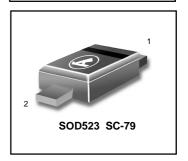
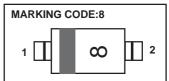


VHF variable capacitance diode

FEATURES

- · Excellent linearity
- · Excellent matching to 2% DMA
- · Ultra small plastic SMD package
- · C 28: 2.6 pF; ratio: 15
- · Very low series resistance.


APPLICATIONS


- Electronic tuning in VHF television tuners, band B up to 460 MHz
- · Voltage controlled oscillators(VCO).

DESCRIPTION

The BB178 is a planar technology variable capacitance diode, in a SOD523 (SC-79) package. The excellent matching performance is achieved by gliding matching and a direct matching assembly procedure.

BB 178

LIMITING VALUES In accordance with the Absolute Maximum Rating System (IEC 134).

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
V _R	continuous reverse voltage		_	32	V
V _{RM}	peak reverse voltage	in series with a 10 $k\Omega$ resistor	_	35	V
I _F	continuous forward current		_	20	mA
T _{stg}	storage temperature		-55	+150	°C
T j	operating junction temperature		-55	+125	°C

ELECTRICAL CHARACTERISTICS T_j=25°C unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	TYP.	UNIT
I _R	reverse current	V _R = 30 V; see Fig.2	-	-	10	nA
		$V_R = 30 V; T_j = 85$ °C; see Fig.2	_	_	200	nA
r s	diode series resistance	f = 100 MHz;		0.65	0.8	Ω
		V_R is the value at which Cd =30 pF		0.00	0.0	32
C d	diode capacitance	$V_R = 1 V$; $f = 1 MHz$; see Figs 1and 3	34.65	_	42.35	pF
		$V_R = 28 V$; f = 1 MHz; see Figs 1and 3	2.361	_	2.754	pF
C d(1V)	capacitance ratio	f = 1 MHz	_	1.3	_	
C _{d(2V)}						
C d(1V)	capacitance ratio	f = 1 MHz	13.5	_	_	
C _{d(28V)}						
C d(25V)	capacitance ratio	f = 1 MHz	-	1.08	_	
C _{d(28V)}						
ΔC_d	capacitance matching	V_R = 1 to 28 V; in a sequence of 15	_	_	2	%
C d		diodes(gliding)				

BB 178

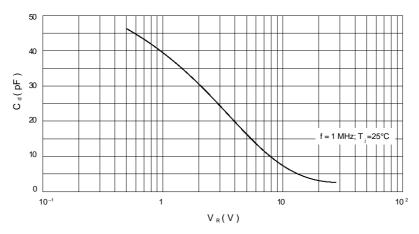


Fig.1 Diode capacitance as a function of reverse voltage; typical values.

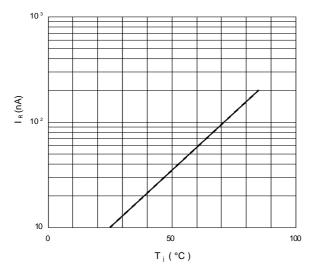


Fig.2 Reverse current as a function of junction temperature; maximum values.

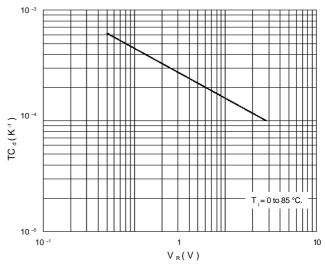


Fig.3 Temperature coefficient of diode capacitance as a function of reverse voltage; typical values.