

CBT16213
24-bit bus exchange switch with 12-bit output enables

Objective specification

## 24-bit bus exchange switch with 12-bit output enables

## FEATURES

- $5 \Omega$ switch connection between two ports
- TTL compatible control input levels
- Package options include plastic shrink small outline (SSOP) and thin shrink small outline (TSSOP)


## DESCRIPTION

The CBT16213 provides 24 bits of high-speed TTL-compatible bus switching or exchanging. The low on-state resistance of the switch allows connections to be made with minimal propagation delay.

The CBT16213 operates as 24-bit bus switch or a 12-bit bus exchanger, which provides data exchanging between the four signal ports via the data-select (S0-S2) terminals.

The CBT16213 is characterized for operation from -40 to $+85^{\circ} \mathrm{C}$.

## QUICK REFERENCE DATA

| SYMBOL | PARAMETER | CONDITIONS <br> $T_{a m b}=25{ }^{\circ} \mathbf{C} ; \mathbf{G N D}=\mathbf{0} \mathbf{V}$ | TYPICAL | UNIT |
| :---: | :--- | :--- | :---: | :---: |
| $t_{P L H}$ <br> $t_{P H L}$ | Propagation delay <br> An to Yn | $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} ; \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ | 0.25 |  |
| $\mathrm{C}_{\mathrm{IN}}$ | Input capacitance | $\mathrm{V}_{\mathrm{I}}=0 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{CC}}$ | ns |  |
| $\mathrm{C}_{\mathrm{OUT}}$ | Output capacitance | Outputs disabled; $\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{CC}}$ | 4.5 |  |
| $\mathrm{I}_{\mathrm{CCZ}}$ | Total supply current | Outputs disabled; $\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$ | pF |  |

## ORDERING INFORMATION

| PACKAGES | TEMPERATURE RANGE | OUTSIDE NORTH AMERICA | NORTH AMERICA | DWG NUMBER |
| :--- | :---: | :---: | :---: | :---: |
| 56 -Pin Plastic SSOP Type III | -40 to $+85^{\circ} \mathrm{C}$ | CBT16213DL | CBT16213DL | SOT371-1 |
| 56 -Pin Plastic TSSOP Type II | -40 to $+85^{\circ} \mathrm{C}$ | CBT16213DGG | CBT16213DGG | SOT364-1 |

FUNCTION TABLE

| S2 | S1 | S0 | A1 | A2 | FUNCTION |
| :---: | :---: | :---: | :---: | :---: | :---: |
| L | L | L | Z | Z | Disconnect |
| L | L | H | B1 | Z | A1 = B1 |
| L | H | L | B2 | Z | A1 $=$ B2 |
| L | H | H | Z | B1 | A2 $=$ B1 |
| H | L | L | Z | B2 | A2 $=$ B2 |
| H | L | H | A2 \& B2 | A1 \& B2 | A1 $=$ A2 = B2 |
| H | H | L | B1 | B2 | A1 $=$ B1, A2 $=$ B2 |
| H | H | H | B2 | B1 | A1 $=$ B2, A2 $=$ B1 |

$\mathrm{H}=$ High voltage level
L = Low voltage level
Z = High impedance "off" state

LOGIC SYMBOL


## 24-bit bus exchange switch with 12-bit output enables

## PIN CONFIGURATION



PIN DESCRIPTION

| PIN NUMBER | SYMBOL | NAME AND FUNCTION |
| :---: | :---: | :--- |
| $1,56,55$ | S0, S1, S2 | Data select |
| $2,4,6,9,11,13,15$, <br> $18,21,23,25,27$ | 1A1-12A1 | A1 channel |
| $3,5,7,10,12,14,16$, <br> $20,22,24,26,28$ | 1A2-12A2 | A2 channel |
| $54,52,50,47,45,43$, <br> $41,39,36,34,32,30$ | 1B1, 12B1 | B1 channel |
| $53,51,48,46,44,42$, <br> $40,37,35,33,31,29$ | $1 \mathrm{~B} 2,12 \mathrm{~B} 2$ | B2 channel |
| $8,19,38,49$ | GND | Ground (0 V) |
| 17 | $\mathrm{~V}_{\mathrm{CC}}$ | Positive supply voltage |

## 24-bit bus exchange switch with 12-bit output enables

ABSOLUTE MAXIMUM RATINGS ${ }^{1,2}$

| SYMBOL | PARAMETER | CONDITIONS | RATING | UNIT |
| :---: | :--- | :---: | :---: | :---: |
| $\mathrm{V}_{\mathrm{CC}}$ | DC supply voltage |  | -0.5 to +7.0 | V |
| $\mathrm{I}_{\mathrm{IK}}$ | DC input diode current | $\mathrm{V}_{\mathrm{I}}<0$ | -50 | mA |
| $\mathrm{~V}_{\text {I }}$ | DC input voltage ${ }^{3}$ |  | -0.5 to +7.0 | V |
| $\mathrm{~V}_{\text {OUT }}$ | DC output voltage ${ }^{3}$ | output in Off or High state | -0.5 to +5.5 | V |
| $\mathrm{I}_{\text {OUT }}$ | DC output current | output in Low state | 128 | mA |
| $\mathrm{~T}_{\text {stg }}$ | Storage temperature range |  | -65 to +150 | ${ }^{\circ} \mathrm{C}$ |

NOTES:

1. Stresses beyond those listed may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
2. The performance capability of a high-performance integrated circuit in conjunction with its thermal environment can create junction temperatures which are detrimental to reliability. The maximum junction temperature of this integrated circuit should not exceed $150^{\circ} \mathrm{C}$.
3. The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

## RECOMMENDED OPERATING CONDITIONS

| SYMBOL | PARAMETER | LIMITS |  | UNIT |
| :---: | :--- | :---: | :---: | :---: |
|  |  | Min | Max |  |
| $\mathrm{V}_{\mathrm{CC}}$ | DC supply voltage | 4.0 | 5.5 | V |
| $\mathrm{~V}_{\mathrm{IH}}$ | High-level input voltage | 2.0 | - | V |
| $\mathrm{V}_{\mathrm{IL}}$ | Low-level Input voltage | - | 0.8 | V |
| $\mathrm{~T}_{\mathrm{amb}}$ | Operating free-air temperature range | -40 | +85 | ${ }^{\circ} \mathrm{C}$ |

## 24-bit bus exchange switch

 with 12-bit output enables
## DC ELECTRICAL CHARACTERISTICS

| SYMBOL | PARAMETER | TEST CONDITIONS | LIMITS |  |  | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | $\mathrm{T}_{\text {amb }}=-40^{\circ} \mathrm{C}$ to $+85{ }^{\circ} \mathrm{C}$ |  |  |  |
|  |  |  | Min | Typ ${ }^{1}$ | Max |  |
| $\mathrm{V}_{\mathrm{IK}}$ | Input clamp voltage | $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{I}_{\mathrm{I}}=-18 \mathrm{~mA}$ | - | - | -1.2 | V |
| 1 | Input leakage current | $\mathrm{V}_{C C}=0 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=5.5 \mathrm{~V}$ | - | - | 10 | $\mu \mathrm{A}$ |
|  |  | $\mathrm{V}_{\text {CC }}=5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=$ GND or 5.5 V | - | - | $\pm 1$ |  |
| Icc | Quiescent supply current ${ }^{2}$ | $\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} ; \mathrm{I}_{\mathrm{O}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}$ or GND | - | - | 3 | $\mu \mathrm{A}$ |
| $\Delta_{\text {l }}$ | Additional supply current per input pin ${ }^{2}$ | $\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$, one input at 2.7 V , other inputs at $\mathrm{V}_{\mathrm{CC}}$ or GND | - | - | 2.5 | mA |
| $\mathrm{C}_{1}$ | Control pins | $\mathrm{V}_{1}=3 \mathrm{~V}$ or 0 V | - | 4.5 | - | pF |
| $\mathrm{ClO}_{\text {(OFF) }}$ | Power-off leakage current, B port | V O $=3 \mathrm{~V}$ or 0 V ; $\mathrm{S} 0, \mathrm{~S} 1$, or $\mathrm{S} 2=\mathrm{V}_{\mathrm{CC}}$ | - | 11.5 | - | pF |
|  | Power-off leakage current, A port |  | - | 11.5 | - | pF |
| $\mathrm{ron}^{3}$ | A to B or B to A | $\mathrm{V}_{\mathrm{CC}}=4.0 \mathrm{~V} ; \mathrm{V}_{1}=2.4 \mathrm{~V} ; \mathrm{I}_{\mathrm{I}}=15 \mathrm{~mA}$ | - | 14 | 21 | $\Omega$ |
|  |  | $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{1}=0 \mathrm{~V} ; \mathrm{I}_{\mathrm{I}}=64 \mathrm{~mA}$ | - | 5 | 7 |  |
|  |  | $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{1}=0 \mathrm{~V} ; \mathrm{l}_{1}=30 \mathrm{~mA}$ | - | 5 | 7 |  |
|  |  | $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{1}=2.4 \mathrm{~V} ; \mathrm{I}_{\mathrm{I}}=15 \mathrm{~mA}$ | - | 8 | 15 |  |
|  | A1 to A2 | $\mathrm{V}_{\mathrm{CC}}=4.0 \mathrm{~V} ; \mathrm{V}_{1}=2.4 \mathrm{~V} ; \mathrm{I}_{\mathrm{I}}=15 \mathrm{~mA}$ | - | 22 | 33 |  |
|  |  | $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{1}=0 \mathrm{~V} ; \mathrm{I}_{1}=64 \mathrm{~mA}$ | - | 10 | 14 |  |
|  |  | $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{1}=0 \mathrm{~V} ; \mathrm{I}_{\mathrm{I}}=30 \mathrm{~mA}$ | - | 10 | 14 |  |
|  |  | $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{1}=2.4 \mathrm{~V} ; \mathrm{I}_{\mathrm{I}}=15 \mathrm{~mA}$ | - | 16 | 22 |  |

## NOTES:

1. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$
2. This is the increase in supply current for each input that is at the specified TTL voltage level rather than $\mathrm{V}_{\mathrm{CC}}$ or GND.
3. Measured by the voltage drop between the A and the B terminals at the indicated current through the switch.

On-state resistance is determined by the lowest voltage of the two (A or B) terminals
AC CHARACTERISTICS
$\mathrm{GND}=0 \mathrm{~V} ; \mathrm{t}_{\mathrm{R}} ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$

| SYMBOL | PARAMETER | FROM (INPUT) | $\begin{gathered} \text { TO } \\ \text { (OUTPUT) } \end{gathered}$ | $\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 0.5 \mathrm{~V}$ |  | $\mathrm{V}_{\mathrm{CC}}=4.0 \mathrm{~V}$ |  | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Min | Max | Min | Max |  |
| $t_{\text {pd }}$ | Propagation delay ${ }^{1}$ | A or B | B or A | - | 0.25 | - | 0.25 | ns |
|  |  | A1 | A2 | - | 0.5 | - | 0.5 | ns |
| $t_{\text {en }}$ | Output enable time to High and Low level | S | A or B | 3.2 | 11.1 | - | 12.4 | ns |
|  |  | S0 | A2 and B2 | 4 | 10.9 | - | 13.3 | ns |
| $t_{\text {dis }}$ | Output disable time from High and Low level | S | A or B | 2.3 | 11.9 | - | 12.4 | ns |
|  |  | S0 | A2 and B2 | 5.7 | 12 | - | 12.8 | ns |

## NOTES:

1. This parameter is warranted but not production tested. The propagation delay is based on the RC time constant of the typical on-state resistance of the switch and a load capacitance of 50 pF , when driven by an ideal voltage source (zero output impedance).

## 24-bit bus exchange switch with 12-bit output enables

## AC WAVEFORMS



Waveform 1. Input (An) to Output (Yn) Propagation Delays


Note:
Waveform 1 is for an output with internal conditions such tha
the output is low except when disabled by the output control.
Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.

Waveform 2. 3-State Output Enable and Disable Times

## TEST CIRCUIT AND WAVEFORMS



| TEST | S1 |
| :---: | :---: |
| $t_{\text {pd }}$ | open |
| $t_{\text {PLZ }} / t_{\text {PZL }}$ | 7 V |
| $\mathrm{t}_{\text {PHZ }} / \mathrm{t}_{\mathrm{PZH}}$ | open |

## DEFINITIONS

$C_{L}=$ Load capacitance includes jig and probe capacitance; see AC CHARACTERISTICS for value.


DIMENSIONS ( mm are the original dimensions)

| UNIT | $\mathbf{A}$ <br> max. | $\mathbf{A}_{\mathbf{1}}$ | $\mathbf{A}_{\mathbf{2}}$ | $\mathbf{A}_{\mathbf{3}}$ | $\mathbf{b}_{\mathbf{p}}$ | $\mathbf{c}$ | $\mathbf{D}^{(1)}$ | $\mathbf{E}^{(1)}$ | $\mathbf{e}$ | $\mathbf{H}_{\mathbf{E}}$ | $\mathbf{L}$ | $\mathbf{L}_{\mathbf{p}}$ | $\mathbf{Q}$ | $\mathbf{v}$ | $\mathbf{w}$ | $\mathbf{y}$ | $\mathbf{Z}^{(1)}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| mm | 2.8 | 0.4 | 2.35 | 0.25 | 0.3 | 0.22 | 18.55 | 7.6 | 0.635 | 10.4 | 1.4 | 1.0 | 1.2 | 0.25 | 0.18 | 0.1 | 0.85 |
|  | 0.2 | 2.20 | 0.2 | 0.13 | $8^{0}$ |  |  |  |  |  |  |  |  |  |  |  |  |

Note

1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.

| OUTLINE <br> VERSION | REFERENCES |  |  | EUROPEAN | ISSUE DATE |
| :--- | :---: | :---: | :---: | :---: | :---: |
|  | PROJECTION | EIAJ |  |  |  |
| SOT371-1 |  | JEDEC | MO-118 |  |  |

24-bit bus exchange switch with 12-bit output enables

detail X


DIMENSIONS (mm are the original dimensions).

| UNIT | $\underset{\text { max. }}{\mathrm{A}}$ | $\mathrm{A}_{1}$ | $\mathrm{A}_{2}$ | $\mathrm{A}_{3}$ | $\mathrm{b}_{\mathrm{p}}$ | c | $\mathrm{D}^{(1)}$ | $E^{(2)}$ | e | $\mathrm{H}_{\mathrm{E}}$ | L | $L_{p}$ | Q | v | w | y | Z | $\theta$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| mm | 1.2 | $\begin{aligned} & 0.15 \\ & 0.05 \end{aligned}$ | $\begin{aligned} & 1.05 \\ & 0.85 \end{aligned}$ | 0.25 | $\begin{aligned} & 0.28 \\ & 0.17 \end{aligned}$ | $\begin{aligned} & 0.2 \\ & 0.1 \end{aligned}$ | $\begin{aligned} & 14.1 \\ & 13.9 \end{aligned}$ | $\begin{aligned} & 6.2 \\ & 6.0 \end{aligned}$ | 0.5 | $\begin{aligned} & 8.3 \\ & 7.9 \end{aligned}$ | 1.0 | $\begin{aligned} & 0.8 \\ & 0.4 \end{aligned}$ | $\begin{aligned} & 0.50 \\ & 0.35 \end{aligned}$ | 0.25 | 0.08 | 0.1 | 0.5 0.1 | $8^{0}$ $0^{\circ}$ |

## Notes

1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.
2. Plastic interlead protrusions of 0.25 mm maximum per side are not included.

| OUTLINE VERSION | REFERENCES |  |  | EUROPEAN PROJECTION | ISSUE DATE |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | IEC | JEDEC | EIAJ |  |  |
| SOT364-1 |  | MO-153 |  | $\square$ - | $\begin{aligned} & \hline 95-02-10 \\ & 99-12-27 \end{aligned}$ |

## 24-bit bus exchange switch

 with 12-bit output enables
## NOTES

## 24-bit bus exchange switch with 12-bit output enables

Data sheet status

| Data sheet <br> status | Product <br> status | Definition [1] |
| :--- | :--- | :--- |
| Objective <br> specification | Development | This data sheet contains the design target or goal specifications for product development. <br> Specification may change in any manner without notice. |
| Preliminary <br> specification | Qualification | This data sheet contains preliminary data, and supplementary data will be published at a later date. <br> Philips Semiconductors reserves the right to make changes at any time without notice in order to <br> improve design and supply the best possible product. |
| Product <br> specification | Production | This data sheet contains final specifications. Philips Semiconductors reserves the right to make <br> changes at any time without notice in order to improve design and supply the best possible product. |

[1] Please consult the most recently issued datasheet before initiating or completing a design.

## Definitions

Short-form specification - The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.

Limiting values definition — Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information - Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

## Disclaimers

Life support - These products are not designed for use in life support appliances, devices or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.

Right to make changes - Philips Semiconductors reserves the right to make changes, without notice, in the products, including circuits, standard cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.

## Philips Semiconductors



