

Linear Integrated Systems

FEATURES					
DIRECT REPLACEMENT FOR CRYSTALONICS FF627					
FLAT GLASS TOP FOR EXTERNAL OPTICS					
ULTRA HIGH SENSITIVITY					
ABSOLUTE MAXIMUM RATINGS ¹					
@ 25 °C (unless otherwise stated)					
Maximum Temperatures					
Storage Temperature	-65 to +200 °C				
Operating Junction Temperature	-55 to +165 °C				
Maximum Power Dissipation					
Continuous Power Dissipation	400mW				
Maximum Currents					
Gate Current	50mA				
Maximum Voltages					
Drain to Source	15V				
Drain to Gate	15V				
Gate to Source	-10V				

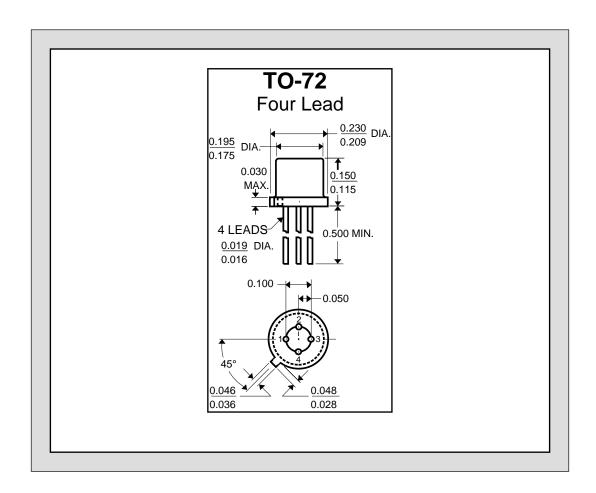

LS627

PHOTO FET LIGHT SENSITIVE JFET

ELECTRICAL CHARACTERISTICS @ 25 °C (unless otherwise stated)

SYMBOL	CHARACTERISTIC	MIN	TYP	MAX	UNITS	CONDITIONS
$V_{GS(off)}$	Gate to Source Cutoff Voltage (V _{PO})	1.0		5.0	V	$V_{DS} = 10V, I_{D} = 0.1 \mu A$
S _G	Gate Sensitivity ²	6.4		24	μA/mW/cm ²	V_{DS} = 10V, V_{GS} = 0V, λ = 0.9 μ m
S _D	Drain Sensitivity ³		500		mA/mW/cm ²	V_{DS} = 10V, V_{GS} = 0V, R_G = 1M Ω
λ_{lg}	Gate Current (Light) ⁴	10		37.5	nA/FC	V_{DS} = 10V, V_{GS} = 0V
λ_{Id}	Drain Current (Light) ⁴		800		μΑ/FC	V_{DS} = 10V, V_{GS} = 0V, R_G = 1M Ω
I _{DSS}	Drain Saturation Current	8.0			mA	V_{DS} = 10V, V_{GS} = 0V
I _{GSS}	Gate Leakage Current (Dark)			30	pA	$V_{GS} = -10V, V_{DS} = 0V$
g fs	Forward Transconductance (g _m)	8000			μS	$V_{DS} = 10V, V_{GS} = 0V, f = 1kHz$
R _{DS(on)}	Drain to Source On Resistance		100		Ω	$V_{DS} = 0.1V, V_{GS} = 0V$
C_GS	Gate to Source Capacitance			35	pF	V _{GS} = -10V, <i>f</i> = 140kHz
C_GD	Gate to Drain Capacitance			20	Pi	$V_{GD} = -10V$, f = 140kHz
t _r	Rise Time ⁵		30		ne	$V_{DS} = 10V, R_L = R_G = 100\Omega$
t _f	Fall Time ⁶	·	50		ns	VDS - 10V, NL - NG - 10002

NOTES

- Absolute maximum ratings are limiting values above which serviceability may be impaired.
- Gate Current per unit Radient Power Density at Lens Surface
- 3. Drain Current per unit Radient Power Density ($\lambda = 0.9 \mu m$).
- Tungsten Lamp 2800°K Color Temperature.
- GaAs Diode Source. 5.
- Directly Proportional to R_G. 6.
- Not production tested. Guaranteed by design.

Information furnished by Linear Integrated Systems is believed to be accurate and reliable. However, no responsibility is assumed for its use; nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Linear Integrated Systems.