
Variable Capacitance Diode for VCXO

FEATURES

- High capacitance ratio and good C-V linearity.
- To be usable at low voltage.
- Ultra small Flat Package (UFP) is suitable for surface mount design.

HVC359

DEVICE MARKING

HVC359 = S

ABSOLUTE MAXIMUM RATINGS $(T_A = 25^{\circ}C)$

Item	Symbol	Value	Unit
Reversevoltage	V_R	15	V
Junction temperature	T_j	125	°C
Storage temperature	T_{stg}	- 55 to +125	°C

ELECTRICAL CHARACTERISTICS (T_A=25°C)

Item	Symbol	Min	Тур	Max	Unit	Test Condition
Reverse current	I _{R1}	_	_	10	nA	$V_R = 10V$
	I_{R2}	_	_	100		$V_R = 10V, T_A = 60^{\circ}C$
Capacitance	C ₁	24.8	_	29.8	рF	$V_R = 1V$, $f = 1 MHz$
	C_4	6.0	-	8.3		$V_R = 4V$, $f = 1 MHz$
Capacitance ratio	n	3.0	_	-	_	C ₁ / C ₄
Series resistance	r _s	_	_	1.5	Ω	$V_R = 4V, f = 100 \text{ MHz}$
ESD-Capability*1	-	80	_	_	V	C =200pF , Both forward
						and reverse direction
						1 pulse.

Notes 1. Failure criterion ; $\rm I_{\rm R}\!\geq 20nA$ at $\rm V_{\rm R}$ =10 $\rm V$

HVC359

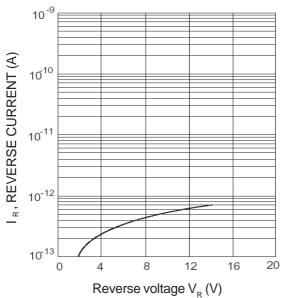


Fig.1 Reverse current Vs. Reverse voltage

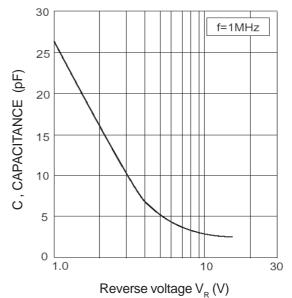


Fig.2 Capacitance Vs. Reverse voltage