us

TABLE 2: Address Patterns for PAR (A3 = 0, A4 = 1)

A2	A1	A0	Active Section	Address space	Size	Density
0	1	1	One-quarter of die	000000h - 07FFFFh	512Kb x 16	8Mb
0	1	0	One-half of die	000000h - 0FFFFFh	1Mb x 16	16Mb
1	1	1	One-quarter of die	180000h - 1FFFFFh	512Kb x 16	8Mb
1	1	0	One-half of die	100000h - 1FFFFFh	1Mb x 16	16Mb

TABLE 3: Address patterns for RMS (A3 = 1, A4 = 1)

A2	A1	A0	Active Section	Address space	Size	Density
0	1	1	One-quarter of die	000000h - 07FFFFh	512Kb x 16	8Mb
0	1	0	One-half of die	000000h - 0FFFFFh	1Mb x 16	16Mb
0	0	0	Full die	000000h - 1FFFFFh	2Mb x 16	32Mb
1	1	1	One-quarter of die	180000h - 1FFFFFh	512Kb x 16	8Mb
1	1	0	One-half of die	100000h - 1FFFFFh	1Mb x 16	16Mb
1	0	0	Full die	000000h - 1FFFFFh	2Mb x 16	32Mb

ABLE 4: Low Power ICC Characteristics for N32T1630C1C						
Item	Symbol	Test	Array Partition	Тур	Max	Unit
PAR Mode Standby	I _{PAR}	V _{IN} = V _{CC} or 0V,	1/4 Array		tbd	uA
Current		Chip Disabled, t _A = 85 ^o C	1/2 Array		tbd	
RMS Mode	I _{RMSSB}	V _{IN} = V _{CC} or 0V,	8Mb Device		tbd	uA
Standby Current		Chip Disabled, t _A = 85 ^o C	16Mb Device		tbd	
Deep Sleep Current	I _{ZZ}	V _{IN} = V _{CC} or 0V,			10	uA
		Chip in ZZ mode, t _A = 85°C				

ABLE 4: Low Dowor ICC Characteristics for N22T1620C1C

(DOC# 14-02-005 Rev C ECN 01-0918)

NanoAmp Solutions, Inc.

Ordering l	nformation
	N32T1630C1CZ- <u>XX</u> I
	Performance 70 = 70ns
	Note: Add -T&R following the part number for Tape and Reel. Orders will be considered in tray if not noted.

Revision History

Revision	Date	Change Description		
A	July 2004	Initial Release		
В	July 2004	General Update		
С	August 2004	Changed Ball (E3) from Vss to DNU/VSS Changed Max Vcc/VccQ from 3.3V to 3.6V		

© 2003 Nanoamp Solutions, Inc. All rights reserved.

NanoAmp Solutions, Inc. ("NanoAmp") reserves the right to change or modify the information contained in this data sheet and the products described therein, without prior notice. NanoAmp does not convey any license under its patent rights nor the rights of others. Charts, drawings and schedules contained in this data sheet are provided for illustration purposes only and they vary depending upon specific applications.

NanoAmp makes no warranty or guarantee regarding suitability of these products for any particular purpose, nor does NanoAmp assume any liability arising out of the application or use of any product or circuit described herein. NanoAmp does not authorize use of its products as critical components in any application in which the failure of the NanoAmp product may be expected to result in significant injury or death, including life support systems and critical medical instruments.