ASSP

TIMING EXTRACTION BANDPASS FILTER (1.5 to 100MHz)

F1/F2/F3 SERIES

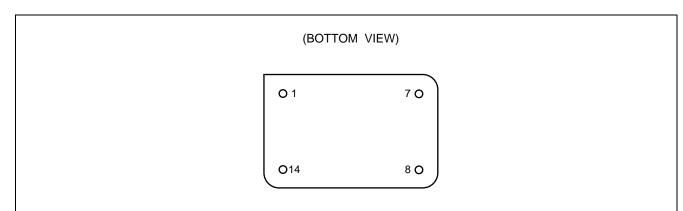
■ DESCRIPTION

The F1, F2 and F3 Series were developed as timing extraction filters for primary, secondary, and tertiary digital communication devices.

This new all-solid-state bandpass filter (BPF) uses a piezoelectric with a large electromechanical coefficient (lithium tantalate: LiTaO₃). The filter has a wide bandwidth, and is very stable.

■ FEATURES

- Wide frequency range 1.5 to 100MHz
- Wide fractional bandwidth (%): 0.1 to 2.5
- Low insertion loss: 6dB or less
- Excellent temperature characteristics: 1.5 to 35MHz: ±400ppm or less (0 to 60°C)


36 to 100MHz: -30ppm/°C (0 to 60°C)

- Small frequency deviation $\Delta fo < \pm 500$ ppm eliminating the need for adjustment
- · Highly reliable hermetically sealed package
- Compatible with small 14-pin DIP IC

■ PACKAGE

■ PIN ASSIGNMENT

Pin No.	Pin name	Description
1	IN	Input pin
7	GND	Ground pin
8	NC	No connection
14	OUT	Output pin

■ MAXIMUM RATINGS

ltem	Symbol	Rating	Unit
Operating temperature	Ta	-20 to 80	°C
Storage temperature	T _{stg}	-40 to 80	°C
Insulation resistance	IR	100 (100V DC)	ΜΩ
Frequency range	_	1.5 to 100	MHz

■ RECOMMENDED OPERATING CONDITIONS

Item	Symbol	Rating	Unit
Operating temperature	Ta	0 to 70	°C

■ STANDARD FREQUENCY

Series	Standard frequency	Application	Remarks
	1.544MHz	For the U.S. and Japan (primary group)	
	2.048MHz	For Europe (primary group)	
	3.088MHz	For the U.S. and Japan (primary group)	1.544 × 2
	3.152MHz	For the U.S. and Japan (primary group)	
F1	4.096MHz	For Europe (primary group)	2.048 × 2
FI	6.312MHz	For the U.S. and Japan (secondary group)	
	8.192MHz	2MHz For the U.S. and Japan (secondary group)	
	8.448MHz	For Europe (secondary group)	
	12.624MHz	For the U.S. and Japan (secondary group)	6.312 × 2
	16.384MHz	For the U.S. and Japan (secondary group)	8.192 × 2
	16.896MHz	For Europe (secondary group)	8.448 × 2
F2	32.064MHz	For Japan (tertiary group)	
	34.368MHz	For Europe (tertiary group)	
F3	44.736MHz	For the U.S. (tertiary group)	

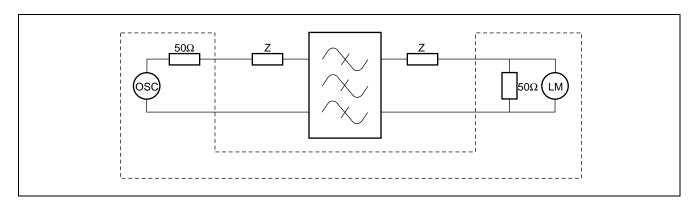
■ ELECTRICAL CHARACTERISTICS

F1 Series

Item	Symbol	Condition	Rating			Unit	Remarks
			Min.	Typical	Max.	Oilit	Nemarks
Frequency deviation	Δf o		-500		+500	ppm	fo standard
Load Q	Q		1000		40		
Insertion loss	IL	_			6	dB	
Stop band attenuation	Аоит	fo ± 10MHz	20			dB	
Frequency stability with temperature	∆f (Ta)	_	-400	_	+400	ppm	25°C standard, Ta = 0 to 70°C

F2 Series

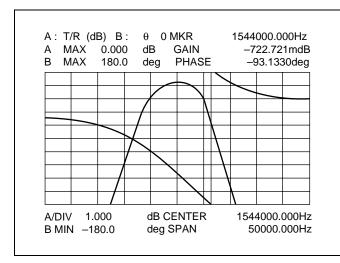
Item	Symbol	Condition	Rating			Unit	Remarks
			Min.	Typical	Max.	Oilit	Nemarks
Frequency deviation	Δfo		-500		+500	ppm	fo standard
Load Q	Q		1000		40		
Insertion loss	IL				6	dB	
Stop band attenuation	Аоит	fo ± 10MHz	20			dB	
Frequency stability with temperature	Δf (Ta)	_	-400	_	+400	ppm	25°C standard, Ta = 0 to 70°C

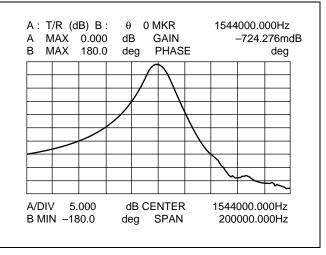

F3 Series

Item	Symbol	Condition	Rating			Unit	Remarks
			Min.	Typical	Max.	Oilit	Nemarks
Frequency deviation	Δf o		-500		+500	ppm	fo standard
Load Q	Q		200		50		
Insertion loss	IL	_			6	dB	
Stop band attenuation	Аоит	fo ± 10MHz	20			dB	
Frequency stability with temperature	∆f (Ta)	_	-1350	_	750	ppm	25°C standard, Ta = 0 to 70°C

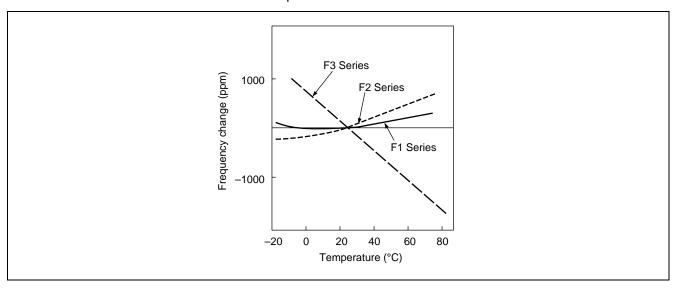
■ ELECTRICAL CHARACTERISTICS

	Ot an dand			Specifi	ication	
No.	Standard frequency (MHz)	Part number	Load Q	Insertion loss, IL (dB)	Phase rotation θ (degree)	Terminating impedance Z (Ω)
1	1.544	FAR-F1DA-1M5440-G201	110 ±20	3 or less	-90±20	790
2	1.544	FAR-F1DA-1M5440-G202	110 ±20	3 or less	-90±20	1000
3	1.544	FAR-F1DA-1M5440-G203	60 ±10	3 or less	-95±10	2035/20pF
4	1.544	FAR-F1DA-1M5440-G205	110 ±20	3 or less	-90±20	2000
5	2.048	FAR-F1DA-2M0480-G201	40 ±10	3 or less	-90±10	2035
6	2.048	FAR-F1DA-2M0480-G202	100 ±20	3 or less	-90±20	1000
7	3.088	FAR-F1DA-3M0880-G201	150 ±20	3 or less	-90±20	640
8	3.152	FAR-F1DA-3M1520-G201	85 ±15	3 or less	-90±15	1285
9	4.096	FAR-F1DA-4M0960-G201	110 ±20	3 or less	-90±20	750
10	6.312	FAR-F1DA-6M3120-G201	110 ±20	3 or less	-90±20	985
11	6.312	FAR-F1DA-6M3120-G202	110 ±20	3 or less	-90±20	1000
12	8.192	FAR-F1DA-8M1920-G201	100 ±20	3 or less	-90±20	980
13	8.448	FAR-F1DA-8M4480-G201	110 ±20	3 or less	-90±20	980
14	12.624	FAR-F1DA-12M624-G201	100 ±20	3 or less	-90±20	590
15	16.384	FAR-F1DA-16M384-G201	100 ±20	3 or less	-90±20	410
16	16.896	FAR-F1DA-16M896-G201	100 ±20	3 or less	-90±20	390
17	32.064	FAR-F2DA-32M064-G201	100 ±10	3 or less	-90±15	100
18	34.368	FAR-F2DA-34M368-G201	100 ±10	3 or less	-90±15	100
19	44.736	FAR-F3DA-44M736-G201	65 ±15	6 or less	38±10	105


■ TEST CIRCUIT



■ CHARACTERISTICS SAMPLE


Pass band characteristic

Stop band characteristic



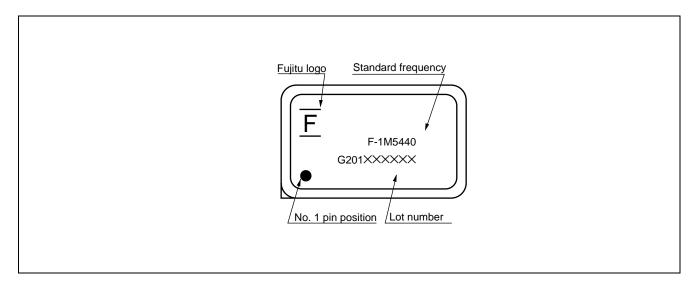
Temperature characteristic

■ PART NUMBERING SYSTEM

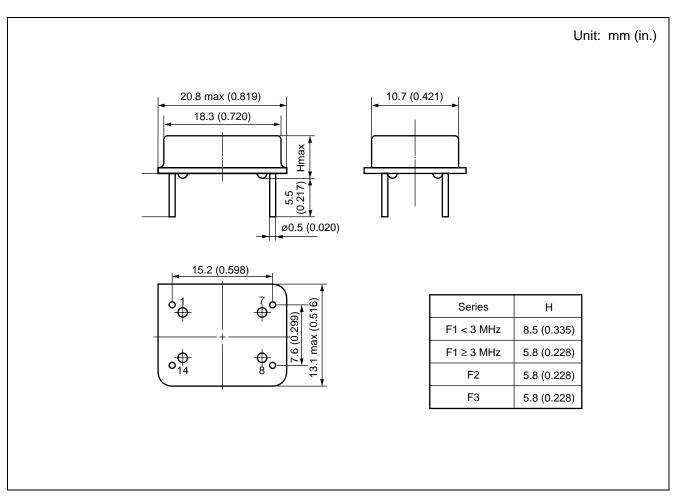
[Example]

① Series designation

② Frequency designation: The standard frequency is designated in six alphanumeric characters. M is used


to designate the decimal point in MHz. Refer to "ELECTRIC CHARACTERISTICS"

in detail


Example: 1.544MHz: 1M5440

③ Serial number: The serial number is assigned from 201 to 999 (201 is normal).

■ MARKING

■ DIMENSIONS

FUJITSU LIMITED

For further information please contact:

Japan

FUJITSU LIMITED
Corporate Global Business Support Division
Electronic Devices
KAWASAKI PLANT, 4-1-1, Kamikodanaka
Nakahara-ku, Kawasaki-shi
Kanagawa 211-88, Japan

Tel: (044) 754-3763 Fax: (044) 754-3329

North and South America

FUJITSU MICROELECTRONICS, INC. Semiconductor Division 3545 North First Street San Jose, CA 95134-1804, U.S.A.

Tel: (408) 922-9000 Fax: (408) 432-9044/9045

Europe

FUJITSU MIKROELEKTRONIK GmbH Am Siebenstein 6-10 63303 Dreieich-Buchschlag Germany

Tel: (06103) 690-0 Fax: (06103) 690-122

Asia Pacific

FUJITSU MICROELECTRONICS ASIA PTE. LIMITED #05-08, 151 Lorong Chuan New Tech Park Singapore 556741

Tel: (65) 281-0770 Fax: (65) 281-0220

All Rights Reserved.

The contents of this document are subject to change without notice. Customers are advised to consult with FUJITSU sales representatives before ordering.

The information and circuit diagrams in this document presented as examples of semiconductor device applications, and are not intended to be incorporated in devices for actual use. Also, FUJITSU is unable to assume responsibility for infringement of any patent rights or other rights of third parties arising from the use of this information or circuit diagrams.

FUJITSU semiconductor devices are intended for use in standard applications (computers, office automation and other office equipment, industrial, communications, and measurement equipment, personal or household devices, etc.).

CAUTION:

Customers considering the use of our products in special applications where failure or abnormal operation may directly affect human lives or cause physical injury or property damage, or where extremely high levels of reliability are demanded (such as aerospace systems, atomic energy controls, sea floor repeaters, vehicle operating controls, medical devices for life support, etc.) are requested to consult with FUJITSU sales representatives before such use. The company will not be responsible for damages arising from such use without prior approval.

Any semiconductor devices have inherently a certain rate of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Control Law of Japan, the prior authorization by Japanese government should be required for export of those products from Japan.

F9703

© FUJITSU LIMITED Printed in Japan