International Rectifier

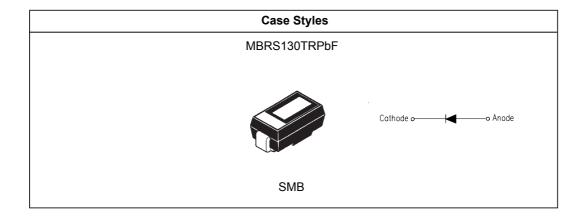
MBRS130TRPbF

SCHOTTKY RECTIFIER

1 Amp

$$I_{F(AV)} = 1.0 \text{ Amp}$$

 $V_R = 30V$


Major Ratings and Characteristics

<u> </u>		
Characteristics	Value	Units
I _{F(AV)} Rectangular waveform	1.0	Α
V _{RRM}	30	V
I _{FSM} @t _p =5μs sine	230	А
V _F @1.0Apk, T _J =125°C	0.42	V
T _J range	- 55 to 125	°C

Description/ Features

The MBRS130TRPbF surface-mount Schottky rectifier has been designed for applications requiring low forward drop and small foot prints on PC boards. Typical applications are in disk drives, switching power supplies, converters, free-wheeling diodes, battery charging, and reverse battery protection.

- Small foot print, surface mountable
- Very low forward voltage drop
- High frequency operation
- Guard ring for enhanced ruggedness and long term reliability
- Lad-Free (PbF" suffix)

Bulletin PD-20436 07/04

International TOR Rectifier

Voltage Ratings

Part number	MBRS130TRPbF	
V _R Max. DC Reverse Voltage (V)	00	
V _{RWM} Max. Working Peak Reverse Voltage (V)	30	

Absolute Maximum Ratings

	Parameters	Value	Units	Conditions	
I _{F(AV)}	Max. Average Forward Current	1.0	А	50% duty cycle @ T _L = 147 °C, rectangular wave form	
I _{FSM}	Max. Peak One Cycle Non-Repetitive	870	Α	5μs Sine or 3μs Rect. pulse	Following any rated load condition and
	Surge Current, $T_J = 25^{\circ}C$	50		10ms Sine or 6ms Rect. pulse	with rated V _{RRM} applied
E _{AS}	Non-Repetitive Avalanche Energy	3.0	mJ	T _J = 25 °C, I _{AS} = 1A, L = 6mH	
I _{AR}	Repetitive Avalanche Current	1.0	А	Current decaying linearly to zero in 1 µsec Frequency limited by T _J max. Va = 1.5 x Vr typical	

Electrical Specifications

	Parameters	Value	Units		Conditions
V _{FM}	Max. Forward Voltage Drop (1)	0.6	V	@ 1A	T,= 25 °C
		0.67	V	@ 2A	1 _J = 25 C
		0.42	V	@ 1A	T,= 125 °C
		0.52	V	@ 2A	1 ₁ 120 0
I _{RM}	Max. Reverse Leakage Current (1)	0.5	mA	T _J = 25 °C	
		5.0	mA	T _J = 100 °C	V _R = rated V _R
		15	mA	T _J = 125 °C	
C _T	Max. Junction Capacitance	200	pF	$V_R = 5V_{DC}$ (test signal range 100KHz to 1Mhz) 25°C	
L _s	Typical Series Inductance	2.0	nH	Measured lead to lead 5mm from package body	
dv/dt	Max. Voltage Rate of Change	10000	V/µs		
	(Rated V _R)				

⁽¹⁾ Pulse Width < 300 μ s, Duty Cycle < 2%

Thermal-Mechanical Specifications

	Parameters	Value	Units	Conditions
T _J	Max. Junction Temperature Range (*)	-55 to 125	°C	
T _{stg}	Max. Storage Temperature Range	-55 to 150	°C	
R _{thJL}	Max.Thermal Resistance Junction to Lead (**)	25	°C/W	DC operation
R _{thJA}	Max. Thermal Resistance Junction to Ambient	80	°C/W	DC operation
wt	Approximate Weight	0.10 (0.003)	g (oz.)	
	Case Style	SMB		Similar to DO-214AA
	Device Marking	IR13		

 $[\]frac{\text{(*)}}{\text{dTj}} < \frac{\text{dPtot}}{\text{Rth (j-a)}} < \frac{1}{\text{Rth (j-a)}} \text{ thermal runaway condition for a diode on its own heatsink}$

^(**) Mounted 1 inch square PCB

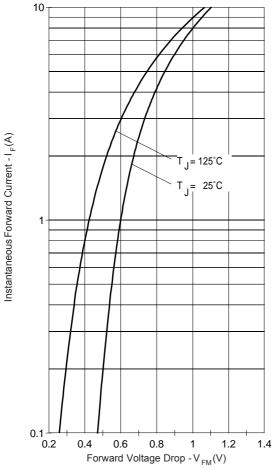


Fig. 1 - Maximum Forward Voltage Drop Characteristics

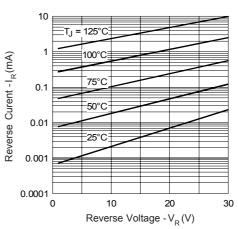


Fig. 2 - Typical Peak Reverse Current Vs. Reverse Voltage

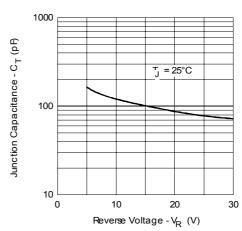


Fig. 3 - Typical Junction Capacitance Vs. Reverse Voltage

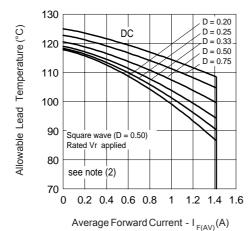


Fig. 4 - Maximum Average Forward Current Vs. Allowable Lead Temperature

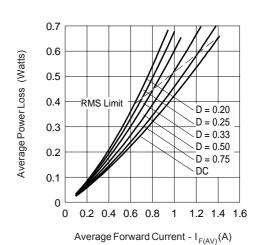


Fig. 5 - Maximum Average Forward Dissipation
Vs. Average Forward Current

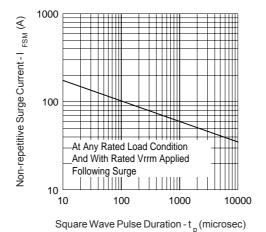
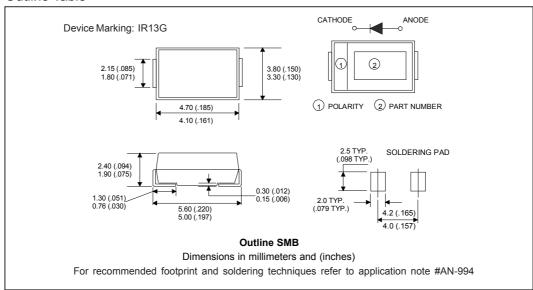
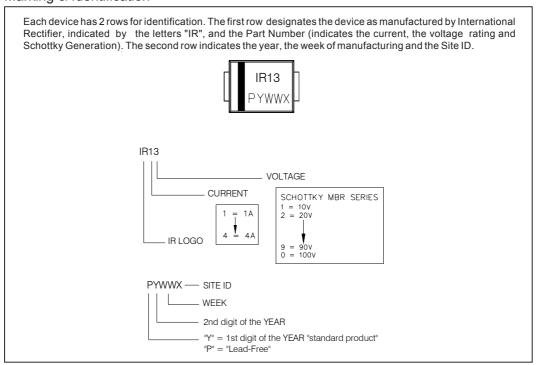
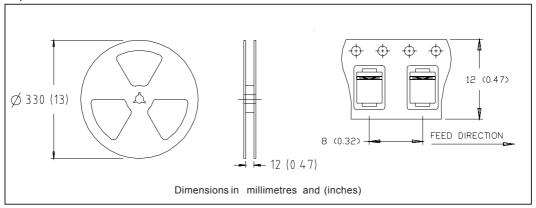
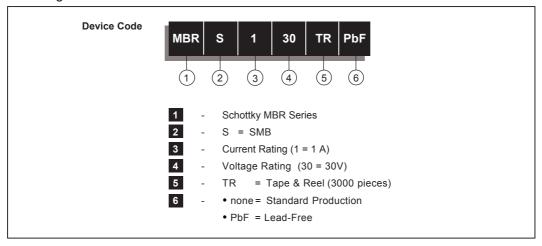



Fig. 6 - Maximum Peak Surge Forward Current Vs. Pulse Duration


 $\begin{aligned} \textbf{(2)} \ & \text{Formula used:} \ & \textbf{T}_{\text{C}} = \textbf{T}_{\text{J}} - (\textbf{Pd} + \textbf{Pd}_{\text{REV}}) \textbf{x} \ \textbf{R}_{\text{thJC}}; \\ & \textbf{Pd} = \textbf{Forward Power Loss} = \textbf{I}_{F(AV)} \textbf{x} \ \textbf{V}_{FM} \textcircled{@} (\textbf{I}_{F(AV)} / \textbf{D}) \ \ (\text{see Fig. 6}); \\ & \textbf{Pd}_{REV} = \textbf{Inverse Power Loss} = \textbf{V}_{R1} \textbf{x} \ \textbf{I}_{R} (\textbf{1} - \textbf{D}); \ \textbf{I}_{R} \textcircled{@} \textbf{V}_{R1} = \textbf{80}\% \ \text{rated V}_{R} \end{aligned}$

Bulletin PD-20436 07/04


Outline Table


Marking & Identification

Tape & Reel Information

Ordering Information Table

Data and specifications subject to change without notice. This product has been designed and qualified for Industrial Level and Lead-Free.

Qualification Standards can be found on IR's Web site.

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7309
Visit us at www.irf.com for sales contact information. 07/04